首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We presented measurements of wet deposition of NH 4 + –N and NO 3 ? –N from 1986 to 2006 in Shenzhen City, China. Over the past 20 years, NO 3 ? –N concentration had significantly increased, but a reverse trend was found for NH 4 + –N. The main form of total inorganic nitrogen (TIN) was NH 4 + –N and the average NH 4 + –N/NO 3 ? –N ratio was 1.57 in this area. The contribution of NO 3 ? –N to TIN increased from 28–42% in the period of 1986–2000 to 50–63% during 2001–2006. The increased deposition flux of NO 3 ? –N resulted in the increasing trend of TIN, although NH 4 + –N showed a decreasing trend over time. Average deposition flux of TIN during 1986–2006 was 13.24 kg/ha/year, with a minimum value of 6.03kg/ha/year in 1988 and a maximum value of 20.52 kg/ha/year in 1997. Wet deposition fluxes of N appeared to vary with season, 81% occurred in the warm season (from April to September). The wet deposition of TIN to the Shenzhen Reservoir reached 8,902 kg in 2006, which contributed 9.95% of the total nonpoint pollution to the reservoir and will be increased in the future.  相似文献   

2.
Urban wastewater in Turkey is primarily discharged without treatment to marine environments, streams and rivers, and natural and artificial lakes. Since it has been well established that untreated effluent in multi-use waters can have acute and chronic impacts to both the environment and human health, it is important to evaluate the consequences of organic enrichment relative to the structure and function of aquatic environment. We investigated the impacts of untreated municipal wastewater discharge from the city of Gumushane in the Eastern Black Sea Region of Turkey on the surface water quality of the stream Harsit. Several key water-quality indicators were measured: chemical oxygen demand (COD), ammonium nitrogen (NH 4 + –N), nitrite nitrogen (NO 2 ? –N), nitrate nitrogen (NO 3 ? –N), total Kjeldahl nitrogen (TKN), total nitrogen (TN), orthophosphate phosphorus (PO 4 3? –P), methylene blue active substances (MBAS), water temperature (t), pH, dissolved oxygen (DO), and electrical conductivity (EC). The monitoring and sampling studies were conducted every 15 days from March 2009 to February 2010 at three longitudinally distributed stations. While t, pH, DO, and EC demonstrated relatively little variability over the course of the study, other parameters showed substantial temporal and spatial variations. The most dramatic differences were noted in COD, NH 4 + –N, NO 2 ? –N, TKN, TN, PO 4 3— P, and MBAS immediately downstream of the wastewater discharge. Concentration increases of 309 and 418 % for COD, 5,635 and 2,162 % for NH 4 + –N, 2,225 and 674 % for NO 2 ? –N, 283 and 478 % for TKN, 208 and 213 % for PO 4 3? –P, and 535 and 1,260 % for MBAS were observed in the summer and autumn, respectively. These changes were associated with greatly diminished seasonal stream flows. Based on NO 2 ? –N, TKN, PO 4 3— P, and MBAS concentrations, it was concluded that Harsit stream water was correctly classified as polluted. The most telling parameter, however, was NH 4 + –N, which indicated highly polluted waters in both the summer and autumn. The elevated concentrations of both P and N in the downstream segment of the stream triggered aggressive growth of submerged algae. This eutrophication of river systems is highly representative of many urban corridors and is symptomatic of ongoing organic enrichment that must be addressed through improved water treatment facilities.  相似文献   

