首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

Purpose

Biochar derived from waste biomass is now gaining much attention for its function as a biosorbent for environmental remediation. The objective of this study was to determine the effectiveness of biochar as a sorbent in removing Cd, Cu, and Zn from aqueous solutions.

Methods

Biochar was produced from dairy manure (DM) at two temperatures: 200°C and 350°C, referred to as DM200 and DM350, respectively. The obtained biochars were then equilibrated with 0–5 mM Cu, Zn or Cd in 0.01 M NaNO3 solution for 10 h. The changes in solution metal concentrations after sorption were evaluated for sorption capacity using isotherm modeling and chemical speciation Visual MINTEQ modeling, while the solid was collected for species characterization using infrared spectroscopy and X-ray elemental dot mapping techniques.

Results

The isotherms of Cu, Zn, and Cd sorption by DM200 were better fitted to Langmuir model, whereas Freundlich model well described the sorption of the three metals by DM350. The DM350 were more effective in sorbing all three metals than DM200 with both biochars had the highest affinity for Cu, followed by Zn and Cd. The maximum sorption capacities of Cu, Zn, and Cd by DM200 were 48.4, 31.6, and 31.9 mg g?1, respectively, and those of Cu, Zn, and Cd by DM350 were 54.4, 32.8, and 51.4 mg g?1, respectively. Sorption of the metals by the biochar was mainly attributed to their precipitation with PO 4 3? or CO 3 2? originating in biochar, with less to the surface complexation through –OH groups or delocalized π electrons. At the initial metal concentration of 5 mM, 80–100 % of Cu, Zn, and Cd retention by DM200 resulted from the precipitation, with less than 20 % from surface adsorption through phenonic –OH complexation. Among the precipitation, 20–30 % of the precipitation occurred as metal phosphate and 70–80 % as metal carbonate. For DM350, 75–100 % of Cu, Zn, and Cd retention were due to the precipitation, with less than 25 % to surface adsorption through complexation of heavy metal by phenonic –OH site or delocalized π electrons. Among the precipitation, only less than 10 % of the precipitation was present as metal phosphate and more than 90 % as metal carbonate.

Conclusions

Results indicated that dairy manure waste can be converted into value-added biochar as a sorbent for sorption of heavy metals, and the mineral components originated in the biochar play an important role in the biochar's high sorption capacity.  相似文献   

2.
Competing ions strongly affect heavy metal sorption onto the solid surfaces of soil. This study evaluated competitive sorption of Cd, Cu, Ni, Pb and Zn on three soils: Calcixerollic Xerochrept, Paralithic Xerorthent and Lithic Haplumbrept. Monometal and competitive sorption isotherms were obtained at 25 degrees C. The individual effect of ions on retention of the others was ascertained by a fractional factorial analysis design. Most of the sorption isotherms belonged to type L subtype 2 in the classification of Giles. In competitive sorption the initial linear part was shorter and the knee sharper when compared with monometal sorption isotherms. Parameters related to sorptive capacity, such as Point B, Langmuir monolayer and Freundlich distribution coefficient, were higher in monometal than in competitive sorption, and in basic soils than in acidic soil. Calcium desorbed at different points of the sorption isotherms indicated that cationic exchange with Ca was the main retention mechanism in calcareous soils. For Pb, the ratio Ca desorbed/Pb sorbed was close to one; for Cu, Ni and Zn the ratio ranged from 1.20 to 1.37, probably due to partial dissolution of calcium carbonates by hydrolytic processes during retention. On the other hand, Cd had a ratio around 0.6 reflecting another additional retention mechanism, probably surface complexation. Fractional factorial design confirmed that the presence of the cations investigated reduced the amount of the five metals retained, but the presence of Cu and Pb in the system depressed Ni, Cd and Zn sorption more than the inverse. Cation mobility was enhanced when equilibrium concentration increased and the effect was higher in Ca-saturated soils.  相似文献   

3.
Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.  相似文献   

4.
The effectiveness of phosphate treatment for Cd, Cu, Pb, and Zn immobilization in mine waste soils was examined using batch conditions. Application of synthetic hydroxyapatite (HA) and natural phosphate rock (FAP) effectively reduced the heavy metal water solubility generally by about 84-99%. The results showed that HA was slightly superior to FAP for immobilizing heavy metals. The possible mechanisms for heavy metal immobilization in the soil involve both surface complexation of the metal ions on the phosphate grains and partial dissolution of the phosphate amendments and precipitation of heavy metal-containing phosphates. HA and FAP could significantly reduce Cd, Cu, Pb, and Zn availability in terms of water solubility in contaminated soils while minimizing soil acidification and potential risk of eutrophication associated with the application of highly soluble phosphate sources.  相似文献   

