首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Indoor and outdoor NO2 concentrations were measured and compared with simultaneously measured personal exposures of 57 office workers in Brisbane, Australia. House characteristics and activity patterns were used to determine the impacts of these factors on personal exposure. Indoor NO2 levels and the presence of a gas range in the home were significantly associated with personal exposure. The time-weighted average of personal exposure was estimated using NO2 measurements in indoor home, indoor workplace, and outdoor home levels. The estimated personal exposures were closely correlated, but they significantly underestimated the measured personal exposures. Multiple regression analysis using other nonmeasured microenvironments indicated the importance of transportation in personal exposure models. The contribution of transportation to the error of prediction of personal exposure was confirmed in the regression analysis using the multinational study database.  相似文献   

2.
ABSTRACT

Indoor and outdoor NO2 concentrations were measured and compared with simultaneously measured personal exposures of 57 office workers in Brisbane, Australia. House characteristics and activity patterns were used to determine the impacts of these factors on personal exposure. Indoor NO2 levels and the presence of a gas range in the home were significantly associated with personal exposure. The time-weighted average of personal exposure was estimated using NO2 measurements in indoor home, indoor workplace, and outdoor home levels. The estimated personal exposures were closely correlated, but they significantly underestimated the measured personal exposures. Multiple regression analysis using other nonmeasured microenvironments indicated the importance of transportation in personal exposure models. The contribution of transportation to the error of prediction of personal exposure was confirmed in the regression analysis using the multinational study database.  相似文献   

3.
Review of indoor emission source models. Part 1. Overview   总被引:6,自引:0,他引:6  
Indoor emission source models are mainly used as a component in indoor air quality (IAQ) modeling, which, in turn, is part of exposure and risk modeling. They are also widely used to interpret the experimental data obtained from environmental chambers and buildings. This paper compiles 52 indoor emission source models found in the literature. Together, they represent the achievements that IAQ modelers have made in recent years. While most models have a certain degree of usefulness, genuine predictive models are still few, and there is undoubtedly much room for improvement. This review consists of two parts. Part 1--this paper-provides an overview of the 52 models, briefly discussing their validity, usefulness, limitations, and flaws (if any). Part 2 focuses on parameter estimation, a topic that is critically important to modelers but has not been systematically discussed.  相似文献   

4.
Air-exchange efficiency is widely used to indicate the ventilation effect and indoor air quality in ventilated rooms. However, it does not take occupant distribution in the room into account and is thus limited. In this paper, a revised air-exchange efficiency (occupant air-exchange efficiency) that differentiates between different zones by considering different occupancy in each zone is developed. Results from studies of a large-space ventilation case, a personalized ventilation case, and a displacement ventilation case show that occupant air-exchange efficiency can better be used to evaluate the ventilation effect of a room.  相似文献   

5.
Urea-formaldehyde resin bonded partlcleboard, medium density fiberboard and plywood paneling are used as flooring, wall paneling, for cabinet work and in furniture, and are present In almost every office, home and public building. If large quantities of these products are used In poorly ventilated spaces, high manufacturing quality control is necessary to avoid problems of latent formaldehyde release. Indoor air formaldehyde concentrations depend on the nature of the product, the product surface to air volume (loading) factor, temperature, humidity, age and product emission rates. Standard test methods are now available for measuring product emission rates that make It possible to predict the performance of UF-bonded pressed wood materials If use conditions and environmental parameters are known. Recent modifications In adhesive and board manufacturing parameters have made It possible to reduce formaldehyde emission significantly, and UF-bonded wood products are now capable of meeting indoor air quality standard levels of 0.1 ppm under almost all customary loading conditions.  相似文献   

6.
Sources and concentrations of indoor nitrogen dioxide in Barcelona, Spain   总被引:1,自引:0,他引:1  
Sources and concentrations of indoor nitrogen dioxide (NO2) were examined in Barcelona, Spain, during 1996-1999. A total of 340 dwellings of infants participating in a hospital-based cohort study were selected from different areas of the city. Passive filter badges were used for indoor NO2 measurement over 7-30 days. Dwelling inhabitants completed a questionnaire on housing characteristics and smoking habits. Data on outdoor NO2 concentrations were available for the entire period of the study in the areas of the city where indoor concentrations were determined. Bivariate analysis was performed to investigate relationships between indoor NO2 concentrations on one hand and outdoor NO2 concentrations, housing, and occupant characteristics on the other. Stepwise multiple linear regression was performed with variables that were found to have a significant bivariate relationship. Indoor NO2 mean values ranged between 23.57 ppb in 1996 and 27.02 ppb in 1999, with the highest yearly value of 27.82 ppb in 1997. In the same time period, mean outdoor NO2 concentration ranged between 25.26 and 25.78 ppb with a peak of 30.5 ppb in 1998. Multiple regression analysis showed that principal sources of indoor NO2 concentrations were the use of a gas cooker, the absence of an extractor fan when cooking, and cigarette smoking. The absence of central heating was also associated with higher NO2 concentrations. Finally, each ppb increase in outdoor NO2 was associated with a 1% increase in indoor concentrations.  相似文献   