3.
Atmospheric condensate (AC) and rainwater samples were collected during 2010–2011 winter season from Delhi and characterized for major cations and anions. The observed order of abundance of cations and anions in AC samples was NH 4 + ?>?Ca2+?>?Na+?>?K+?>?Mg2+ and HCO 3 ? ?>?SO 4 2? ?>?Cl??>?NO 2 ? ?>?NO 3 ? ?>?F?, respectively. All samples were alkaline in nature and Σ cation/Σ anion ratio was found to be close to one. NH 4 + emissions followed by Ca2+ and Mg2+ were largely responsible for neutralization of acidity caused by high NO x and SO2 emissions from vehicles and thermal power plants in the region. Interestingly, AC samples show low nitrate content compared with its precursor nitrite, which is commonly reversed in case of rainwater. It could be due to (1) slow light-mediated oxidation of HONO; (2) larger emission of NO2 and temperature inversion conditions entrapping them; and (3) formation and dissociation of ammonium nitrite, which seems to be possible as both carry close correlation in our data set. Principal component analysis indicated three factors (marine mixed with biomass burning, anthropogenic and terrestrial, and carbonates) for all ionic species. Significantly higher sulfate/nitrate ratio indicates greater anthropogenic contributions in AC samples compared with rainwater. Compared with rainwater, AC samples show higher abundance of all ionic species except SO4, NO3, and Ca suggesting inclusion of these ions by wash out process during rain events. Ionic composition and related variations in AC and rainwater samples indicate that two represent different processes in time and space coordinates. AC represents the near-surface interaction whereas rainwater chemistry is indicative of regional patterns. AC could be a suitable way to understand atmospheric water interactions with gas and solid particle species in the lower atmosphere.  相似文献   

4.
Measuring and modeling ammonium adsorption by calcareous soils   总被引:1,自引:0,他引:1  
The aim of this study was assessment of ammonium (NH 4 + ) adsorption isotherms in some agricultural calcareous soils and modeling of that by using the mechanistic exchange model. Ten surface soils (0–30 cm) were collected from areas covered with different land uses in Hamedan, western Iran. Isotherm experiments were carried out by concentrations of NH 4 + prepared from NH4Cl salt (0, 10, 20, 30, 40, 50, 100, and 150 mg NH 4 + ?l?1) in presence of 0.01 M CaCl2 solution. The empirical models including simple adsorption isotherm and Freundlich equations were fitted well to the experimental data. The average amounts of adsorbed NH 4 + in studied soils varied from 8.95 to 35.23 %. Adsorption percentage indicated positive correlation with pH, cation-exchange capacity (CEC), equivalent calcium carbonate, and clay content and had negative correlation with sand content. In order to predict and model NH 4 + adsorption, cation-exchange model in PHREEQC program was used. The model could simulate the NH 4 + adsorption very well in all studied soils. The values of CEC played the major role in modeling of NH 4 + adsorption in this study indicating that cation-exchange process was the major mechanism controlling NH 4 + adsorption in studied soils.  相似文献   

5.
Surface water quality is vulnerable to pollution due to human activities. The upper reach of the Hun River is an important water source that supplies 52 % of the storage capacity of the Dahuofang Reservoir, the largest reservoir for drinking water in Northeast China, which is suffering from various human-induced changes in land use, including deforestation, reclamation/farming, urbanization and mine exploitation. To investigate the impacts of land use types on surface water quality across an anthropogenic disturbance gradient at a local scale, 11 physicochemical parameters (pH, dissolved oxygen [DO], turbidity, oxygen redox potential, conductivity, biochemical oxygen demand [BOD5], chemical oxygen demand [COD], total nitrogen [TN], total phosphorus [TP], NO 3 ? -N, and NH 4 + -N) of water from 12 sampling sites along the upper reach of the Hun River were monitored monthly during 2009–2010. The sampling sites were classified into four groups (natural, near-natural, more disturbed, and seriously disturbed). The water quality exhibited distinct spatial and temporal characteristics; conductivity, TN, and NO 3 ? -N were identified as key parameters indicating the water quality variance. The forest and farmland cover types played significant roles in determining the surface water quality during the low-flow, high-flow, and mean-flow periods based on the results of a stepwise linear regression. These results may provide incentive for the local government to consider sustainable land use practices for water conservation.  相似文献   