5.
This study qualifies and quantifies the immobilization of Cd, Zn and Co, (used as models of bivalent metal ions due to their relevant toxicity) in filters of synthetic hydroxyapatite (HAP) [Ca5(PO4)3OH]. They were flushed with solutions containing Cd (1 x 10(-5)M), Zn and Co (1 x 10(-4)M) at constant pH (8.6) and ionic strength (0.01 M). The concentration of these metal ions in the outlet was measured by ICP-OEM spectroscopy. The software PHREEQC (version 2.4.2) was used to model sorption process and the potential effect of salinity (KCl), pH, alkalinity (NaHCO3) and hardness (CaCl2) over the efficiency of the treatment. Results showed an excellent retention capacity of HAP for Cd, Zn and Co. Sorption data were successfully described considering a mix model of surface complexation onto phosphate surface groups, ionic exchange in surface calcium sites and the precipitation of ZnO. Co exchange and surface complexation constants (Kex and Kc) were taken from previous experiments, while KexCd=0.32 and KcCd=0.63 were estimated from our modeling results. Predictive values of metal ion sorption show that: (a) an increase in hardness does not play a significant role in the retention capacity of these metals on HAP; (b) an increase in alkalinity promotes the precipitation of MeCO3 which could alter the hydrodynamic of the column; (c) a decrease in pH and an increase in salinity inhibit ZnO precipitation enhancing Zn and Cd adsorption and decreasing Co retention on HAP.  相似文献   

6.
Abstract

Adsorption, desorption, potential and selective distribution of Cu, Zn, Cd, Pb and Ni were investigated in three typical soils of Japan under flooded condition.

The results indicate that the sorption of all heavy metals was linear upto the maximum concentration (500 μg/g soil) employed in the present studies in all the soils. The magnitude of sorption in general was in the order of Pb > Cu > Zn > Cd > Ni. The adsorption coefficients showed wide variations among different soils as well as metal ions. The hysteresis of sorption and desorption by KNO3 was well pronounced for both the metal ions and the soils. The desorption rate was greater than the fixation rate indicating the predominance of the chemosorption over physical processes. The major portion of sorbed metals were retained in the unextractable form, which over all accounted for more than 50% of the sorbed metals.  相似文献   

7.
A comparative study on metal sorption by brown seaweed   总被引:7,自引:0,他引:7  
Tsui MT  Cheung KC  Tam NF  Wong MH 《Chemosphere》2006,65(1):51-57
This study compared the sorption of Ag, Cd, Co, Cd, Mn, Ni, Pb and Zn by a Ca-treated Sargassum biomass at pH 5.0, under low and high ionic strength (IS) conditions. The sorption isotherms of As [As(V)] and Cr [Cr(III) and Cr(VI)] were also determined at low IS. The isotherm data for the eight cationic metals and Cr(III) were well fitted by Langmuir equations. Generally, the maximum metal uptake (Umax) followed: Cr(III) > Pb approximately Cu > Ag approximately Zn approximately Cd > Ni approximately Mn approximately Co > Cr(VI) > As(V) at low IS and Pb > Cu > Co > Mn approximately Cd > Zn approximately Ag > Ni at high IS. As(V) did not bind to the seaweed at pH 5.0. The results indicated that sorption of Pb was not affected by the increasing IS, though the percentage of free Pb ions in the water was greatly reduced as predicted by the speciation model. High IS lowered Umax by 10-36% (except Co and Pb), and lowered the affinity constant of the metal by 33-91% for all cationic metals, as compared to low IS. Moreover, the removal efficiency of the cationic metals and Cr decreased exponentially with initial metal concentrations and was lower at high IS. Ion-exchange was the mechanism responsible for the cationic metal sorption onto the seaweed, and Na ion interfered with the cationic metal binding through electrostatic interaction. In conclusion, this study showed the differential binding capacity of the Sargassm biomass for different metals and oxidation states and the differential effects of IS. According to the present results, Sargassum may be considered a good biosorbent for cationic metals (especially Pb) in both low and high-salt containing wastewater.  相似文献   

