首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two models frequently used to simulate the dispersion of pollutants in the atmosphere have been compared. This is necessary because only a well-tested and well-calibrated simulation model can be a good representation of the reality of the dispersion of pollutants. The models evaluated (HYSPLIT_4 with its four variants and MEDIA) were run using as input parameters the same meteorological dataset (for 23-26 October 1994) from the French model ARPEGE. The following statistical criteria were compared: the space and time evolution of the pollutant cloud; the variation of statistical parameters in time and space; and the differences between the simulated and measured values of concentration in time for six different stations. The results emphasise the characteristics of the two models and their abilities in the framework of the air quality monitoring.  相似文献   

2.
ABSTRACT

Non-methane organic compound (NMOC) profiles for on-road motor vehicle emissions were measured in a downtown tunnel and parking garages in Mexico City during 1996. Hydrocarbon samples from the tunnel and ambient air samples (C2-C12) were collected using stainless steel canisters, and carbonyl compounds were collected using 2,4-dinitrophenylhydrazine (DNPH) impregnated cartridges. Canister samples were analyzed by gas chromatog-raphy/flame ionization detection (GC/FID) to ascertain detailed hydrocarbon composition. DNPH samples were analyzed by high performance liquid chromatography (HPLC). NMOC source profiles were quantified for evaporative emissions from refueling, cold start, and hot soak, and on-road operating conditions. The ultimate purpose will be to determine the apportionment of ambient NMOC concentrations using the Chemical Mass Balance (CMB) model. The tunnel profile contained 42.3 ppbC% of alkanes, 20.6 ppbC% of unsaturated compounds, and 22.4 ppbC% of aromatics. The most abundant species were acetylene with 7.22 ppbC%, followed by ipentane with 5.69 ppbC%, and toluene with 5.42 ppbC%. These results were compared with those from studies in the United States. The cold start profile was found to be similar to the tunnel profile, although there were differences in the content of acetylene, isopentane, and oxygenates. The abundance of saturated NMOC in the hot soak profile was similar to gasoline head space profiles; it was also much larger than saturated NMOC in the roadway profile.  相似文献   

3.
Abstract

Environmental agencies are currently in the process of implementing a new air management program, which includes the improvement of fuel quality. In this work, exhaust emissions data and estimated relative risk for various fuels testing in-use vehicles, equipped with three different exhaust emission control technologies, are presented. Aromatics, sulfur, and olefins contents; type of oxygenated compound; and Reid vapor pressure were varied. The aim also includes calculating the ozone (O3)of forming potential and a relative cancer risk of emissions from current and formulated gasoline blends in Mexico. The proposed gasoline decreases carbon monoxide, total hydrocarbons (THC), and nitrogen oxides emissions by 18 and 14%, respectively, when compared with gasoline sold in the rest of the country and within ozone nonattainment metropolitan areas in Mexico, respectively.  相似文献   

4.
Environmental agencies are currently in the process of implementing a new air management program, which includes the improvement of fuel quality. In this work, exhaust emissions data and estimated relative risk for various fuels testing in-use vehicles, equipped with three different exhaust emission control technologies, are presented. Aromatics, sulfur, and olefins contents; type of oxygenated compound; and Reid vapor pressure were varied. The aim also includes calculating the ozone (O3) forming potential and a relative cancer risk of emissions from current and formulated gasoline blends in Mexico. The proposed gasoline decreases carbon monoxide, total hydrocarbons (THC), and nitrogen oxides emissions by 18 and 14%, respectively, when compared with gasoline sold in the rest of the country and within ozone nonattainment metropolitan areas in Mexico, respectively.  相似文献   

5.
ABSTRACT

The environmental agency in the metropolitan area of Mexico City has launched a program to introduce more energy-efficient modes of transport, one of which is the use of alternative and less polluting fuels. With that perspective in mind, a liquefied petroleum gas (LPG) fleet of vehicles is exempt of the mandatory "one day without a car" program if the emission of pollutants is below the standard authorized for that specific purpose. Today, about 28,000 light-duty vehicles and heavy-duty trucks circulate in the area, most of them as aftermarket converted vehicles. In this work, we evaluated regulated exhaust emission and other parameters on 134 representative vehicles of that fleet. From the data obtained, an estimate of emission factors and their contribution to the global emission in the metropolitan area is provided. It is concluded that more than 95% of the in-use vehicles using LPG presented regulated emissions which exceeded in one or more the environmental regulations values required for certification. The poor maintenance of the vehicles and the type of conversion kit installed could be the culprits of the results obtained.  相似文献   

6.
ABSTRACT

An estimation of hydrocarbon emissions caused by the consumption of liquefied petroleum gas (LPG) in the Metropolitan Area of Mexico City (MAMC) is presented. On the basis of experimental measurements at all points of handling, during the distribution process, and during the consumption of LPG in industrial devices and domestic appliances, an estimated 76,414 tons/year are released to the air. The most important contribution is found during the domestic consumption of LPG (70%); this makes the control initiatives available to the consumer. By developing a control program of LPG losses, a 77% reduction in emission is expected in a 5-yr period.

