首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reactivity of the herbicide cycloxydim (CD) toward singlet oxygen was studied in organic solution and on wax films to mimic the leaf surface. Experiments in solution were conducted in acetonitrile using phenalenone as a sensitizer. For the experiments in the solid state, phenalenone was included in paraffinic wax films and CD deposited at the film surface. By laser flash photolysis we observed that the triplet of phenalenone reacts with CD with a bimolecular rate constant of (9.6 ± 1)×106 M−1 s−1. However, scavenging experiments using β-carotene as a singlet oxygen quencher showed that the observed CD degradation in aerated acetonitrile involves singlet oxygen essentially. The bimolecular rate constant of reaction of CD with singlet oxygen was evaluated to (1.0 ± 0.2)×107 M−1 s−1. Phenalenone included in the wax films also significantly increased the rate of CD photodegradation, the involvement of singlet oxygen being very likely. The photoproducts formed via the singlet oxygen pathway resulted from the oxidation of the thiol group and/or the cyclohexene ring. This study should help to better understand the fate of CD after its spraying on crops.  相似文献   

2.
Photocatalytic oxidation of gaseous DMF using thin film TiO2 photocatalyst   总被引:2,自引:0,他引:2  
Chang CP  Chen JN  Lu MC  Yang HY 《Chemosphere》2005,58(8):1071-1078
The heterogeneous photocatalytic oxidation of gaseous N,N'-dimethylformamide (DMF) widely used in the manufacture of synthetic leather and synthetic textile was investigated. The experiments were carried out in a plug flow annular photoreactor coated with Degussa P-25 TiO2. The oxidation rate was dependent on DMF concentration, reaction temperature, water vapor, and oxygen content. Photocatalytic deactivation was observed in these reactions. The Levenspiel deactivation kinetic model was used to describe the decay of catalyst activity. Fourier transform infrared (FTIR) was used to characterize the surface and the deactivation mechanism of the photocatalyst. Results revealed that carbonylic acids, aldehydes, amines, carbonate and nitrate were adsorbed on the TiO2 surface during the photocatalytic reaction. The ions, NH4+ and NO3-, causing the deactivation of catalysts were detected on the TiO2 surface. Several treatment processes were applied to find a suitable procedure for the regeneration of catalytic activity. Among these procedures, the best one was found to be the H2O2/UV process.  相似文献   

3.
A chemical determination method of singlet oxygen in the atmosphere was established. The method employs a specific reaction of α -terpinene with singlet oxygen to produce the single product, ascaridole. Amberlite XAD-2 coated with α -terpinene was packed into a glass tube shielded from light and sample air was passed through the tube. Ascaridole formed was extracted with hexane from Amberlite XAD-2 and was determined by gas chromatography. The amount of singlet oxygen was calculated from that of ascaridole. Ascaridole was not formed by oxidation of α -terpinene with ozone, hydrogen peroxide and hydroxyl radical, and ascaridole formed by singlet oxygen was stable against these oxidants. The method was applied to actual polluted air and diurnal variations in the singlet oxygen were observed.  相似文献   

4.
Singlet oxygen mediated degradation of Klason lignin   总被引:1,自引:0,他引:1  
After some results concerning photochemical generated singlet oxygen on lignins from steam explosion, the reactions of chemically generated singlet oxygen with Klason lignins from pine and beech are described. Singlet oxygen was produced through the reaction of hydrogen peroxide with sodium hypochlorite. The degradation of lignin was followed by uv spectroscopy and gel permeation chromatography. Extensive degradation of the lignins was observed when 20 mg of Klason lignin was treated with 1 ml of 30% hydrogen peroxide and 8.56 ml of 1.093 M sodium hypochlorite. In the uv spectra registered after the treatment with singlet oxygen the absorptions typical of lignin (210-220 nm and 250-280 nm) were completely absent. The gpc analysis of lignin after a treatment with 0.1 ml of hydrogen peroxide and 0.86 ml of sodium hypochlorite showed a clear reduction of signals due to the lignin and a shift to lower molecular weight. The potential use of this procedure in the bleaching procedure was tested by using recycled paper. A maximum reduction of 51% in the amount of lignin in this paper was observed.  相似文献   