6.
Particles with aerodynamic diameters <10  $\upmu $ m (PM10) and particles with aerodynamic diameters <2.5  $\upmu $ m (PM2.5) were sampled during summer 2006 in Beijing and mass concentrations, water-soluble ionic compounds concentrations, and acidic buffer capacity were analyzed. Results show that the mass concentration ranges of PM10 and PM2.5 were from 56.4 to 226.6  $\upmu $ g/m3 and from 31.3 to 200.7  $\upmu $ g/m3 during sampling days, respectively. Concentrations of F???, Cl???, NO $_{3}^{\,\,-}$ , NO $_{2}^{\,\,-}$ , SO $_{4}^{\,\,2-}$ , Ac???, Ca2?+?, Na?+?, K?+?, Mg2?+?, and NH $_{4}^{\,\,+}$ in particles were analyzed by ion chromatography. Microtitration was adapted to determine the acidic?Cbasic property and the change of the buffering systems in different pH of the aqueous solution in which the PM is suspended. The major alkalinity and buffer capacity of particles were analyzed and calculated. The average carbonate buffer capacity was 0.3 mmol/g in PM2.5 and 0.7 mmol/g in PM10. The average acetic acid buffer capacity was 0.1 mmol/g in PM2.5 and 0.3 mmol/g in PM10. Carbonate and acetic acid are the main species for the buffer capacity in the particle phase. The average mass of carbonate was 71.0 mg/g in PM10 and 46.7 mg/g in PM2.5. The average mass of acetic acid was 11.2 mg/g in PM2.5 and 20.0 mg/g in PM10.  相似文献   

7.
The relationships among land use patterns, geology, soil, and major solute concentrations in stream water for eight tributaries of the Kayaderosseras Creek watershed in Saratoga County, NY, were investigated using Pearson correlation coefficients and multivariate regression analysis. Sub-watersheds corresponding to each sampling site were delineated, and land use patterns were determined for each of the eight sub-watersheds using GIS. Four land use categories (urban development, agriculture, forests, and wetlands) constituted more than 99 % of the land in the sub-watersheds. Eleven water chemistry parameters were highly and positively correlated with each other and urban development. Multivariate regression models indicated urban development was the most powerful predictor for the same eleven parameters (conductivity, TN, TP, NO $_{3}^-$ , Cl?, HCO $_{3}^-$ , SO $_{4}^{2-}$ , Na+, K+, Ca2+, and Mg2+). Adjusted R 2 values, ranging from 19 to 91 %, indicated that these models explained an average of 64 % of the variance in these 11 parameters across the samples and 70 % when Mg2+ was omitted. The more common R 2, ranging from 29 to 92 %, averaged 68 % for these 11 parameters and 72 % when Mg2+ was omitted. Water quality improved most with forest coverage in stream watersheds. The strong associations between water quality variables and urban development indicated an urban source for these 11 water quality parameters at all eight sampling sites was likely, suggesting that urban stream syndrome can be detected even on a relatively small scale in a lightly developed area. Possible urban sources of Ca2+ and HCO $_{3}^-$ are suggested.  相似文献   

8.
To investigate seasonal variations of nutrient distribution in the mudflat–shallow water system, we conducted field surveys once a month from August 2007 to July 2008 in the inner area of Ariake Bay (IAB), Japan. The NH4 +–N concentration of the water column increased in autumn because of the high NH4 + release from the sediments, ranging from 850 to 3,001 μmol?m?2?day?1. The NO3 ?–N concentration was maximal in January, which was thought to be caused by NO3 ? release from the oxic sediments and by NO3 ? regeneration due to water column nitrification. The PO4 3?–P concentration of the water column was high in summer–autumn due to the high PO4 3? release from the reduced sediments, ranging from 22 to 164 μmol?m?2?day?1. We estimated the total amounts of DIN and PO4 3?–P release (R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ , respectively) from the muddy sediment area of the IAB. In summer–autumn, R DIN and $ {R_{{\mathrm{P}{{\mathrm{O}}_4}}}} $ corresponded to about 47.7 % of DIN input and about 116.6 % of PO4 3?–P input from the river, respectively. Thus, we concluded that the muddy sediments were an important source of nutrients for the water column of the IAB during summer–autumn. In addition, we found that phosphorus necessary for the growth of Porphyra (Porphyra yezoensis, Rhodophyceae) would be insufficient in the water column when phosphorus during the Porphyra aquaculture period is supplied only from the river. Therefore, the phosphorus release from the muddy sediments was thought to play an important role in the sustainable production of Porphyra in Ariake Bay.  相似文献   