8.
Phosphate-induced metal immobilization in a contaminated site   总被引:31,自引:0,他引:31  
To assess the efficiency of P-induced metal immobilization in soils, a pilot-scale field experiment was conducted at a metal contaminated site located in central Florida. Phosphate was applied at a P/Pb molar ratio of 4.0 with three treatments: 100% of P from H3PO4, 50% of P from H3PO4+ 50% of P from Ca(H2PO4)2, and 50% of P from H3PO4+5% phosphate rock in the soil. Approximately 1 year after P application, soil and plant samples were collected to determine mobility and bioavailability of selected metals (Pb, Zn, and Cu) using sequential extraction procedure and mineralogical characterization using X-ray diffraction (XRD) and scanning electron microscope-energy dispersive X-ray (SEM-EDX) analysis. Phosphorus distribution and soil pH effects were also evaluated. Phosphate was more effective in transforming soil Pb (to 53%) from the non-residual to the residual phase than soil Zn (to 15%) and soil Cu (to 13%). This was because Pb was immobilized by P via formation of an insoluble pyromorphite-like mineral in the surface and subsurface of the soil, whereas no phosphate mineral Zn or Cu was identified. While P amendment enhanced metal uptake in the roots of St. Augustine grass (Stenotaphrum secundatum), it significantly reduced metal translocation from root to shoot, especially Pb via formation of a pyromorphite-like mineral on the membrane surface of the root. A mixture of H3PO4 and phosphate rock was effective in metal immobilization, with less soil pH reduction and less soluble P. Although H3PO4 was effective in immobilizing Pb, its use should be limited to minimize soil pH reduction and potential eutrophication risk.  相似文献   

9.
The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.  相似文献   

10.
北运河表层沉积物对重金属Cu、Pb、Zn的吸附   总被引:3,自引:0,他引:3  
首先分析了北运河6个采样点表层沉积物中重金属含量及相关基本特征。通过实验室模拟实验,利用分配系数Kd评价沉积物对重金属Cu、Pb、Zn的吸附特性,进一步考察了水体pH变化和有机质对重金属在北运河沉积物上吸附的影响。结果表明,沉积物中重金属的含量顺序为Zn>Cu>Pb,去除有机质后,沉积物对重金属的吸附能力显著降低,但各采样点中的重金属含量,沉积物对重金属吸附能力,以及沉积物中的有机质含量并没有明显相关性,这可能是因为不同采样点中有机质种类与结构不同导致的。总之,北运河沉积物对Pb有很强的吸附能力,其次是Cu和Zn,而且,Cu、Zn、Pb的吸附量随着pH的升高逐渐增大,水体pH值对于Zn的吸附影响更大。  相似文献   

11.
浮游球衣菌对Pb2+、Cu2+、Zn2+、Cd2+的吸附性能研究   总被引:8,自引:0,他引:8  
研究了浮游球衣菌(Sphaerotilus natans)在不同吸附条件下对溶液中Pb^2+、Cu^2+、Zn^2+、Cd^2+的吸附规律。结果表明,Sphaerotilus natans对这4种重金属离子均有一定的吸附作用,并在20min内达到吸附平衡,pH对吸附过程影响较大,pH为5.5时Sphaerotilus natans对这4种金属离子的吸附效果最好,Sphaerotilus natans对它们的吸附选择性为Pb^2+〉Cu^2+〉Zn^2+〉Cd^2+,Pb^2+、Cu^2+能部分置换出已被菌体吸附的Zn^2+、Cd^2+。HCI和EDTA溶液可有效地将金属离子从菌体上解吸下来,解吸后的菌体可重复使用。  相似文献   

12.
Measurements were made of the contents of Al, Mn, Fe, Cu, Zn, Cd and Pb in Scapania undulata in three streams (D2, D5, D11) in the English Lake District. The stream waters had average pH values of 5.35 (D2), 5.81 (D5) and 7.26 (D11), the main differences in other major chemical components being in Mg, Al, Ca and alkalinity. There was generally more metal accumulation in the older parts of the plants, but this was not significant in all cases. Extents of accumulation varied with stream pH and dissolved metal concentration. For Al, accumulation was greatest in streams D2 and D5. Mn accumulated most in D5 and Fe was without preference. Cu, Zn and Cd accumulated mostly in the plants in stream D11 and Pb accumulated more in D5 and D11. In terms of enrichment factors (amount of metal in the plants divided by stream water concentration) the sequence was Zn < Cd < Cu < Mn < Pb < Al < Fe. Laboratory experiments supported the findings of the field data, providing evidence that uptake increases with pH at constant total metal concentration. The results are interpreted qualitatively in terms of the chemical speciation of the metals in the stream water and competition between metal ions and protons at the plant-water interface. It is suggested that Al, Cu, Zn, Cd and Pb behave according to chemical complexation, whereas redox processes and/or colloidal interactions may be significant for Mn and Fe.  相似文献   

