首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean-fed > corn-fed > not-fed-earthworm-castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn-castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean- and corn-castings treatments was always less than desorption from soil and not-fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

2.
Abstract

Atrazine and metolachlor were more strongly retained on earthworm (Lumbricus terrestris L.) castings than on soil, suggesting that earthworm castings at the surface or at depth can reduce herbicide movement in soil. Herbicide sorption by castings was related to the food source available to the earthworms. Both atrazine and metolachlor sorption increased with increasing organic carbon (C) content in castings, and Freundlich constants (Kf values) generally decreased in the order: soybean‐fed > corn‐fed > not‐fed‐earthworm‐castings. The amount of atrazine or metolachlor sorbed per unit organic carbon (Koc values) was significantly greater for corn‐castings compared with other castings, or soil, suggesting that the composition of organic matter in castings is also an important factor in determining the retention of herbicides in soils. Herbicide desorption was dependent on both the initial herbicide concentration, and the type of absorbent. At small equilibrium herbicide concentrations, atrazine desorption was significantly greater from soil than from any of the three casting treatments. At large equilibrium herbicide concentrations, however, the greater organic C content in castings had no significant effect on atrazine desorption, relative to soil. For metolachlor, regardless of the equilibrium herbicide concentration, desorption from soybean‐ and corn‐castings treatments was always less than desorption from soil and not‐fed earthworm castings treatments. The results of this study indicate that, under field conditions, the extent of herbicide retention on earthworm castings will tend to be related to crop and crop residue management practices.  相似文献   

3.
Adsorption of metolachlor and atrazine was studied in the fly ash (Inderprastha and Badarpur)- amended Inceptisol and Alfisol soils using batch method. Results indicated that sorption of both the herbicides in soil+fly ash mixtures was highly nonlinear and sorption decreased with a higher herbicide concentration in the solution. Also, nonlinearity increased with an increase in the level of fly ash amendment from 0-5%. Three two-parameter monolayer isotherms viz. Langmuir, Temkin, Jovanovic and one imperical Freundlich models were used to fit the experimental data. Data analysis and comparison revealed that the Temkin and the Freundlich isotherms were best-suited to explain the sorption results and the observed and the calculated adsorption coefficient values showed less variability. The study suggested that sorption mechanism of metolachlor and atrazine involved the physical association at the sorbate surface and the nonlinearity in the sorption at higher pesticide or fly ash concentration was due to a decrease in the heat of adsorption and higher binding energy.  相似文献   

4.
The sorption-desorption of metolachlor [2-chloro-N-(ethyl-6-methyl phenyl)-N-(2-methoxy-1-methyl ethyl) acetamide], isoproturon [3-(4-isopropyl phenyl)-1,1-dimethyl urea] and terbuthylazine [N6-tert butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine] herbicides was studied in two German soils at 1:10 soil to water ratio by batch method. Equilibrium of herbicides between soil and water (0.01 M CaCl2) was attained in 2 h. Sorption data fitted very well to Freundlich equation, represented by very high correlation coefficient (r2 > 0.934). Comparison of Freundlich K values indicated that sorption of all the three herbicides was most pronounced in soil having higher organic carbon content. Koc values were as expected nearly identical for each herbicide in the two soils. The Freundlich constant (1/n) was about 1 for metolachlor and less than 1 for terbuthylazine and isoproturon indicating a L-type of sorption isotherms. Desorption of all the three herbicides showed hysteresis. Nearly equal amounts of metolachlor, isoproturon and terbuthylazine were desorbed from both soils. There was a good correlation between Koc and solubility.  相似文献   

