首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
杨炜俊  蔡铭  王海波 《环境工程》2018,36(1):142-146
对2016年广州市核心区范围内100个道路监测点和18个噪声敏感建筑物监测点采集到的交通噪声数据进行分析,结果表明:道路监测点昼间平均等效声级为70.3 dB,夜间平均等效声级为70.2 dB,道路监测点和噪声敏感建筑物监测点在夜间的交通噪声污染较为严重。0—Ⅱ类噪声敏感建筑物前测点主要受交通噪声的影响,而建筑物本身对交通噪声的遮挡作用使后测点的声环境质量明显高于前测点。道路监测点频谱特性分析表明,道路交通噪声的声能量主要集中在1 000~1 250 Hz频段范围内,可针对该特性对道路交通噪声进行控制和防治。  相似文献   

2.
蔡铭  罗鹏  王海波  马侠霖 《环境工程》2014,32(2):128-130
对广州市59条不同类型道路和16栋不同功能区噪声敏感建筑物设置监测点进行噪声监测,综合评估广州市道路交通噪声的污染情况。经过分析可知,白天道路噪声均值为72.0 dB,晚上均值为71.0 dB,其中快速路和主干路噪声值较高,次干路和支路较低。对于16栋噪声敏感建筑物,其昼夜环境噪声均值分别为68.4 dB和67.4 dB,夜间最大突发噪声均值也高达82.3 dB。  相似文献   

3.
蓝子钦  蔡铭  李锋  杨炜俊 《环境工程》2018,36(10):156-160
2017年12月期间,选取了广州市主城区98条道路及15栋噪声敏感建筑物,在昼间、夜间道路交通噪声排放峰值期间进行噪声监测实验,综合分析了2017年广州市道路交通噪声污染情况以及噪声频谱特性。道路监测点昼间平均等效声级为72.5 dB,夜间平均等效声级为72.4 dB;噪声敏感建筑物监测点昼间平均等效声级为67.5 dB,夜间平均等效声级为68.0 dB。分析监测实验中的噪声频谱数据,结果显示:各等级道路监测点的频谱能量贡献率曲线在1 000 Hz处达到峰值,用于声屏障设计的等效频率大多数都是800 Hz;噪声敏感建筑物前测点和后测点的等效声级平均相差9 dB,而且前、后测点噪声能量集中于不同的频段,1类、2类噪声敏感建筑物前测点的噪声能量主要集中在高频段,后测点的噪声能量主要集中在低频段,而3类噪声敏感建筑物受道路交通噪声和工业噪声影响,前测点的噪声能量集中频段比后测点的略低。  相似文献   

4.
对杭州上塘-中河高架道路临路第一排敏感点交通噪声监测结果表明,两侧敏感点噪声超标严重。在21个监测点中,昼间超标为8个,最大超标3.9dB,夜间21个点全部超标,最大超标16.2dB。根据噪声污染程度分级,上塘-中河高架道路交通噪声污染属中度污染水平。建设低噪声路面,设置隔声屏障,对敏感点采取安装通风隔声窗等措施,是缓解高架道路交通噪声污染的有效措施。  相似文献   

5.
对杭州上塘-中河高架道路临路第一排敏感点交通噪声监测结果表明,两侧敏感点噪声超标严重。在21个监测点中,昼间超标为8个,最大超标3.9dB,夜间21个点全部超标,最大超标16.2dB。根据噪声污染程度分级,上塘-中河高架道路交通噪声污染属中度污染水平。建设低噪声路面,设置隔声屏障,对敏感点采取安装通风隔声窗等措施,是缓解高架道路交通噪声污染的有效措施。  相似文献   

6.
通过对杭州市中心城区主干道体育场路、凤起路和庆春路的交通噪声监测表明,96%的监测点监测值超过昼间70dB限值要求,其中等效声级Leq在70.0dB~75.0dB的路段长度占监测道路总长度的89.8%:三条交通干线交通噪声的平均等效声级值-↑Leq在71.6dB~73.2dB,按交通噪声污染分级,体育场路和凤起路属于中度交通噪声污染水平,庆春路属于轻度交通噪声污染水平。解决交通噪声污染最可行的措施为对道路进行拓宽,采用疏水沥青低噪声路面,优化车道,调整交通信号,加快车辆行驶速度以及加强交通管理等。  相似文献   