13.
Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P?+?T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn?>?Cu?>?Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P?+?T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic-C-rich soil. More than 73 % P in the amendments remained in the upper 0–10 cm soil layers. However, leaching of P from soluble TSP was significant with 24.3 % of P migrated in the leachate in the organic-C-poor soil. The mobility of heavy metals in the P-treated soil varies with nature of P sources, heavy metals, and soils. Caution should be taken on the multi-metal stabilization since the P amendment may immobilize some metals while promoting others’ mobility. Also, attention should be paid to the high leaching of P from soluble P amendments since it may pose the risk of excessive P-induced eutrophication.  相似文献   

14.

Purpose

Phosphorus amendments have been widely and successfully used in immobilization of one single metal (e.g., Pb) in contaminated soils. However, application of P amendments in the immobilization of multiple metals and particularly investigations about the effects of planting on the stability of the initially P-induced immobilized metals in the contaminated soils are far limited.

Methods

This study was conducted to determine the effects of phosphate rock tailing (PR), triple superphosphate fertilizer (TSP), and their combination (P+T) on mobility of Pb, Cu, and Zn in a multimetal-contaminated soil. Chinese cabbage (Brassica rapa subsp. chinensis) (metal-sensitive) and Chinese kale (Brassica alboglabra Bailey) (metal-resistant) were introduced to examine the effects of planting on leaching of Pb, Cu, and Zn in the P-amended soils.

Results

All three P treatments greatly reduced CaCl2-extractable Pb and Zn by 55.2?C73.1% and 14.3?C33.6%, respectively. The PR treatment decreased CaCl2-extractable Cu by 27.8%, while the TSP and P+T treatments increased it by 47.2% and 44.4%, respectively. All three P treatments were effective in reducing simulated rainwater leachable Pb, with dissolved and total leachable Pb decrease by 15.6?C81.9% and 16.3?C64.5%, respectively. The PR treatment reduced the total leachable Zn by 16.8%, while TSP and P+T treatments increased Zn leaching by 92.7% and 78.9%, respectively. However, total Cu leaching were elevated by 17.8?C178% in all P treatments. Planting promoted the leaching of Pb and Cu by 98.7?C127% and 23.5?C170%, respectively, especially in the colloid fraction, whereas the leachable Zn was reduced by 95.3?C96.5% due to planting. The P treatments reduced the uptake of Pb, Cu, and Zn in the aboveground parts of Chinese cabbage by up to 65.1%, 34.3%, and 9.59%, respectively. Though P treatments were effective in reducing Zn concentrations in the aboveground parts of the metal-resistant Chinese kale by 22.4?C28.9%, they had little effect on Pb and Cu uptake.

Conclusions

The results indicated that all P treatments were effective in immobilizing Pb. The effect on the immobilization of Cu and Zn varied with the different P treatments and evaluation methods. Metal-sensitive plants are more responsive to the P treatments than metal-resistant plants. Planting affects leaching of metals in the P-amended soils, specially leaching of colloid fraction. The conventional assessment on leaching risks of heavy metals by determining dissolved metals (filtered through 0.45-??m pore size membrane) in leachates could be underestimated since colloid fraction may also contribute to the leaching.  相似文献   

15.
This work examined the adoption of a sorbent-assisted ultrafiltration (UF) system for the reduction of Pb(II), Cu(II), Zn(II) and Ni(II) from industrial wastewater. In such a system metals were removed via several processes which included precipitation through the formation of hydroxides, formation of precipitates/complexes among the metal ions and the wastewater compounds, adsorption of metals onto minerals (bentonite, zeolite, vermiculite) and retention of insoluble metal species by the UF membranes. At pH = 6 the metal removal sequence obtained by the UF system was Pb(II) > Cu(II) > Zn(II) > Ni(II) in mg g−1 with significant amount of lead and copper being removed due to chemical precipitation and formation of precipitates/complexes with wastewater compounds. At this pH, zinc and nickel adsorption onto minerals was significant, particularly when bentonite and vermiculite were employed as adsorbents. Metal adsorption onto zeolite and bentonite followed the sequence Zn(II) > Ni(II) > Cu(II) > Pb(II), while for vermiculite the sequence was Ni(II) > Zn(II) > Cu(II) > Pb(II) in mg g−1. The low amount of Pb(II) and Cu(II) adsorbed by minerals was attributed to the low available lead and copper concentration. At pH = 9 the adoption of UF could effectively reduce heavy metals to very low levels. The same was observed at pH = 8, provided that minerals were added. The prevailing metal removal process was the formation of precipitates/complexes with wastewater compounds.  相似文献   