5.
Macro-porosity and leaching of atrazine in tilled and orchard loamy soils   总被引:1,自引:0,他引:1  
Atrazine is the most commonly detected herbicide in the groundwater. Leaching of atrazine largely depends on soil management practices. The aim of this study was to examine leaching of atrazine in tilled and orchard silty loam soils. The experimental objects included: conventionally tilled field (CT) with main tillage operations including pre-plow (10 cm) + harrowing, mouldboard ploughing (20 cm), and a 35 year-old apple orchard (OR) with a permanent sward. To determine leaching of atrazine soil columns of undisturbed structure were taken with steel cylinders of 21.5 cm diameter and 20 cm high from the depth of 0–20 cm. All columns were equilibrated at water content corresponding to field capacity (0.21 kg kg−1). Atrazine suspended in distilled water was dripped uniformly onto the surface of each column. Then water was infiltrated and breakthrough times of leachates were recorded. Atrazine concentration in the leachates was determined by means of HPLC Waters. Macro-porosity and percolation rate were higher in OR than CT soil. Cumulative recovery % of the atrazine applied was 1.267% for OR and approximately one third more from the CT soil but the rate of leaching (per unit of time) was greater from the OR soil. The lower leaching under OR than CT can be due to a greater SOM and the presence of earthworm burrows with organic burrow linings that could adsorb atrazine and contribute to preferential flow allowing solutes to bypass parts whereas the greater rate of leaching due to a greater infiltration rate.The results indicate potential of management practices for minimizing atrazine leaching.  相似文献   

6.
Crop soils, ditch sediments and water flowing from several Lower Fraser River (LFR) farm areas of British Columbia, Canada, to salmon tributary streams of that river were sampled in 2004-2005 to quantify for residues of triazine [atrazine, desethylatrazine (a transformation product of atrazine), propazine, and simazine] and metolachlor (a chloroacetamide) herbicides. Average concentrations [microg kg-1 dry weight (d.w.)] of triazine (10,110) and metolachlor (8,910) herbicides detected in crop soils at the start (May 2004, 2005) of the growing season were about 17 and 6 times, respectively, higher than those found for both herbicide groups during (June-Sept, 2004, 2005) the growing season. In contrast, mean concentrations (microg L-1) of triazines (0.092) and metolachlor (0.014) in permanent ditches adjacent to farms were about 7 and 28 times, respectively, lower at the start than during the growing season. Both herbicide groups in ditch sediments were detected only during the growing season at concentrations averaging about 315 microg kg-1 d.w. The risk potential of these herbicides for non-target aquatic organisms inhabiting permanent farm ditches contiguous to tributary streams of the LFR during the growing season is evaluated and discussed.  相似文献   

7.

Crop soils, ditch sediments and water flowing from several Lower Fraser River (LFR) farm areas of British Columbia, Canada, to salmon tributary streams of that river were sampled in 2004–2005 to quantify for residues of triazine [atrazine, desethylatrazine (a transformation product of atrazine), propazine, and simazine] and metolachlor (a chloroacetamide) herbicides. Average concentrations [μg kg?1 dry weight (d.w.)] of triazine (10,110) and metolachlor (8,910) herbicides detected in crop soils at the start (May 2004, 2005) of the growing season were about 17 and 6 times, respectively, higher than those found for both herbicide groups during (June–Sept, 2004, 2005) the growing season. In contrast, mean concentrations (μg L?1) of triazines (0.092) and metolachlor (0.014) in permanent ditches adjacent to farms were about 7 and 28 times, respectively, lower at the start than during the growing season. Both herbicide groups in ditch sediments were detected only during the growing season at concentrations averaging about 315 μg kg?1 d.w. The risk potential of these herbicides for non-target aquatic organisms inhabiting permanent farm ditches contiguous to tributary streams of the LFR during the growing season is evaluated and discussed.  相似文献   