9.
Textile industry wastes raise a great concern due to their strong coloration and toxicity. The objective of the present work was to characterize the degradation and mineralization of textile effluents by advanced oxidative processes using either TiO2 or TiO2/H2O2 and to monitor the toxicity of the products formed during 6-h irradiation in relation to that of the in natura effluent. The results demonstrated that the TiO2/H2O2 association was more efficient in the mineralization of textile effluents than TiO2, with high mineralized ion concentrations (NH 4 + , NO 3 ? , and SO 4 2? ) and significantly decreased organic matter ratios (represented by the chemical oxygen demand and total organic carbon). The toxicity of the degradation products after 4-h irradiation to Artemia salina L. was not significant (below 10 %). However, the TiO2/H2O2 association produced more toxicity under irradiation than the TiO2 system, which was attributed to the increased presence of oxidants in the first group. Comparatively, the photogenerated products of both TiO2 and the TiO2/H2O2 association were less toxic than the in natura effluent.  相似文献   

10.
In this study, surface water quality of the Ceyhan River basin were assessed and examined with 13 physico-chemical parameters in 31 stations in 3 months during the period of 2005. Multivariate statistical techniques were applied to identify characteristics of the water quality in the studied stations. Nutrients, Cl??? and Na?+? affected mostly to the stations of Erkenez 2, S?r 2, and S?r 3 in the ordination diagram of correspondence analysis. Three factors were extracted by principal component analysis, which explains 79.14% of the total variation. The first factor (PC1) captures variables of EC, DO, NO $_{2}^{\; -}$ , PO $_{4}^{\; \equiv }$ , Cl???, SO $_{4}^{\; =}$ , Na?+?, and Ca?+?+?. The second factor (PC2) is significantly related to pH, NH $_{3}^{\; -}$ , and Mg?+?+?, while water temperature (T) and NO $_{3}^{\; -}$ accounted for the greatest loading for factor 3 (PC3). The stations were divided into three groups for PC1, two groups for PC2, and three groups for PC3 by hierarchical cluster analysis. The stations in the vicinity of cities presented low dissolved oxygen and high concentration of physico-chemical parameter levels. The stations of Erkenez 2, S?r 2, S?r 3, and Aksu 4 located near the city of Kahramanmara? were characterized by an extremely high pollution due to discharge of wastewater from industry and domestic. P?narba?? and Elbistan stations were also influenced by household wastewater of the city of Elbistan. According to criteria of Turkish Water Pollution Control Regulation, Erkenez 2, S?r 2, and S?r 3 stations have high polluted water. This study suggests that it is urgent to control point pollutions, and all wastewater should be purified before discharge to the Ceyhan River basin.  相似文献   

11.
Concentrations of selected heavy metals (Cd, Cr, Cu, Pb, Ni, Fe, and Zn), nutrients (NO 3 ? and NH3), fecal coliform colonies, and other multiple physical–chemical parameters were measured seasonally from 12 locations in an urban New Jersey estuary between 1994 and 2008. Stepwise regression, principal component analysis, and cluster analysis were used to group water quality results and sampling locations, as well as to assess these data’s relationship to sewage treatment effluents and the distance to the mouth of the river. The BOD5, NH3, NO 3 ? and fecal coliform counts clustered as one group and positively correlated to the distances from treated effluent and the measures of magnitude at the discharge points. Dissolved solids and most metal species scored high along a single principal component axes and were significantly correlated with the proximity to the industrialized area. From these data, one can conclude that the effluent discharge has been a main source of anthropogenic input to the Hackensack River over the past 15 years. Therefore, the greatest improvement to water quality would come from eliminating the few remaining combined sewer overflows and improving the removal of nutrients from treated effluents before they are discharged into the creeks and river.  相似文献   

12.
The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain—the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca2?+?, Mg2?+?, Na?+?, K?+?, CO $_{3}^{-}$ , HCO $_{3}^{-}$ , Cl???, SO $_{4}^{-2}$ , NO $_{3}^{-}$ , and F???. The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na?+? > Ca2?+??> Mg2?+??> K??? among cations and HCO $_{3}^{-}\:\,>$ Cl????> SO $_{4}^{-2} >$ NO $_{3}^{-} >$ F??? among anions in pre-monsoon. In post-monsoon, Mg replaces Ca2?+? and NO $_{3}^{-}$ takes the place of SO $_{4}^{-2}$ . The Modified Piper diagram reflect that the water belong to Ca?+?2–Mg?+?2–HCO $_{3}^{-}$ to Na?+?–HCO $_{3}^{-}$ facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na?+? and K?+? in aquatic solution took place with Ca?+?2 and Mg?+?2 of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water–rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water–rock interaction during the process of percolation with fluorite-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions.  相似文献   