7.
Abstract

Air-exchange efficiency is widely used to indicate the ventilation effect and indoor air quality in ventilated rooms. However, it does not take occupant distribution in the room into account and is thus limited. In this paper, a revised air-exchange efficiency (occupant air-exchange efficiency) that differentiates between different zones by considering different occupancy in each zone is developed. Results from studies of a large-space ventilation case, a personalized ventilation case, and a displacement ventilation case show that occupant air-exchange efficiency can better be used to evaluate the ventilation effect of a room.  相似文献   

8.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   

9.
ABSTRACT

Indoor air quality has become a critical issue because people spend most of their time in the indoor environment. The factors that influence indoor air quality are very important to environmental sanitation and air quality improvement. This study focuses on monitoring air quality, colony counts, and bacteria species of the indoor air of a nursing care institution. The regular colony counts in two different wards range from 55 to 600 cfu m?3. Regression analysis results indicate that the bacterial colony counts have close correlation with relative humidity or carbon dioxide (CO2) but not with carbon monoxide (CO) or ozone (O3). Real-time PCR was used to quantify the bacterial pathogens of nosocomial infection, including Acinetobacter baumannii, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, and methicillin-sensitive Staphylococcus aureus. The most abundant bacteria species in the air of the nursing care institution is E. coli.
IMPLICATIONS Indoor temperature, humidity, ventilation, accumulation of biological pollutants, and potential infection problems will seriously affect the indoor environments. Studying these factors is important to indoor environmental sanitation and air quality improvements. Results of using real-time PCR to evaluate the bacterial pathogens of nosocomial infection for a nursing care institution in Taiwan reveal that the main bacteria species existing in the indoor air is E. coli.  相似文献   

10.
Indoor and outdoor ozone concentrations were measured from late May through October at three office buildings with very different ventilation rates. The indoor values closely tracked the outdoor values, and, depending on the ventilation rate, were 20 to 80 percent of those outdoors. The Indoor/outdoor data are adequately described with a mass balance model. The model can also be coupled with reported air exchange rates to estimate indoor/outdoor ratios for other structures. The results from this and previous studies indicate that Indoor concentrations are frequently a significant fraction of outdoor values. These observations, and the fact that most people spend greater than 90 percent of their time indoors, indicate that indoor ozone exposure (concentration × time) is greater than outdoor exposure for many people. Relatively Inexpensive strategies exist to reduce indoor ozone levels, and these could be implemented to reduce the public’s total ozone exposure.  相似文献   

11.
Indoor air quality has become a critical issue because people spend most of their time in the indoor environment. The factors that influence indoor air quality are very important to environmental sanitation and air quality improvement. This study focuses on monitoring air quality, colony counts, and bacteria species of the indoor air of a nursing care institution. The regular colony counts in two different wards range from 55 to 600 cfu m(-3) Regression analysis results indicate that the bacterial colony counts have close correlation with relative humidity or carbon dioxide (CO2) but not with carbon monoxide (CO) or ozone (O3). Real-time PCR was used to quantify the bacterial pathogens of nosocomial infection, including Acinetobacter baumannii, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, and methicillin-sensitive Staphylococcus aureus. The most abundant bacteria species in the air of the nursing care institution is E. coli.  相似文献   

12.
A grading system was developed to rate the moisture damage profile of dwellings and to study the relationship between moisture-induced indoor air problems and occupant health. A total of 630 randomly selected houses and apartments, built between 1950 and 1989, were visually inspected. Moisture observations were standardized into three damage levels. Thus, a system to classify the homes into three grades was devised. The two grades of homes associated with the highest levels of damage were graded as index homes. Overall, 51% of the sample had some kind of moisture fault in them and one in every three homes (33%) was classified as an index home. The mean number of damage incidents in the index dwellings varied from 1.4 to 2.6. The mean number of damage incidents in the reference homes was 0.28. Prevalence of index dwellings was significantly higher (p < 0.01) in houses (38%) than in apartments (26%). There was no major difference in the prevalence of index buildings in houses built in any particular decade (30-35%). Moisture was observed in 28% of bathrooms, in 10% of kitchens, and in 17% of other spaces. Indoor relative humidity (RH) levels were low in most homes.  相似文献   