5.
Haggi E  Bertolotti S  García NA 《Chemosphere》2004,55(11):1501-1507
The aerobic visible-light-photosensitised irradiation of methanolic solutions of either of the phenolic-type contaminants model compounds (ArOH) p-phenylphenol (PP), p-nitrophenol (NP) and phenol (Ph), and for two additional phenolic derivatives, namely p-chlorophenol (ClP) and p-methoxyphenol (MeOP), used in some experiments, was carried out. Employing the natural pigment riboflavin (Rf) as a sensitiser, the degradation of both the ArOH and the very sensitiser was observed. A complex mechanism, common for all the ArOH studied, operates. It involves superoxide radical anion (O2√−) and singlet molecular oxygen (O2(1Δg)) reactions. Maintaining Rf in sensitising concentrations levels (≈0.02 mM), the mechanism is highly dependent on the concentration of the ArOH. Kinetic experiments of oxygen and substrate consumption, static fluorescence, laser flash photolysis and time-resolved phosophorescence detection of O2(1Δg) demonstrate that at ArOH concentrations in the order of 10 mM, no chemical transformation occurs due to the complete quenching of Rf singlet excited state. When ArOH is present in concentrations in the order of mM or lower, O2√− is generated from the corresponding Rf radical anion, which is produced by electron transfer reaction from the ArOH to triplet excited Rf. The determined reaction rate constants for this step show a fairly good correlation with the electron-donor capabilities for Ph, PP, NP, ClP and MeOP. In this context, the main oxidative species is O2√−, since O2(1Δg) is quenched in an exclusive physical fashion by the ArOH. The production of O2√− regenerates Rf impeding the total degradation of the sensitiser. This kinetic scheme could partially model the fate of ArOH in aquatic media containing natural photosensitisers, under environmental conditions.  相似文献   

6.
Phthalocyanines (Pcs, colored macromolecular compounds with the ability to generate singlet oxygen) represent a promising group of photosensitizers due to their intense absorption in the red and UV portion of the spectrum which leads to their excitation. In order to characterize possible toxic effects associated with eventual practical use and application of these chemicals, we employed an in vitro cell culture model to evaluate cytotoxic effects of 31 different phthalocyanines using neutral red uptake assay. An immortalized human keratinocyte cell line HaCaT was exposed to the tested chemicals for 2 or 24 h, either with or without illumination in the last 60 min of the exposure period. After 2- or 24-h exposure without illumination, no cytotoxic effects or weak cytotoxic effects were induced by any Pc under the study and EC50 values could not be obtained within the tested concentration ranges (1.25–20 mg L−1 or 0.625–10 mg L−1). On the other hand, exposure to phthalocyanines under illumination induced a significant cytotoxic effect. The most pronounced cytotoxicity was elicited by Pcs previously shown to have high positive charge densities at peripheral parts of substituent groups, which is most likely the factor responsible for the binding of Pc to negatively charged membranes on the cell surface and thus guaranteeing the tight connection necessary for the singlet oxygen attack on the cell surface.  相似文献   

7.
Eight soil samples from five wells of a former gas plant site differing in the contamination with BTEX and PAHs as well as the nutrient content were investigated by soil respiration measurements. The basal, glucose as well as NH4+ and PO4(3-) induced cumulative oxygen consumption and carbon dioxide production in 72 and 120 h were determined and additionally the maximal turnover rates and the limitation quotients were calculated. Without additional carbon source only one of five investigated samples was clearly nutrient limited. After glucose supplementation four of seven investigated samples showed nutrient limitation that was in accordance with the available ammonium and phosphorous content. BTEX and PAHs did not exhibit an inhibiting effect on the respiration rate. In contrast, BTEX containing samples exhibited the highest oxygen consumption indicating biodegradation of the contaminants. The results show that oxygen consumption and carbon dioxide production as well as the kinetic of these processes are all informative parameters characterizing the whole microbial respiration potential and their nutrient limitation in soil samples. Therefore this fast respirometric method can be used for the decision if further detailed studies of the bioremediation are useful and if nutrient supplementation is recommended to enhance natural attenuation.  相似文献   

8.
The effects of thymol (TOH), thymoquinone (TQ) and dithymoquinone (TQ2) on the reactions generating reactive oxygen species (ROS) such as superoxide anion radical (O2*-), hydroxyl radical (HO*) and singlet oxygen (1O2) were tested using the chemiluminescence (CL) and spectrophotometry methods. All tested compounds acted as scavengers of various ROS. The rate constant of 1O2-dimols quenching by thymol was calculated.  相似文献   