13.
The hydrochemistry of groundwater in the Densu River Basin, Ghana   总被引:1,自引:0,他引:1  
Hydrochemical analyses of groundwater samples were used to establish the hydrochemistry of groundwater in the Densu River Basin. The groundwater was weakly acidic, moderately mineralized, fresh to brackish with conductivity ranging from of 96.6 μS cm???1 in the North to 10,070 μS cm???1 in the South. Densu River basin have special economic significance, representing the countries greatest hydrostructure with freshwater. Chemical constituents are generally low in the North and high in the South. The order of relative abundance of major cations in the groundwater is Na?+??> Ca2?+??> Mg2?+??> K?+? while that of anions is Cl????> HCO $_{3}^{-} >$ SO $_{4}^{2-} >$ NO $_{3}^{-}$ . Four main chemical water types were delineated in the Basin. These include Ca–Mg–HCO3, Mg–Ca–Cl, Na–Cl, and mixed waters in which neither a particular cation nor anion dominates. Silicate weathering and ion exchange are probably the main processes through which major ions enter the groundwater system. Anthropogenic activities were found to have greatly impacted negatively on the quality of the groundwater.  相似文献   

14.
Obtaining and analyzing the specific inherent optical properties (SIOPs) of water bodies is necessary for bio-optical model development and remote sensing-based water quality retrievals and, further, for related ecological studies of aquatic ecosystems. This study aimed to measure and analyze the specific absorption and backscattering coefficients of the main water constituents in Poyang Lake, China. The specific absorption and/or backscattering coefficients of the main water constituents at 85 sampling sites (47 in 2010 and 38 in 2011) were measured and analyzed as follows: (1) the concentrations of chlorophyll a (C CHL), suspended particulate matter (C SPM) (including suspended particulate inorganic matter (C SPIM) and suspended particulate organic matter (C SPOM)), and the absorption coefficients of total particulate (a p), phytoplankton (a ph), and non-pigment particulate (a d) were measured in the laboratory; (2) the total backscattering coefficients at six wavelengths of 420, 442, 470, 510, 590, and 700 nm, including the contribution of pure water, were measured in the field with a HydroScat-6 backscattering sensor, and the backscattering coefficients without the contribution of pure water (b b) were then derived by subtracting the backscattering coefficients of pure water from the total backscattering coefficients; (3) the specific absorption coefficients of total particulate ( $ a_{\mathrm{p}}^{ * } $ ), phytoplankton ( $ {a_{{\mathrm{ph}}}}^{ * } $ ), and non-pigment particulate ( $ a_{\mathrm{d}}^{ * } $ ) were calculated by dividing a p, a ph, and a d by C SPM, C CHL, and C SPIM, respectively, while the specific backscattering coefficients of total suspended particulate matter ( $ b_{\mathrm{b}}^{ * } $ ) were calculated by dividing b b by C SPM; and (4) the $ {a_{{\mathrm{ph}}}}^{ * } $ , $ a_{\mathrm{d}}^{ * } $ , $ a_{\mathrm{p}}^{ * } $ and $ b_{\mathrm{b}}^{ * } $ of the remaining samples (46 in 2010 and 36 in 2011) were visualized and analyzed, and their relations to C CHL, C SPIM or C SPM were studied, respectively. The main results are summarized as follows: (1) the $ {a_{{\mathrm{ph}}}}^{ * } $ values at 440 nm were 0.0367–0.7203 m2?mg?1 with a mean of 0.1623?±?0.1426 m2?mg?1 in 2010 and 0.0319–0.7735 m2?mg?1 with a mean of 0.3145?±?0.1961 m2?mg?1 in 2011; there existed significant, negative, and moderate correlations between $ {a_{{\mathrm{ph}}}}^{ * } $ and C CHL at 400–700 nm in 2010 and 2011 (p?<?0.05); (2) The $ a_{\mathrm{d}}^{ * } $ values at 440 nm were 0.0672–0.2043 m2?g?1 with a mean of 0.1022?±?0.0326 m2?g?1 in 2010 and 0.0559–0.1347 m2?g?1 with a mean of 0.0953?±?0.0196 m2?g?1 in 2011; there existed negative correlations between $ a_{\mathrm{d}}^{ * } $ and C SPIM, while the correlations showed overall decreasing and increasing trends before and after around 575 nm with increasing wavelengths, respectively; (3) The $ a_{\mathrm{p}}^{ * } $ values at 440 nm were 0.0690–0.1929 m2?g?1 with a mean of 0.1036?±?0.0298 m2?g?1 in 2010 and 0.0571–0.1321 m2?g?1 with a mean of 0.1014?±?0.0191 m2?g?1 in 2011, and the negative correlations between $ a_{\mathrm{p}}^{ * } $ and C SPM were found in both years; (4) The $ b_{\mathrm{b}}^{ * } $ at the six wavelengths generally decreased with increasing wavelengths, while the $ b_{\mathrm{b}}^{ * } $ values at 420 nm were lower than those at 442 nm for some samples; the correlation between $ b_{\mathrm{b}}^{ * } $ and C SPM increased with increasing wavelength. Such results can only represent the SIOPs during the sampling time periods, and more measurements and analyses considering different seasons need to be carried out in the future to comprehensively understand the SIOPs of Poyang Lake.  相似文献   