8.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

9.
Hyne RV  Aistrope M 《Chemosphere》2008,71(4):611-620
A passive sampler device selective for hydrophilic analytes was constructed from cellulose membrane (40microm thickness) pre-stained with ruthenium red for 96-168h to impede degradation of the cellulose. The sampling device consisted of pre-stained cellulose membrane tubing containing a binary mixture of the solvents 1-dodecanol and 2,2,4-trimethylpentane as the sequestering medium. A laboratory flow-through system was used to investigate the rates of uptake of herbicides into the solvent mixture of the device and their release. The target herbicides were diuron, atrazine, metolachlor and molinate. Uptake of the herbicides into the solvent mixture of the cellulose membrane device was linear for up to 22 days, and daily sampling rates were determined. Release half-lives from the solvent mixture of the sampling device varied from 14 days for diuron, 15 days for atrazine, 84 days for metolachlor and 28 days for molinate. A field study was undertaken to determine if herbicide concentrations in agricultural drainage water derived from the passive sampler devices deployed for periods from 7 to 22 days, using the laboratory-derived sampling rates, would compare closely with time-weighted average herbicide concentrations determined from extractions of daily composite water samples. The concentrations of diuron, atrazine, metolachlor and molinate determined using the cellulose membrane devices were within twofold of the cumulated mean of the daily drainage water extractions.  相似文献   

10.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine~ amitrole~ simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log Kow) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

11.
This study was conducted to evaluate the effect of hairy vetch cover crop residue on runoff losses of atrazine and metolachlor under both no-till corn field plots and from a laboratory runoff system. A 2-year field study was conducted in which losses of atrazine and metolachlor from vetch and non-vetch field plots were determined from the first runoff event after application (5 and 25 days after application in 1997 and 1998, respectively). A laboratory study was conducted using soil chambers, designed to simulate field soil, water, vegetation, and herbicide treatment conditions, subjected to simulated rain events of 5, 6, 20 and 21 days after application, similar to the rainfall pattern observed in the field study. Atrazine losses ranged from 1.2 to 7.2% and 0.01 to 0.08% and metolachlor losses ranged from 0.7 to 3.1% and 0.01 to 0.1% of the amount applied for the 1997 and 1998 runoff events, respectively. In the laboratory study, atrazine runoff losses ranged from 6.7 to 22.7% and 4.2 to 8.5% and metolachlor losses ranged from 3.6 to 9.8% and 1.1 to 4.7% of the amount applied for the 5-6 and 20-21 day events, respectively. The lower losses from the field study were due to smaller rainfall amounts and a series of small rains prior to the runoff event that likely washed herbicides off crop residue and into soil where adsorption could occur. Runoff losses of both herbicides were slightly higher from non-vetch than vetch field plots. Losses from the laboratory study were related to runoff volume rather than vegetation type.  相似文献   

12.
In the present study, diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-metoxi-1-methylethyl)acetamide] leaching was studied in undisturbed soil columns collected in a cotton crop area in Mato Grosso State, Brazil. The pesticides were applied to the soil surface in dosages similar to those used in a cotton plantation. To assess the leaching process, soil columns were submitted to simulated rain under laboratory conditions at 25 ± 3°C, in the absence of wind and direct solar radiation. During the rain simulations, leachate solutions were collected and herbicide concentrations were determined. At the end of the experiment, the soil columns were cut into 10 cm sections to determine the remaining herbicide concentrations through the soil profile. Metolachlor was detected in all soil sections, and approximately 4% of the applied mass was leached. Diuron was detected only in the upper two soil sections and was not detected in the leachate. A linear correlation (r > 0.94) between the metolachlor soil concentrations and the organic contents of the soil sections was observed. Mass balance suggests that around 56% of diuron and 40% of metolachlor were degraded during the experiments. Measurements of the water table depth in the area where the samples were collected showed that it varied from 2 to 6 m and is therefore vulnerable to contamination by the studied herbicides, particularly metolachlor, which demonstrated a higher leaching potential.  相似文献   