The calculated amounts of LPG emissions when correlated with the consumption of LPG, combined with information from air samples from the MAMC, do not point to LPG emissions as the most important factor contributing to tropospheric ozone in the air in Mexico City.  相似文献   

7.
We present calculations to estimate potential changes to the local climate and photochemistry caused by pollutants (gases and particles) produced in Mexico City, and the implications for the regional scale when pollutants are exported to surrounding regions. Measured aerosol optical properties are used in a 2-stream delta-Eddington radiative transfer model (Slingo and Schrecker, 1982. Quarterly Journal of the Royal Meteorological Society 108, 407–426) to estimate net radiative fluxes and heating rates, while photolysis rates for nitrogen dioxide and ozone are estimated from a much more detailed model (Madronich, 1987. Journal of Geophysical Research 92, 9740–9752). The presence of highly absorbing aerosols in Mexico City leads to a 17.6% reduction in solar radiative flux at the surface when an optical depth of 0.55 is considered. Photolysis rates for nitrogen dioxide and ozone are reduced between 18 and 21% at the surface, while an increase of between 15 and 17% is predicted above the boundary layer, for local noon calculations.The non-uniform vertical structure of aerosol concentrations observed (Pérez Vidal and Raga, 1998. Atmosfera 11, 95–108) plays a significant role in determining localized regions of heating, i.e. stabilization at the top of the boundary layer that results in a temperature increase of 0.4K h−1 at that level. The presence of a 200 m-deep aerosol layer at the top of the boundary layer results in vertical profiles of the photolysis rates that are significantly different from the case where the aerosols are uniformly distributed in the mixed layer. At the bottom of the aerosol layer (about 1 km above the surface), the rates are about 28% lower than when there is a uniform aerosol distribution in the boundary layer. Finally, there is also an enhancement of photolysis rates at the top of the boundary layer that may lead to increased ozone production compared to the non-aerosol case.  相似文献   

8.
ABSTRACT

The main goal of this study was to evaluate the magnitude of outdoor exposure to fine particulate matter (PM10) potentially experienced by the population of metropolitan Mexico City. With the use of a geographic information system (GIS), spatially resolved PM10 distributions were generated and linked to the local population. The PM10 concentration exceeded the 24-hr air quality standard of 150 μg/m3 on 16% of the days, and the annual air quality standard of 50 μg/m3 was exceeded by almost twice its value in some places. The basic methodology described in this paper integrates spatial demographic and air quality databases, allowing the evaluation of various air pollution reduction scenarios. Achieving the annual air quality standard would represent a reduction in the annual arithmetic average concentration of 14 μg/m3 for the typical inhabitant. Human exposure to particulate matter (PM) has been associated with mortality and morbidity in Mexico City; reducing the concentration levels of this pollutant would represent a reduction in mortality and morbidity and the associated cost of such impacts. This methodology is critical to assessing the potential benefits of the current initiative to improve air quality implemented by the Environmental Metropolitan Commission of Mexico City.  相似文献   

9.
The sources and distribution of carbon in ambient suspended particles (PM2.5 and PM10) of Mexico City Metropolitan Area (MCMA) air were traced using stable carbon isotopes (13C/12C). Tested potential sources included rural and agricultural soils, gasoline and diesel, liquefied-petroleum gas, volcanic ash, and street dust. The complete combustion of LP gas, diesel and gasoline yielded the lightest δ13C values (?27 to ?29‰ vs. PDB), while street dust (PM10) represented the isotopically heaviest endmember (?17‰). The δ13C values of rural soils from four geographically separated sites were similar (?20.7 ± 1.5‰). δ13C values of particles and soot from diesel and gasoline vehicle emissions and agricultural soils varied between ?23 and ?26‰. Ambient PM samples collected in November of 2000, and March and December of 2001 at three representative receptor sites of industrial, commercial and residential activities had a δ13C value centered around ?25.1‰ in both fractions, resulting from common carbon sources. The predominant carbon sources to MCMA atmospheric particles were hydrocarbon combustion (diesel and/or gasoline) and particles of geological origin. The significantly depleted δ13C values from the industrial site reflect the input of diesel combustion by mobile and point source emissions. Based on stable carbon isotope mass balance, the carbon contribution of geological sources at the commercial and residential sites was approximately 73% for the PM10 fraction and 54% for PM2.5. Although not measured in this study, biomass-burning emissions from nearby forests are an important carbon source characterized by isotopically lighter values (?29‰), and can become a significant contributor (67%) of particulate carbon to MCMA air under the prevalence of southwesterly winds. Alternative sources of these 13C-depleted particles, such as cooking fires and municipal waste incineration, need to be assessed. Results show that stable carbon isotope measurements are useful for distinguishing between some carbon sources in suspended particles to MCMA air, and that wind direction has an impact on the distribution of carbon sources in this basin.  相似文献   