15.
Nitrogen (N) leaching has become a matter of worldwide concern. The objectives of this study were: (1) to use soil columns to investigate the leaching of nitrate ( $ {\text{NO}}_3^{ - } $ ), ammonium ( $ {\text{NH}}_4^{ + } $ ), and nitrite ( $ {\text{NO}}_2^{ - } $ ) from calcareous soils that had received an average of 200?kg?1 N?ha?1?year?1 for the previous 30?years and (2) to determine the relationship between soil properties and $ {\text{NO}}_3^{ - } $ , $ {\text{NH}}_4^{ + } $ , and $ {\text{NO}}_2^{ - } $ leaching. The soils used in this study ranged in texture from clay to sandy loam. Leaching experiments were conducted under saturation conditions and consisted of the collection of 1,047–2,524?mL of leachate (12 pore volumes (PVs)), which was equivalent to 534–1,286?mm from rainfall or irrigation. Losses of $ {\text{NO}}_3^{ - } $ ranged from 62 to 437?kg?ha?1, while losses of $ {\text{NH}}_4^{ + } $ and $ {\text{NO}}_2^{ - } $ ranged from 2.5 to 19.3?kg?ha?1 and 0.1 to 10.6?kg?ha?1, respectively. Leaching rates differed between soil samples. The initial and secondary rate of $ {\text{NO}}_3^{ - } $ leaching was determined using an exponential model, and it ranged from 2.8 to 14.7?mg?kg?1 PV?1 and 0.11 to 0.32?mg?kg?1 PV?1. Greater leaching rates in the initial period could be due to leaching of $ {\text{NO}}_3^{ - } $ in solution, while the secondary leaching might be attributable to the diffusion-controlled transfer of $ {\text{NO}}_3^{ - } $ between mobile and immobile liquid phases. Analysis of variance indicated that the effects of soil type on total $ {\text{NO}}_3^{ - } $ leaching were highly significant (p?<?0.001). The results showed that soil $ {\text{NO}}_3^{ - } $ concentration was positively correlated with the peak concentration of $ {\text{NO}}_3^{ - } $ (r?=?0.86; p?<?0.01) and the total $ {\text{NO}}_3^{ - } $ leached (r?=?0.93; p?<?0.01). In addition, the total $ {\text{NH}}_4^{ + } $ leached was positively correlated with silt (r?=?0.67; p?<?0.05), clay (r?=?0.61; p?<?0.05), and pH (r?=?0.77; p?<?0.01), which suggests that soil parameters might be useful indicators of $ {\text{NO}}_3^{ - } $ and $ {\text{NH}}_4^{ + } $ leaching from calcareous soils. Nitrate leaching from soils could threaten groundwater supplies, so possible strategies for minimizing $ {\text{NO}}_3^{ - } $ leaching losses may need to be considered.  相似文献   