13.
Air quality monitoring was conducted during the late construction and early occupation stages of the College of DuPage Student Resource Center (SRC) addition from April 24,1995, to July 20,1995. Chemical contaminants monitored included combustibles; cleaning solvents; and human, furniture, and carpeting effluents. Carbon dioxide, carbon monoxide, ethanol, propane, 3-pentanone, methyl cyclohexane, methyl formate, tetrahydrofuran, methyl methacrylate, and cyclohexane were used as calibration standards for continuous infrared absorption measurements. Indoor water content, outdoor relative humidity, indoor and outdoor temperatures, and indoor airborne particulate matter were measured. After most construction and indoor painting and carpeting were completed, a two-week air-out was performed using a continuous supply of fresh air, without recirculated air. This resulted in a low "case study" level of contaminants. Contaminant levels increased significantly after furniture and people move-ins and student use. Contaminant level changes were observed during typical indoor construction days, before and after a power outage-caused loss of ventilation, and in the presence of carpentry machines. A "naive" sensory panel contributed its "perception" of air quality, and anair quality survey was conducted among new building employees. No significant or consistent effects of indoor contaminants or indoor temperature upon indoor perception were noted. An inverse relationship between indoor air quality perceptions and the outdoor Temperature-Humidity Index was found.  相似文献   

14.
In this paper we present the development and application of a model for indoor air quality. The model represents a departure from the standard box models typically used for indoor environments which has applicability in residences and office buildings. The model has been developed for a physical system consisting of sequential compartments which communicate only with adjacent compartments. Each compartment may contain various source and sink terms for a pollutant as well as leakage, and air transfer from adjacent compartments. The mathematical derivation affords rapid calculation of equilibrium concentrations in an essentially unlimited number of compartments. The model has been applied to air quality in the passenger cabin of three commercial aircraft. Simulations have been performed for environmental tobacco smoke (ETS) under two scenarios, CO2 and water vapor. Additionally, concentrations in one aircraft have been simulated under conditions different from the standard configuration. Results of the simulations suggest the potential for elevated concentrations of ETS in smoking sections of non-air-recirculating aircraft and throughout the aircraft when air is recirculated. Concentrations of CO2 and water vapor are consistent with expected results. We conclude that this model may be a useful tool in understanding indoor air quality in general and on aircraft in particular.  相似文献   

15.
Heavy metal concentrations (Pb, Cd, and Cu) in classroom indoor dust were measured. The health risk (non-carcinogenic) of these heavy metals in classroom indoor dust to children was assessed based on United States Environmental Protection Agency health risk model. Indoor classroom dust samples were collected from 21 locations including windows, fans, and floors at a primary school in Sri Serdang, Malaysia. Classroom dust samples were processed using aqua regia method and analyzed for Pb, Cd, and Cu concentrations. The highest average heavy metal concentrations were found in windows, followed by floor and fan. Pb concentrations ranged from 34.17 μg/g to 101.87 μg/g, Cd concentrations ranged from 1.73 μg/g to 7.5 μg/g, and Cu concentrations ranged from 20.27 μg/g to 82.13 μg/g. Ventilation and cleaning process were found as the possible factors that contributed to heavy metal concentration in window, floor, and fan. Moreover, the hazard index (HI) and hazard quotient (HQ) values for heavy metals Cd and Cu were less than one. By contrast, the HI and HQ values for Pb (maximum values) were more than one, indicating potential non-carcinogenic risk to children. Long-term persistence of leaded petrol, building materials, interior paint, school located near industrial areas and major roads, as well as vehicle emission are the factors attributed to the presence of heavy metals in classroom dust. Further research under a long-term monitoring plan and actual values in a health risk model is crucial before a final decision on heavy metal exposure and its relationship to young children health risks can be made. Nevertheless, the findings of this study provide crucial evidence to include indoor dust quality in school assessment because the environmental processes and impacts of surrounding school area have health risk implications on young children.  相似文献   