9.
Han SK  Hwang TM  Yoon Y  Kang JW 《Chemosphere》2011,84(8):1095-1101
The generation of reactive species in an aqueous goethite suspension, under room light and aeration conditions, was investigated using the electron paramagnetic resonance (EPR) technique employing spin trap agents. The trap reagents, including 5,5-dimethylpyrroline N-oxide (DMPO) and 2,2,6,6-tetramethylpiperidine (TEMP), were used for the detection of OH radicals (OH) and singlet oxygen (1O2), respectively. On the addition of DMPO to the goethite suspended solution, a DMPO-OH adduct was formed, which was not decreased, even in the presence of the OH scavenger, mannitol. This result implied a false positive interpretation from the DMPO-OH EPR signal. In the presence of TEMP reagent, a TEMP-O signal was detected, which was completely inhibited in the presence of the singlet oxygen scavenger, sodium azide. With both DMPO-OH and TEMP-O radicals in the presence and absence of radical scavengers, singlet oxygen was observed to be the key species formed in the room-light sensitized goethite suspension. In the goethite/H2O2 system; however, both OH and singlet oxygen were generated, with significant portions of DMPO-OH resulting from both OH and singlet oxygen. In fact, the DMPO-OH resulting from OH should be carefully calculated by correcting for the amount of DMPO-OH due to singlet oxygen. This study reports, for the first time, that the goethite suspensions may also act as a natural sensitizer, such as fulvic acids, to form singlet oxygen.  相似文献   

10.
In this study, a two-bed electrically heated regenerative thermal oxidizer (RTO) was used to test the thermal destruction and oxides of nitrogen (NOx) formation characteristics in burning airstreams that contain either N, N-dimethylformamide or dimethylformamide (DMF) mixed with methyl ethyl ketone (MEK). The RTO contained two 0.152 m x 0.14 m x 1 m (L x W times] H) beds, both packed with gravel particles with an average diameter of approximately 0.0111 m and a height of up to 1 m with a void fraction of 0.42 in the packed section. The thermal recovery efficiency (TRE) and the gas pressure drop over the beds were also studied. Experimental results reveal that, with a valve shifting time (ts) of 1.5 min, a superficial gas velocity (Ug) of 0.39 m/sec (evaluated at an influent air temperature of around 30 degrees C) and preset maximum destruction temperatures (Ts) of 750-950 degrees C, no NOx was present in the effluent gas from the RTO when it was loaded with DMF-free air. When only DMF was present in the influent air, the average destruction efficiencies exceeded 96%, and increased with the influent DMF concentration from 300 to 750 mg/N x m3. The "NOx-N formation/DMF-N destruction" mass ratios were in the range 0.76-1.05, and decreased as the influent DMF concentration increased within the experimental range. When both DMF and MEK were present in the influent gas, the NO, formation ratio was almost the same and the DMF destruction efficiency increased with the influent MEK/DMF ratio from 150/300 to 4500/300 (mg/mg) and in the preset temperature range. The NOx formation ratios were in the range 0.75-0.96. The TRE decreased as Ug increased but was invariant with Ts. The Ergun equation was found to suffice in the estimation of the pressure drop when the gas flowed over the packing beds.  相似文献   

11.
Analyzing sediment dissolved oxygen based on microprofile modeling   总被引:2,自引:0,他引:2  
Sediment plays a key role in controlling the oxygen demand of aquatic systems. The reaction rate, penetration depth, and flux across the sediment–water interface (SWI) are important factors in sediment oxygen consumption. However, there were few methods to collect these data until recently. In this study, methods were developed to simulate the oxygen microprofile and calculate the sediment oxygen consumption rate, oxygen penetration depth, and oxygen flux across the SWI. We constructed a sediment oxygen measuring system using an oxygen microelectrode and a control device. The simulation equations were derived from both zero and first-order kinetic models, while the penetration depth and the oxygen flux were calculated from the simulation results. The method was tested on four prepared sediment samples. Decreases in dissolved oxygen in surface sediment were clearly detected by the microelectrode. The modeled data were a good fit for the observed data (R 2?>?0.95), and zero-order kinetics were more suitable than first-order kinetics. The values for penetration depth (1.3–3.9 mm) and oxygen fluxes (0.061–0.114 mg/cm2/day) calculated by our methods are comparable with those from other studies.  相似文献   