16.
Mean annual concentration of ${\textrm{SO}}_{4}^{2-}$ in wet-only deposition has decreased between 1988 and 2006 at the paired watershed study at Bear Brook Watershed in Maine, USA (BBWM) due to substantially decreased emissions of SO2. Emissions of NOx have not changed substantially, but deposition has declined slightly at BBWM. Base cations, ${\textrm{NH}}_{4}^{+}$ , and Cl??? concentrations were largely unchanged, with small irregular changes of <1 μeq L???1 per year from 1988 to 2006. Precipitation chemistry, hydrology, vegetation, and temperature drive seasonal stream chemistry. Low flow periods were typical in June–October, with relatively greater contributions of deeper flow solutions with higher pH; higher concentrations of acid-neutralizing capacity, Si, and non-marine Na; and low concentrations of inorganic Al. High flow periods during November–May were typically dominated by solutions following shallow flow paths, which were characterized by lower pH and higher Al and DOC concentrations. Biological activity strongly controlled ${\textrm{NO}}_{3}^{-}$ and K?+?. They were depressed during the growing season and elevated in the fall. Since 1987, East Bear Brook (EB), the reference stream, has been slowly responding to reduced but still elevated acid deposition. Calcium and Mg have declined fairly steadily and faster than ${\textrm{SO}}_{4}^{2-}$ , with consequent acidification (lower pH and higher inorganic Al). Eighteen years of experimental treatment with (NH4)2SO4 enhanced acidification of West Bear Brook’s (WB) watershed. Despite the manipulation, ${\textrm{NH}}_{4}^{+}$ concentration remained below detection limits at WB, while leaching of ${\textrm{NO}}_{3}^{-}$ increased. The seasonal pattern for ${\textrm{NO}}_{3}^{-}$ concentrations in WB, however, remained similar to EB. Mean monthly concentrations of ${\textrm{SO}}_{4}^{2-}$ have increased in WB since 1989, initially only during periods of high flow, but gradually also during base flow. Increases in mean monthly concentrations of Ca2?+?, Mg2?+?, and K?+? due to the manipulation occurred from 1989 until about 1995, during the depletion of base cations in shallow flow paths in WB. Progressive depletion of Ca and Mg at greater soil depth occurred, causing stream concentrations to decline to pre-manipulation values. Mean monthly Si concentrations did not change in EB or WB, suggesting that the manipulation had no effect on mineral weathering rates. DOC concentrations in both streams did not exhibit inter- or intra-annual trends.  相似文献   

17.
Markandeya River basin stretches geographically from 15°56?? to 16°08?? N latitude and 74°37?? to 74°58?? E longitude, positioned in the midst of Belgaum district, in the northern part of Karnataka. Since the quantity and quality of water available for irrigation in India is variable from place to place, groundwater quality in the Markandeya River basin was evaluated for its suitability for drinking and irrigation purposes by collecting 47 open and bore-well samples during the post-monsoon period of 2008. The quality assessment was made by estimating pH, electrical conductivity, total dissolved solids, hardness, and alkalinity besides major cations (Na?+?, K?+?, Ca2?+?, and Mg2?+?) and anions (HCO $_{3}^{\,\,-}$ , Cl???, SO $_{4}^{\,\,2-}$ , PO $_{4}^{\,\,3-}$ , F???, and NO $_{3}^{\,\,-}$ ). Based on these analyses, irrigation quality parameters like, sodium absorption ratio, %Na, residual sodium carbonate, residual sodium bicarbonate, chlorinity index, soluble sodium percentage, non-carbonate hardness, potential salinity, permeability index, Kelley??s ratio, magnesium hazard/ratio, index of base exchange, and exchangeable sodium ratio were calculated. According to Gibbs?? ratio, majority of water samples fall in the rock dominance field. The groundwater samples were categorized as normal chloride (95.75%), normal sulfate (95.75%), and normal bicarbonate (61.70%) water types based on Cl, SO4, and HCO3 concentrations. Based on the permeability index, majority of the samples belongs to classes 1 and 2, suggesting the suitability of groundwater for irrigation. The negative index of base exchange indicates the existence of chloro-alkaline disequilibrium (indirect base exchange reaction) existing in majority of the samples (68.08%) from the study area.  相似文献   