10.
Peroxyacyl nitrates (PANs) were measured using gas chromatography with electron capture detection (GC/ECD) in north central Mexico City during February–March of 1997. Peroxyacetyl nitrate (PAN) was observed to exceed 30 ppb during five days of the study, with peroxypropionyl nitrate (PPN) and peroxybutryl nitrate (PBN) reaching 6 and 1 ppb maximum, respectively. Levels of total PANs typically exceeded 10 ppb during the period of measurement and showed a very strong diurnal variation with PANs maximum during the early afternoon and falling to less than 0.1 ppb during the evening hours. These levels of PANs are the highest reported values in North America (and the world) for an urban center, since levels of approximately 30 ppb were reported during the late 1970s in the Los Angeles area (South Coast Air Basin, Tuazon et al., 1978). Hydrocarbon measurements indicate that the levels of olefins, specifically butenes are significant in Mexico City. A time series taken of source indicator hydrocarbons taken before and during a Mexican National Holiday with reduced automobile traffic clearly show that mobile sources of butenes are as important as liquefied petroleum gas. Observations of 10–40 ppb C methyl-t-butyl ether (MTBE) are consistent with MTBE/gasoline fuel usage as a source of isobutene and formaldehyde. Both these reactive species can lead to increased oxidant and PAN formation. The strong diurnal profiles of PANs are consistent with regional clearing of the Mexico City air basin on a daily basis. Estimates are given using a simple box model calculation for a number of key primary and secondary pollutant emissions from this megacity on an annual basis. These calculations indicate that megacities can be important sources of both primary and secondary pollutants, and that PANs produced in megacity environments are likely to contribute strongly to regional scale ozone and aerosol productions during long range transport.  相似文献   

11.
The Monterrey Metropolitan Area (MMA) in Northeast Mexico has shown high PM2.5 concentrations since 2003. The data shows that the annual average concentration exceeds from 2 to 3 times the Mexican PM2.5 annual air quality standard of 12 µg/m3. In a previous work we studied the chemical characterization of PM2.5 in two sites of the MMA during the winter season. Among the most important components we found ammonium sulfate and nitrate, elemental and organic carbon, and crustal matter. In this work we present the results of a second chemical characterization study performed during the summer time and the application of the chemical mass balance (CMB) model to determine the source apportionment of air pollutants in the region. The chemical analysis results show that the chemical composition of PM2.5 is similar in both sites and periods of the year. The results of the chemical analysis and the CMB model show that industrial, traffic, and combustion activities in the area are the major sources of primary PM2.5 and precursor gases of secondary inorganic and organic aerosol (SO2, NOx, NH3, and volatile organic compounds [VOCs]). We also found that black carbon and organic carbon are important components of PM2.5 in the MMA. These results are consistent with the MMA emission inventory that reports as major sources of particles and SO2 a refinery and fuel combustion, as well as nitrogen oxides and ammonium from transportation and industrial activities in the MMA and ammonium form agricultural activities in the state. The results of this work are important to identify and support effective actions to reduce direct emissions of PM2.5 and its precursor gases to improve air quality in the MMA. Implications: The Monterrey Metropolitan Area (MMA) has been classified as the most air-polluted area in Mexico by the World Health Organization (WHO). Effective actions need to be taken to control primary sources of PM2.5 and its precursors, reducing health risks on the population exposed and their associated costs. The results of this study identify the main sources and their estimated contribution to PM2.5 mass concentration, providing valuable information to the local environmental authorities to take decisions on PM2.5 control strategies in the MMA.  相似文献   

12.
ABSTRACT

Measurements of hydrocarbon (HC) emissions generated by the use of liquefied petroleum gas (LPG) in the metropolitan area of Guadalajara City (MAG) are presented in this work. Based on measurements in the course of distribution, handling, and consumption, an estimated 4407 tons/yr are released into the atmosphere. The three most important contributors to LPG emissions were refilling of LPG-fueled vehicles and commercial and domestic consumption. The MAG shows a different contribution pattern of LPG emission sources compared with that of the metropolitan area of Mexico City (MAMC). These results show that each megacity has different sources of emissions, which provides more accurate strategies in the handling procedures for LPG to decrease the impact in O3 levels. This work represents the first evaluation performed in Guadalajara City, based on current measurements, of the LPG contribution to polluting emissions.  相似文献   