12.
The effects of oxygen limitation on solid-bed bioleaching of heavy metals (Me) were studied in a laboratory percolator system using contaminated sediment supplemented with 2% elemental sulfur (So). Oxygen limitation was realized by controlling the gas flow and oxygen concentration in the aeration gas. The oxygen supply varied between 150 and 0.5 mol So (-1) over 28 d of leaching. Moderate oxygen limitation led to temporarily suppression of acidification, rate of sulfate generation and Me solubilization. Lowering the oxygen supply to 0.5 mol O2 mol So (-1) resulted in retarding acidification over a period of three weeks and in poor Me solubilization. Oxidation of So occurred even under strong oxygen limitation at a low rate. High surplus of oxygen was necessary for almost complete oxidation of the added So. The maximum Me solubilization was reached at an oxygen supply of 7.5 mol O2 mol So (-1). Thus, the oxygen input during solid-bed bioleaching can be reduced considerably by controlling the gas flow without loss of metal removal efficiency. Oxygen consumption rates, ranging from 0.4 x 10(-8) to 0.8 x 10(-8) Kg O2 Kg dm (-1) S(-1), are primarily attributed to high reactivity of the sulfur flower and high tolerance of indigenous autotrophic bacteria to low oxygen concentrations. The So related oxygen consumption was calculated assuming a molar yield coefficient Y O2/S of 1.21. The oxygen conversion degree, defined as part of oxygen feed consumed by So oxidation, increased from 0.7% to 68% when the oxygen supply was reduced from 150 to 0.5 mol O2 mol So (-1).  相似文献   

13.
Embryos, unlike adults, are typically sessile, which allows for an increase in the available metrics that can be used to assess chemical toxicity. We investigate Daphnia magna development rate and oxygen consumption as toxicity metrics and compare them to arrested embryo development using four different techniques with potassium cyanide (KCN) as a common toxicant. The EC50 (95 % CI) for arrested development was 2,535 (1,747–3,677) μg/L KCN. Using pixel intensity changes, recorded with difference imaging, we semi-quantitatively assessed a decrease in development rate at 200 μg/L KCN, threefold lower than the arrested development lowest observed effect concentration (LOEC). Respirometry and self-referencing (SR) microsensors were two unique techniques used to assess oxygen consumption. Using respirometry, an increase in oxygen consumption was found in the 5 μg/L KCN treatment and a decrease for 148 μg/L, but no change was found for the 78 μg/L KCN treatment. Whereas, with SR microsensors, we were able to detect significant changes in oxygen consumption for all three treatments: 5, 78, and 148 μg/L KCN. While SR offered the highest sensitivity, the respirometry platform developed for this study was much easier to use to measure the same endpoint. Oxygen consumption may be subject to change during the development process, meaning consumption assessment techniques may only be useful only for short-term experiments. Development rate was a more sensitive endpoint though was only reliable four of the six embryonic developmental stages examined. Despite being the least sensitive endpoint, arrested embryo development was the only technique capable of assessing the embryos throughout all developmental stages. In conclusion, each metric has advantages and limitations, but because all are non-invasive, it is possible to use any combination of the three.  相似文献   

14.
The present work studies the visible-light-promoted photodegradation of the colorless fungicide carbendazim (methyl 2-benzimidazolecarbamate) and several 2-substituted benzimidazoles (SBZ's), in water or water-methanol solution, in the presence of air and, as a photosensitizer, the synthetic xanthene dye Rose Bengal (RB) or the natural pigment riboflavin (Rf). The results indicate that the degradation of each particular SBZ depends on its chemical structure and on the sensitizer employed. In the presence of RB, the degradation always operates via a singlet molecular oxygen (O(2)((1)Delta(g)))-mediated mechanism, through a highly efficient process, as deduced from the comparison of the rate constants for physical and chemical quenching of O(2)((1)Delta(g)). In the presence of Rf, the visible-light irradiation of any of the studied SBZ's produces a series of competitive processes that depend on the relative concentrations of Rf and SBZ. These processes include the quenching of excited singlet and triplet Rf states by the SBZ and the generation of both O(2)((1)Delta(g)) and superoxide radical anion (O(2)(-)), the latter generated by electron transfer from excited Rf species to the dissolved oxygen. The overall result is the photodegradation of the SBZ and the photoprotection of the sensitizer.  相似文献   

15.
《Chemosphere》1987,16(4):681-694
Rate constants for some environmentally important organic model compounds reacting with singlet oxygen in water have been determined in laboratory experiments using rose bengal as a sensitizer. Dimethylfuran, furfuryl alcohol, 2,3-dimethyl-2-butene and diethylsulfide react about three times faster in water than in non-aqueous solutions. Phenolic compounds react faster at higher pH values. Their rate constants exactly increase with their degree of dissociation. Rate constants for the ionized species of these phenolic compounds are greater than 108M−1s−1. In natural surface water under solar irradiation reaction with singlet oxygen is important only for a few classes of especially reactive organic compounds.  相似文献   