13.
Atrazine and metolachlor are extensively used in Ontario, Canada for control of broadleaf weeds and annual grasses in corn. Conservation tillage may alter the physical and biological environment of soil affecting herbicide dissipation. The rate of dissipation of these two herbicides in soil from conventional, ridge and no-tillage culture was followed. Herbicide dissipation was best described by first order reaction kinetics. Half life, the time for herbicide residues to dissipate to half their initial concentration, was unaffected by tillage. Half life for atrazine and metolachlor was similar and ranged from 31 to 66 d. The rate of dissipation decreased in dry years when soil moisture content was low. In a dry year, herbicide residues during the growing season were significantly greater on ridge tops than in the other tillage treatments. However, after harvest no differences in herbicide residues were detected among tillage treatments. Residues of atrazine (6 to 9% of applied) and metolachlor (4 to 6%) were detected in soil before planting a year after application. De-ethyl atrazine, the primary degradation product of atrazine, increased in concentration during the growing season with the greatest concentrations measured at harvest and in years when atrazine dissipated fastest. De-ethyl atrazine one year after application accounted for about 12% of the remaining triazine residue. These herbicide residues would not be phytotoxic to subsequent crops but are a potential source for leaching to ground and surface waters.  相似文献   

14.
Recent monitoring investigations have shown that antimicrobial agents used in veterinary medicine can cause non-point source contamination of soils through manure spreading. In the present study, the effect of the antimicrobial agent sulfamethazine (sulfadimidine) on degradation and sorption of the herbicide metolachlor in a sandy loam soil was studied. In soil samples treated with sulfamethazine at two concentrations (15 and 150 microg kg(-1) soil), metolachlor persistence was not different than of that observed in untreated samples. These results were supported by the absence of effects of both sulfamethazine concentration levels on the size of the culturable soil bacteria population. Equilibrating soil samples with metolachlor solutions containing equivalent sulfamethazine concentrations did not lead to any significant effects on metolachlor sorption, suggesting that, under the conditions of the present experiment, sulfamethazine did not affect metolachlor bioavailability in soil. This laboratory investigation showed that concentrations of sulfamethazine in the microg kg(-1) range did not cause significant effects on metolachlor degradation and sorption thus not affecting the main processes ruling its environmental fate in soil.  相似文献   

15.
Narrow vegetative filter strips (VFS) proved to effectively reduce herbicide runoff from cultivated fields mainly due to the ability of vegetation to delay surface runoff, promote infiltration and adsorb herbicides. Since VFS are dynamic systems, their performance would not remain constant over the years indicating the need to define suitable buffer management. In order to evaluate the performance of different five and six year-old VFS, the runoff of the herbicides metolachlor and terbuthylazine was monitored in 2002 and 2003 in an experimental site in northern Italy. The structure of the herbaceous cover in the buffers changes over time. When rows of trees are present, the grass cover is decreased by the shading action of the trees, but the leaf litter gains importance. In VFS with grass cover only, the cover composition changes because of the substitution of grass by broadleaf species. Six metres wide VFS are very effective in reducing runoff volume and concentration during both wet and dry years. Classification analysis showed that runoff concentration and volume are linked to the characteristics of the rainfall event, buffer, source of herbicides and time after application. Regression analysis showed that the significant predictors for runoff volume are rainfall amount and intensity, total vegetal cover in the VFS, crop leaf area index and time after treatment; for concentration they are rainfall intensity, crop leaf area index and total vegetal cover in the VFS. The role of VFS is complex, so appropriate management is required to maintain its increasing filtering capacity over time.  相似文献   

16.
Reliable predictions of the fate and behaviour of pesticides in soils is dependent on the use of accurate ‘equilibrium’ sorption constants and/or rate coefficients. However, the sensitivity of these parameters to changes in the physicochemical characteristics of soil solids and interstitial solutions remains poorly understood. Here, we investigate the effects of soil organic matter content, particle size distribution, dissolved organic matter and the presence of crop residues (wheat straw and ash) on the sorption of the herbicides atrazine and isoproturon by a clay soil. Sorption Kd's derived from batch ‘equilibrium’ studies for both atrazine and isoproturon by <2 mm clay soil were approximately 3.5 L/kg. The similarity of Koc's for isoproturon sorption by the <2 mm clay soil and <2 mm clay soil oxidised with hydrogen peroxide suggested that the sorption of this herbicide was strongly influenced by soil organic matter. By contrast, Koc's for atrazine sorption by oxidised soil were three times greater than those for <2 mm soil, indicating that the soil mineral components might have affected sorption of this herbicide. No significant differences between the sorption of either herbicide by <2 mm clay soil and (i) <250 μm clay soil, (ii) clay soil mixed with wheat straw or ash at ratios similar to those observed under field conditions, (iii) <2 mm clay soil in the presence of dissolved organic matter as opposed to organic free water, were observed.  相似文献   