7.
通过对温州市区5条主干道部分路段交通噪声的实地监测,在非交通高峰期,87.5%的测点监测值超过昼间70dB限值要求,其中31%的测点交通噪声属于重度污染.根据目前国内外噪声的各种控制方法,结合温州实际情况,提出了减轻噪声污染的一些措施和建议。  相似文献   

8.
对杭州市高架快速路两侧的典型建筑群进行了噪声监测,结果表明第一排/列敏感点噪声等效声级均超出4a类标准,昼间超标0.2—5.6dB,夜间超标8.3~15.9dB;第二排/列的噪声等效声级均超出2类标准,昼间超标0.9-5.7dB,夜间超标2.2~8.3dB。典型建筑群的第一排/列对第二排/列的隔声及距离衰减效果为5.1~14.9dB。对交通噪声的防治,可采取设置合理噪声防护距离、建设低噪声路面、设置隔声屏障、建筑物噪声防护和加强交通噪声管理等措施。  相似文献   

9.
昆明理工大学(莲华校区)噪声污染调查与监测   总被引:1,自引:0,他引:1  
通过现场监测,对昆明理工大学(莲华校区)的校园声环境进行了分析评价,监测结果表明:昆明理工大学(莲华校区)校园11个监测点中有8个监测点声环境符合国家I类标准,2#、4#、10#监测点昼、夜间的噪声监测值均超过国家标准。主要噪声源为道路交通噪声和建筑工地的施工噪声。同时,本文还通过调查问卷的形式收集了师生对校园声环境的意见,并进行了综合分析。在此基础上,提出了改善校园声环境的建议措施。  相似文献   

10.
通过现场监测,对昆明理工大学(莲华校区)的校园声环境进行了分析评价,监测结果表明:昆明理工大学(莲华校区)校园11个监测点中有8个监测点声环境符合国家I类标准,2#、4#、10#监测点昼、夜间的噪声监测值均超过国家标准。主要噪声源为道路交通噪声和建筑工地的施工噪声。同时,本文还通过调查问卷的形式收集了师生对校园声环境的意见,并进行了综合分析。在此基础上,提出了改善校园声环境的建议措施。  相似文献   

11.
2015年广州市道路交通噪声监测与分析   总被引:1,自引:1,他引:0       下载免费PDF全文
钱粮  杨炜俊  蔡铭 《环境工程》2016,34(11):131-135
在广州市内选取了100条道路及18栋噪声敏感建筑物,于2015年11月进行昼夜噪声监测实验,综合分析了2015年广州市道路交通噪声污染现状。分析结果显示:道路昼夜等效声级分别为70.83,70.10 d B,噪声敏感建筑物昼夜等效声级分别为63.47,61.09 d B。昼间快速路、主干路及各类噪声敏感建筑物周边环境的噪声污染较严重,夜间仅12.5%的次干路周边等效声级在标准限值以内。  相似文献   

12.
余世清  吴灵鹞  夏阳 《环境科学与管理》2010,35(12):155-157,164
近年来杭州交通噪声投诉点主要分布在高架道路、立交桥和绕城高速附近的高层住户。对其中9个交通噪声投诉点的监测表明,昼间超4 a类标准的有4个,超标范围为0.1~7.6 dB;夜间9个点全部超4 a标准,超标范围为5.4~17.4 dB,夜间噪声超标特别严重。采用低噪声路面,设置隔声屏障,对敏感点安装通风隔声窗以及加强交通噪声管理等对策,可减轻交通噪声对敏感点的影响,从而减少交通噪声的投诉。  相似文献   

13.
以孝感市城区主要交通干道城站路、北京路、交通大道和槐荫大道为研究对象,对交通噪声进行监测,同时统计车流量.分析孝感市城区整体交通噪声污染情况,以及时间和空间分布特征.研究表明,孝感市城区主要干道的总体噪声值均在75 dB左右,超过国家相应标准,其中槐荫大道噪声污染较重.交通噪声在时间上呈现周内噪声波动大,周末噪声强度大,持续时间长,与车流量有一定关系;在空间上,东西道路噪声污染较南北道路严重.  相似文献   

14.
随着城市建设的加快,噪声污染越来越严重,已经影响在校师生的正常学习与生活.以东莞理工学院为例,运用模糊矩阵法对该校园声环境质量进行综合评价.结果表明:该校园环境噪声普通存在超标现象,昼间超标率为14.36%,夜间超标率为22.67%.校园声环境隶属度可达0.34,属于中度污染.校内外交通和学生活动是校园主要噪声污染源,可采用增加校园绿化、加强校内交通管理与噪声管理等措施,改善校园声环境质量.  相似文献   