13.
The Mexico City Metropolitan Zone (MCMZ) presents important emissions of hazardous air pollutants. It is well documented that the MCMZ suffers a critical air pollution problem due to high ozone and particulate matter concentrations. However, toxic air pollutants such as benzene and toluene have not been considered. Benzene has accumulated sufficient evidence as a human carcinogen, and the ratio benzene/toluene is an excellent indicator to evaluate control strategies efficiency.In order to evaluate the levels of these two air toxic pollutants in the MCMZ, ambient air samples were collected in canisters and analyzed with a gas chromatograph with a flame ionization detector, according to procedures described in the United States Environmental Protection Agency (USEPA) method TO-15. Quality assurance was performed collecting duplicate samples which were analyzed in replicate to quantify the precision of air-quality measurements.Three different sites located in the Southwestern area in the MCMZ were selected for the sampling: the University campus, a gas station, and a vertical condominium area, in the same neighborhood, which presents different activities. At these sites, grab air samples were collected during the morning hours (7–8 a.m.), while for the University area, 24 h integrated air samples were collected simultaneously, with grab samples.Benzene concentrations (24 h sampling) in the atmosphere around the University campus have similar present levels as in other cities of North America. Mean values in this site were about 1.7 ppb.A significant variation exists between the benzene and toluene concentrations in the studied sites, being the more critical values than those registered at the gas station (an average of 25.8 ppb and a maximum of 141 ppb of benzene). There is a fuel regulation for gasoline in Mexico, which allows a maximum of 1 percent of benzene. However, since more than 60 percent of vehicles do not have catalytic converters (models before 1991) it is expected that most of this benzene be emitted through exhaust pipe. Another strategy being implemented is the use of vapor recovery systems at the gas stations. Vehicles emission control technology must be matched with adequate fuel characteristics in the problem area where it will be implemented, to achieve maximum emission reductions.  相似文献   

14.
15.
This paper describes and develops the conditions that make the demand side policy of vehicle use restrictions part of a cost-effective set of environmental control policies. Mexico City's experience with vehicle use restrictions is described and its failure analysed. It is argued that Mexico City took a step in the right direction, but failed to make the restrictions flexible, thereby making the policy perverse. A programme of tradable vehicle use permits is presented and described that would provide the needed flexibility and promote urban sustainability.  相似文献   

16.
17.
ABSTRACT

PM10, PM25, precursor gas, and upper-air meteorological measurements were taken in Mexico City, Mexico, from February 23 to March 22, 1997, to understand concentrations and chemical compositions of the city's particulate matter (PM). Average 24-hr PM10 concentrations over the period of study at the core sites in the city were 75 H g/m3. The 24-hr standard of 150 μ g/m3 was exceeded for seven samples taken during the study period; the maximum 24-hr concentration measured was 542 μ g/m3. Nearly half of the PM10 was composed of fugitive dust from roadways, construction, and bare land. About 50% of the PM10 consisted of PM2.5, with higher percentages during the morning hours. Organic and black carbon constituted up to half of the PM2.5. PM concentrations were highest during the early morning and after sunset, when the mixed layers were shallow. Meteorological measurements taken during the field campaign show that on most days air was transported out of the Mexico City basin during the afternoon with little day-to-day carryover.  相似文献   

18.
In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 106 t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 103 t per $106. The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.  相似文献   

19.
Abstract

To evaluate methods of reducing exposure of school children in southwest Mexico City to ambient ozone, outdoor ozone levels were compared to indoor levels under three distinct classroom conditions: windows/doors open, air cleaner off; windows/doors closed, air cleaner off; windows/ doors closed, air cleaner on. Repeated two-minute average measurements of ozone were made within five minutes of each other inside and outside of six different school classrooms while children were in the room. Outdoor ozone two-minute average levels varied between 64 and 361 ppb; mean outdoor levels were above 160 ppb for each of the three conditions. Adjusting for outdoor relative humidity, for a mean outdoor ozone concentration of 170 ppb, the mean predicted indoor ozone concentrations were 125.3 (±5.7) ppb with windows/doors open; 35.4 (±4.6) ppb with windows/ doors closed, air cleaner off; and 28.9 (±4.3) ppb with windows/ doors closed, air cleaner on. The mean predicted ratios of indoor to outdoor ozone concentrations were 0.71 (±0.03) with windows/doors open; 0.18 (±0.02) ppb with windows/doors closed, air cleaner off; and 0.15 (±0.02) ppb with windows/doors closed, air cleaner on. As outdoor ozone concentrations increased, indoor ozone concentrations increased more rapidly with windows and doors open than with windows and doors closed. Ozone exposure in Mexican schools may be significantly reduced, and can usually be kept below the World Health Organization (WHO) guideline of 80 ppb, by closing windows and doors even when ambient ozone levels reach 30Q ppb or more.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号