17.
The herbicide 2,4-D is often applied as a tank mixture in combination with other herbicide products. However, current information on 2,4-D sorption by soil is largely based on batch-equilibrium experiments without considering the competition of other herbicides for sorption sites by soil. This study quantified the effect of the herbicide propanil on the sorption of 2,4-D in soil. Results indicated that propanil competed with 2,4-D for sorption sites, particularly in soils with an organic carbon content greater than 3.6%. The decrease in 2,4-D sorption by soil, as a result of propanil competition, was most notably for herbicide concentrations that are typical of recommended field rates. We conclude that herbicide co-applications on agricultural fields have the potential to increase the mobility of herbicides in soil.  相似文献   

18.
Sorption of metsulfuron-methyl and sulfosulfuron were studied in five Indian soils using batch sorption method. Freundlich adsorption equation described the sorption of herbicides with K(f) (adsorption coefficient) values ranging between 0.21 and 1.88 (metsulfuron-methyl) and 0.37 and 1.17 (sulfosulfuron). Adsorption isotherms were L-type suggesting that the herbicides sorption decreased with increase in the initial concentration of the herbicide in the solution. The K(f) for metsulfuron-methyl showed good positive correlation with silt content (significant at p = 0.01) and strong negative correlation with the soil pH (significant at p = 0.05) while sorption of sulfosulfuron did not correlate with any of the soil parameter. Desorption of herbicides was concentration dependent and, in general, sulfosulfuron showed higher desorption than the metsulfuron-methyl. The study indicates that these herbicides are poorly sorbed in the Indian soil types and there may be a possibility of their leaching to lower soil profiles.  相似文献   

19.
The time required to destroy 3 concentrations (10, 100, and 1000 ppm) of 9 formulated herbicides (alachlor, atrazine, bentazon, butylate, cyanazine, 2, 4-D, metolachlor, metribuzin, and trifluralin) and two formulated insecticides (carbofuran and malathion) by ultraviolet (UV)-ozonation (O3) was measured in a 66 UV lamp unit. The time required for 90% destruction was dependent on the concentration and increased as the concentration of pesticide increased. UV irradiation in the presence of ozone rapidly photooxidized all pesticides at 10 and 100 ppm and averaged 22 and 61 min, respectively. Longer times were required for pesticides at 1000 ppm.  相似文献   

20.
The goal of this work was to propose a novel method for the solid-phase extraction of the herbicides diquat (DQT2+) and difenzoquat (DFQT+) from aqueous medium using polymeric Amberlite XAD-2 and XAD-4 resins in the presence of sodium dodecylsulfate (SDS). The addition of SDS to the medium was of fundamental importance in order to allow the formation of a negatively charged surface able to sorb the cationic solutes. Several factors that could influence the sorption process, such as SDS concentration in the medium, sorbent mass, pH, ionic strength, and initial concentration of the solutes were investigated. Kinetic studies were also performed to model the system and to identify the mechanisms that operate the sorption process of the herbicides. SDS concentration in the medium presented remarkable influence on the extraction efficiency, achieving maximum values when the ratios [SDS]/[herbicide] were approximately 90, for XAD-2, and 22 and 11 for DQT2+ and DFQT+, respectively, for XAD-4. The sorption process followed a pseudo second-order kinetic in all cases studied. It was also found that an intraparticle diffusion process controlled exclusively the sorption of the herbicides by the Amberlite XAD-2 and XAD-4 resins in the first 15 min, becoming less active with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号