15.
以某市地铁4号线为例,利用Cadna/A软件预测沿线噪声分布现状,对沿线现有声屏障的降噪效果进行模拟预测,并对重点敏感点提出声屏障增补建议。结果表明:位于4a类区的敏感点昼间超标率为8%,夜间超标率为75%,位于2类区的敏感点昼间超标率为31%,夜间超标率为56%,位于3类区的敏感点昼间超标率为23%,夜间超标率为33%;通过降噪效果模拟,3 m高声屏障降噪量为3.0~11.1 dB(A),覆盖至12层,4 m高声屏障降噪量为3.0~11.4 dB(A),覆盖至12层,5 m高声屏障降噪量为3.0~11.5 dB(A),覆盖至13层,半封闭声屏障降噪量3.1~13.9 dB(A),覆盖至30层,全封闭声屏障降噪量为30 dB(A),覆盖至30层;针对投诉敏感点,通过模拟不同类型声屏障的降噪效果提出声屏障增补建议。  相似文献   

16.
通过连续4年在对路经北京市密云县城区的四处监测点位的车流量、噪声和大气环境质量监测,结果表明:101国道的车流量大体上呈逐年增长之势。101国道两侧的昼间平均交通噪声值除2003年全部达标排放外,2004-2006年均有部分超标;101国道两侧夜间平均交通噪声值均可达标排放。101国道两侧PM10的浓度基本上随车流量的增加而增加,SO2和NO2的浓度随车流量的变化不明显。101国道旁密云县环保局监测点PM10、SO2和NO2的浓度均高于密云县城区测点的浓度。  相似文献   

17.
李楠  冯涛  李贤徽  刘磊  吴瑞 《中国环境科学》2013,33(6):1081-1090
交通噪声地图是环境噪声管理的重要工具,为了减小大范围噪声地图绘制时产生的预测误差,提出了一种基于监测数据的声源特性反演算法,给出了噪声地图修正计算的详细方法和步骤.该算法利用原始噪声地图的计算结果参与计算来提升修正求解效率,避免对预测模型参数进行直接修改,保证修正区域的计算结果符合预测模型中的声传播规律.在自主研发的噪声地图绘制软件中实现该反演修正算法,并对北京某示范区噪声地图的求解和修正计算来验证算法有效性.6组实验结果分析得出,该算法在监测点位置处的修正误差小于1.1dB,而在非监测点位置处也均对原始预测值进行了不同程度的修正改善,其误差程度与监测点主要声源对监测点的贡献率及监测点的影响范围有关,在监测点控制范围内的预测值误差在2.5dB以下.实验证明该算法能够有效的对交通噪声地图进行修正更新计算,并在保证满足预测模型声传播规律不变的情况下改善噪声地图求解质量.  相似文献   

18.
对某建筑公司所属企业的生产性噪声进行了监测,分析结果表明:厂区138个测点噪声Leq为74~112 dB,平均Leq为89.2 dB。83.3%的测点集中在80~100 dB区间,超标率达52.9%。噪声距离衰减呈高度负相关(r=-0.9902,p<0.01)。暴露于噪声环境下的生产人数占总生产人数的27.7%,暴露于90 dB以上的人数占全部暴露人数的84.8%。针对以上状况,提出合理建议和改良措施。   相似文献   

19.
《环境工程》2007,25(4):83-83
《城市区域环境噪声标准》和《工业企业厂界噪声标准》均规定,以居住为主的1类区域,白天噪声标准为55dB,夜间噪声标准为45dB,《工业企业厂界噪声标准》规定:“夜间频繁突发的噪声(如排气噪声),其峰值不准超过标准值10dB,夜间偶然突发的噪声(如短促鸣笛声),其峰值不准超过标准值15dB。本标准昼间、夜间的时间由当地人民政府按当地习惯和季节变化划定。”  相似文献   

20.
吕晓虹 《重庆环境科学》2002,24(6):79-80,85
通过对解放碑商业中心区1991-2000年环境噪声监测结果的分析评价,比较了十年均噪声的时间分布污染和1998-2000年的季平均噪声的时间分布污染状况,得出该商业地区噪声污染在昼间15:00-17:00最高,夜间在4:00左右最低;四季中,秋季的昼间噪声最高,冬季的夜间的噪声最低,其昼间噪声的波动幅度也较小,与人群的社会行为活动密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号