16.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples were collected in the indoor environments of 15 urban homes and their adjacent outdoor environments in Alexandria, Egypt, during the spring time. Indoor and outdoor carbon dioxide (CO2) levels were also measured concurrently. The results showed that indoor and outdoor PM2.5 concentrations in the 15 sites, with daily averages of 45.5 ± 11.1 and 47.3 ± 12.9 µg/m3, respectively, were significantly higher than the ambient 24-hr PM2.5 standard of 35 µg/m3 recommended by the U.S. Environmental Protection Agency (EPA). The indoor PM2.5 and CO2 levels were correlated with the corresponding outdoor levels, demonstrating that outdoor convection and infiltration could lead to direct transportation indoors. Ventilation rates were also measured in the selected residences and ranged from 1.6 to 4.5 hr?1 with median value of 3.3 hr?1. The indoor/outdoor (I/O) ratios of the monitored homes varied from 0.73 to 1.65 with average value of 0.99 ± 0.26 for PM2.5, whereas those for CO2 ranged from 1.13 to 1.66 with average value of 1.41 ± 0.15. Indoor sources and personal activities, including smoking and cooking, were found to significantly influence indoor levels.

Implications: Few studies on indoor air quality were carried out in Egypt, and the scarce data resulted from such studies do not allow accurate assessment of the current situation to take necessary preventive actions. The current research investigates indoor levels of PM2.5 and CO2 in a number of homes located in the city of Alexandria as well as the potential contribution from both indoor and outdoor sources. The study draws attention of policymakers to the importance of the establishment of national indoor air quality standards to protect human health and control air pollution in different indoor environments.  相似文献   

17.
ABSTRACT

A grading system was developed to rate the moisture damage profile of dwellings and to study the relationship between moisture-induced indoor air problems and occupant health. A total of 630 randomly selected houses and apartments, built between 1950 and 1989, were visually inspected. Moisture observations were standardized into three damage levels. Thus, a system to classify the homes into three grades was devised. The two grades of homes associated with the highest levels of damage were graded as index homes.

Overall, 51% of the sample had some kind of moisture fault in them and one in every three homes (33%) was classified as an index home. The mean number of damage incidents in the index dwellings varied from 1.4 to 2.6. The mean number of damage incidents in the reference homes was 0.28. Prevalence of index dwellings was significantly higher (p < 0.01) in houses (38%) than in apartments (26%). There was no major difference in the prevalence of index buildings in houses built in any particular decade (30-35%). Moisture was observed in 28% of bathrooms, in 10% of kitchens, and in 17% of other spaces. Indoor relative humidity (RH) levels were low in most homes.  相似文献   

18.
Evaluating sources of indoor air pollution   总被引:2,自引:0,他引:2  
Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on "sink" surfaces.  相似文献   

19.
Currently, outdoor ozone levels in many U.S. cities exceed the primary health-based national ambient air quality standard. While outdoor ozone levels are an important measure of the severity of those exceedances, people typically spend more than 80 percent of their time Indoors, where ozone levels are lower. Indoor ozone levels range from 10 to 80 percent of outdoor levels, with many people receiving a substantial portion of their ozone exposure while indoors. This paper uses an Indoor air quality model (IAQM) to estimate indoor ozone levels by mlcroenvlronment type (home, office, and vehicle) and configuration (windows open, windows closed, older construction, weatherized, and air conditioned). The formulation of IAQM is discussed, along with specification of model parameters for ozone. The multicompartment version of IAQM is described, with a single-compartment version used for the analyses. IAQM-calculated ozone indoor-outdoor ratios compare well with research-reported values. Results indicate that ozone peak-concentration indoor-outdoor ratios range as follows: home—0.65 (windows open), 0.36 (air conditioned), 0.23 (typical construction, windows closed), and 0.05 (energy-efficient construction, windows closed); office—0.82 (heat-Ing, ventilation and air conditioning systems supplying 100 percent outdoor air), 0.60 (typical HVAC), and 0.32 (energy-efficient HVAC); and vehicle—0.41 (85 mph), 0.33 (55 mph), and 0.21 (10 mph). Analysis results are presented to characterize IAQM’s sensitivity to assumed model parameters.  相似文献   

20.
环境监测现场室管理工作是环境监测中一项基础性管理和技术工作,监测现场的管理工作是否科学有序,关系到环境监测效率的高低,对环境监测数据质量的准确性、可靠性、可比性、完整性和公正性也有着十分重要影响。因此,做好环境监测现场室管理工作已成为环境监测管理工作者必须掌握的一项基础性科学技术。文中从环境监测现场室管理工作的实践经验出发,进一步进行探索研究,力求环境监测现场室管理工作高效可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号