18.
Groundwater is almost globally important for human consumption as well as for the support of habitat and for maintaining the quality of base flow to rivers, while its quality assessment is essential to ensure sustainable safe use of the resources for drinking, agricultural, and industrial purposes. In the current study, 28 groundwater samples were collected around Vrishabhavathi valley region of Bangalore South Taluk to assess water quality and investigate hydrochemical nature by analyzing the major cations (Ca2?+?, Mg2?+?, Na?+?, K?+?) and anions $(\text{HCO}_{3}^{-}$ , Cl???, F???, $\text{SO}_{4}^{2-}$ , $\text{NO}_{3}^{-}$ , $\text{PO}_{4}^{3-}$ , $\text{CO}_{3}^{2-})$ besides some physical and chemical parameters (pH, electrical conductivity, alkalinity, and total hardness). Also, geographic information system-based groundwater quality mapping in the form of visually communicating contour maps was developed to delineate spatial variation in physico-chemical characteristics of groundwater samples. Piper trilinear diagram was constructed to identify groundwater groups (hydrochemical facies) using major anionic and cationic concentration and it was found that majority of the samples belongs to $\text{Ca}^{2+}-\text{Mg}^{2+}-\text{Cl}^{-}-\text{SO}_{4}^{2-}$ and $\text{Ca}^{2+}-\text{Mg}^{2+}-\text{HCO}_{3}^{-}$ hydrochemical facies. Wilcox classification and US Salinity Laboratory hazard diagram suggests that 92.86% of the samples were falling under good to permissible category and C3–S1 groups, respectively, indicating high salinity/low sodium.  相似文献   

19.
Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer, and bore wells for New Veeranam Scheme are constructed downstream of the basin. Geochemical indicators of groundwater were used to identify the chemical processes that control hydrogeochemistry. Chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, sodium (Na?+?), potassium (K?+?), calcium (Ca?+?), magnesium (Mg?+?), bicarbonate $({\rm HCO}_{3}^{-})$ , sulfate $({\rm SO}_{4}^{-})$ , phosphate $({\rm PO}_{4}^{-})$ , and silica (H4SiO4) were determined. Interpretation of hydrogeochemical data suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock–water interaction with significant evaporation prevails in hard rock region.  相似文献   

20.
The Lead–Zinc Company region, Kardjali city, Bulgaria, is known to be highly polluted with heavy metals from its pyrometallurgical activities. The polluted levels and the chemical speciation in surface natural waters in the region as well as in the wastewaters of the factory were investigated in January 2008 by application of monitoring studies, thermodynamic modeling, and interpretation in terms of the “softness–hardness” factor. It was found that the levels of trace metals pollution of surface waters were lower than the legislation limits for the regions with Pb and Zn production. The wastewater treatment facilities of the company were found to operate properly, and the quality of the cleaned waters in station Kar4 was comparable to the other surface waters studied (e.g., station Kar5). The trace metals were divided into three groups: (1) Fe3?+? and Al3?+?, being “hard” acids, existed in all the studied waters as hydroxy species Fe(OH) $_{2}^{+}$ , AlOH2?+?, and Al(OH) $_{2}^{+}$ , followed by the phosphate species AlPO $_{4}^{0}$ and Al2(OH)2PO $_{4}^{+}$ ; (2) Mn2?+?, Zn2?+?, and Cd2?+? being “soft” acids with crystal field stabilization energy (CFSE) = 0 were present in natural waters mainly as free Me2?+? ions. Small concentrations of their MeSO $_{4}^{0}$ , MeCO $_{3}^{0}$ species, and of MeCl $_{2}^{0}$ (Me = Zn, Cd) species were also calculated. In the wastewaters, two more species [Me(SO $_{4})_{2}^{2-}$ and Me(SO $_{4})_{3}^{4-}$ ] of the softer Zn and Cd metals were also calculated; (3) Cu2?+? and Pb2?+?, as “soft” acids with CFSE $\ne $ 0 preferentially coordinated with softer CO $_{3}^{2-}$ ions and in natural waters existed mainly as MeCO $_{3}^{0}$ and PbHCO $_{3}^{+}$ , followed by free Me2?+?ions and MeOH?+?. In the wastewaters, MeSO $_{4}^{0}$ and Pb(SO $_{4})_{2}^{2-}$ species increased at the expense of the free Me2?+? ions. The highest self-cleaning capability of natural waters was found with respect to Al and Fe, followed by Mn and Cd. The lowest corresponded to Pb, Cu, and Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号