16.
A multidisciplinary computer-based field study among 393 Dutch households examined how people judge the 'social' sustainability (quality-of-life effects) of 'environmentally' sustainable household consumption patterns (less energy-use demanding) and associated policy options. The study revealed that about two-thirds of the households had to reduce their direct and indirect energy use within the next five years in order to move towards environmentally sustainable consumption patterns. The least sustainable consumption patterns were found among high-income groups and young couples. Overall, respondents did not believe that their quality of life will be affected as long as the necessary reduction of energy use stays below 30 gigajoules (24% of their total household energy use). Moreover, respondents were willing to accept almost all energy-saving policy measures. However, respondents did appear to be more willing to pay for sustaining their comfort, freedom and pleasure while reducing the environmental impact of their consumption than they were to give up some of their quality of life.  相似文献   

17.
Laboratory experiments to quantify the global production of NOx (NO + NO2) in the troposphere due to atmospheric lightning and biogenic activity in soil are presented. These laboratory experiments, as well as other studies, suggest that the global production of NOx by lightning probably ranges between 2 and 20 MT(N)y-1 of NO and is strongly dependent on the total energy deposited by lightning, a quantity not well-known. In our laboratory experiments, nitrifying micro-organisms is soil were found to be a significant source of both NO and nitrous oxide (N2O). The measured production ratio of NO to N2O averaged 2-3 for oxygen partial pressures of 0.5-10%. Extrapolating these laboratory measurements to the global scale, which is somewhat risky, suggests that nitrifying micro-organisms in soil may account for as much as 10 MT(N) y-1 of NO. Additional experiments with denitrifying micro-organisms gave an NO to N2O production ratio ranging from 2 to 4 for an oxygen partial pressure of 0.5% and a ratio of less than unity for oxygen partial pressures ranging from 1 to 20%. The production of NO and N2O, normalized with respect to micro-organism number indicates that the production of both NO and N2O by denitrifying micro-organisms is at least an order of magnitude less than production by nitrifying micro-organisms for the micro-organisms studied.  相似文献   

18.
The ability of Dutch grassland soil and Dutch peat soil for methane oxidation was investigated. The kinetics of methane oxidation by soil from different depths were determined in batch cultures incubated with 1; 10; 100; and 10,000 ppmv methane, respectively. All 4 applied concentrations of methane were degraded by both types of soil. Thereby, the highest oxidative activities were observed between 5 and 10 cm soil depth. Most importantly, these experiments demonstrated that this soil acts as a sink for methane even at concentrations well below 1 ppmv. Especially at higher methane concentrations (100 - 10,000 ppmv) much higher degradation rates were found in the peat soil. This also correlates with the higher methane production rates which had been observed in peat soil.  相似文献   

19.
Geophagy, the practice of consuming clay or soil, is encountered among pregnant women in Africa, Eastern Asia and Latin America, but also in Western societies. However, certain types of clay are known to contain high concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The aim of this study was to determine the PCDD/F contents of orally consumed clays purchased from Dutch and African markets. Congener patterns were compared with those of pooled human milk samples collected in eight African countries, to investigate a possible relationship with clay consumption. From the Dutch market thirteen clay products were examined, seven of African and six of Suriname origin. From seven African countries, twenty clay products were collected. All 33 clay products were screened with a cell-based bioassay and those showing a high response were analyzed by GC/HRMS. High PCDD/F concentrations were measured in three clay products from the Dutch market, ranging from 66 to 103 pg TEQ g-1, whereas clay products from African countries were from 24 to 75 pg TEQ g-1. Patterns and relatively high concentrations of PCDD/Fs in human milk samples from the Democratic Republic of the Congo and Côte d’Ivoire suggest a relationship with the consumption of contaminated clay. Frequent use of PCDD/F contaminated clay products during pregnancy may result in increased exposure of the mother and subsequently the developing fetus and new-born child. The use of these contaminated clays during pregnancy should be carefully considered or even discouraged.  相似文献   

20.
In order to study the short-term ecotoxicity of metals to the freshwater mussel Dreissena polymorpha, the effects of Cu, Zn and Cd on the filtration rate of this mussel were determined in laboratory experiments. Filtration rate was chosen as the endpoint, because it is a sensitive sublethal parameter compared to mortality and it is an important parameter given the ecological role D. polymorpha fulfills. The filtration rate was calculated from the decrease in algal concentration, fed to mussels in aquaria, containing different metal concentrations. The EC50 for Cu (41 microg litre(-1)) was lower than for Cd (388 microg litre(-1)) and Zn (1350 microg litre(-1)). The NOEC(accumulation) for the essential metal Zn was higher than for the essential metal Cu. Cadmium, a non-essential metal, was accumulated at all elevated water concentrations, so the NOEC(accumulation) was the concentration in the control water (<0.2 microg litre(-1)). All (no) effect concentrations found in this study were above the quality criteria set for metal concentrations in Dutch surface water, suggesting that the zebra mussel is sufficiently protected by these quality criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号