16.
采用自制木粉/壳聚糖接枝丙烯酸-丙烯酰胺吸附树脂R1、R2、R3对二元金属离子Cu2+/Pb2+和Zn2+/Pb2+溶液中的吸附性能进行了较系统考察。Pb2+离子溶液中存在竞争离子Cu2+、Zn2+时,随竞争离子浓度增加,3种吸附树脂R1、R2、R3对Pb2+的吸附量明显下降,而竞争离子吸附量显著增加。二元溶液中各金属离子浓度相同时,3种树脂对竞争离子Cu2+、Zn2+的吸附量大于对Pb2+的吸附量;各溶液中分别加入NaCl及NaNO3、尿素后,对Pb2+离子的吸附量下降迅速。随吸附树脂用量增加,竞争离子Cu2+、Zn2+的吸附量逐渐减小,Pb2+的吸附量在吸附树脂用量0.10 g/L(Zn2+/Pb2+溶液)或0.15 g/L(Cu2+/Pb2+溶液)时出现最大值。溶液pH值对树脂吸附性能有显著影响。3.0  相似文献   

17.
Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal–phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the soil amended with biochar removed groundwater Pb, Zn, and Cd by 97.4 %, 53.4 %, and 54.5 %, respectively. Meanwhile, the metals from both groundwater and soil itself were immobilized with the amendments, with the leachability of the three metals in the CaCl2 and TCLP extracts being reduced by up to 98.1 % and 62.7 %, respectively. Our results indicate that the integrated chemical immobilization and pump-and-treat method developed in this study provides a novel way for simultaneous remediation of both metal-contaminated soil and groundwater.  相似文献   

18.
Ngwenya BT 《Chemosphere》2007,67(10):1982-1992
Bacteria can immobilize significant quantities of trace metals through surface complexation reactions. However, bacterial cell lysis is an integral part of the development process, and the extent to which this process affects adsorbed metals has not been properly investigated. In order to evaluate the effects of cell lysis on metal fixation, bacterial suspensions containing approximately 10 ppm Zn in 0.01 M NaNO(3) were monitored over an one-month period for adsorbed Zn, pH, cell concentration, dissolved organic carbon, NH(3) and dissolved amino acids. Cell concentration decreased with time, in parallel with an increase in dissolved organic carbon. Zn adsorption decreased with time for suspensions with near-neutral (5.5-7.0) initial pH values, consistent with the reduction in cell concentration and/or formation of metal-ligand complexes in solution, with lysis products acting as ligands. However, Zn adsorption increased with time for suspensions with initially low pH (相似文献   

19.
Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r2 > or = 0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) < 1 mg l(-1). were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l(-1)) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples. microg l(-1)): Al 36-530. Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of Zn, Cd and Pb. These enrichments, together with high metal deposition in the past, make it likely that concentrations of the metals in the surface waters are governed by release from catchment pools of atmospherically-deposited metal. The catchments appear to be responding on a time scale of decades, possibly centuries, to changes in metal deposition. For the more acid waters at UDV, the calculated free-ion concentrations of Al are similar to published LC50 values for acute toxicity towards fish. The free-ion concentrations of Ni, Cu, Zn and Cd in all the surface waters are one-to-four orders of magnitude lower than reported LC50 values for fish.  相似文献   

20.
Copper and zinc retention by an organically amended soil   总被引:3,自引:0,他引:3  
This paper describes changes in retention of Cu and Zn in laboratory experiments by a sandy soil that had been amended in the field with different composted wastes. The amounts of the metals retained increased as a result of the amendments, especially after two years. Desorption of the sorbed metals was always negligible, regardless of the treatment. The proportion of Cu retained was considerably higher than that of Zn, suggesting a higher affinity of the soil for the former. The greater sorption in the amended soils indicates a build-up of fresh sites for metal retention.The use of 'log(activity) vs. pH' plots showed that the nature of the surfaces retaining metals on the untreated and amended soils is different. At comparable pH values, the amended soils gave higher solution metal concentrations. Some of the possible environmental consequences of the use of these amendments for remediation purposes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号