首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Werner EE  Peacor SD 《Ecology》2006,87(2):347-361
Indirect effects propagated through intervening species in a food web have important effects on community properties. Traditionally, these indirect effects have been conceptualized as mediated through density changes of the intervening species, but it is becoming increasingly apparent that those mediated through trait (phenotypic) responses also can be very important. Because density- and trait-mediated indirect effects have different properties, it is critical that we understand the mechanisms of transmission in order to predict how they will interact, and when or where they will be important. In this study, we examined the mechanisms and consequences of the lethal (density-mediated) and nonlethal (trait-mediated) effects of a larval odonate predator on a guild of four herbivore species (a larval anuran and three species of snails) and their resources. We also manipulated system productivity in order to explore the effects of environmental context on the transmission of these two types of indirect effects. We show that trait-mediated effects arising from the predator can be very strong relative to density-mediated effects on both the competing herbivores and the species composition and production of their resources. A number of these indirect effects are shown to be contingent on productivity of the system. We further present evidence that trait- and density-mediated indirect effects originating from a predator may be transmitted independently through different routes in a food web, particularly when spatial responses of the transmitting prey are involved. Finally, effects on prey growth due to trait responses to the predator varied from negative to positive in predictable ways as a function of time and indirect effects on the larger food web. These results indicate the important role that trait-mediated indirect effects can play in trophic cascades and keystone predator interactions, and we discuss how the mechanisms involved can be incorporated in theory.  相似文献   

2.
Positive interactions are widely recognized as playing a major role in the organization of community structure and diversity. As such, recent theoretical and empirical works have revealed the significant contribution of positive interactions in shaping species’ geographical distributions, particularly in harsh abiotic conditions. In this report, we explore the joint influence of local dispersal and an environmental gradient on the spatial distribution, structure and function of communities containing positive interactions. While most previous theoretical efforts were limited to modelling the dynamics of single pairs of associated species being mutualist or competitor, here we employ a spatially explicit multi-species metacommunity model covering a rich range of interspecific interactions (mutualism, competition and exploitation) along an environmental gradient. We find that mutualistic interactions dominate in communities with low diversity characterized by limited species dispersal and poor habitat quality. On the other hand, the fraction of mutualistic interactions decreases at the expense of exploitation and competition with the increase in diversity caused by higher dispersal and/or habitat quality. Our multi-species model exemplifies the ubiquitous presence of mutualistic interactions and the role of mutualistic species as facilitators for the further establishment of species during ecosystem assembly. We therefore argue that mutualism is an essential component driving the origination of complex and diverse communities.  相似文献   

3.
Increasingly intensive strategies to maintain biodiversity and ecosystem function are being deployed in response to global anthropogenic threats, including intentionally introducing and eradicating species via assisted migration, rewilding, biological control, invasive species eradications, and gene drives. These actions are highly contentious because of their potential for unintended consequences. We conducted a global literature review of these conservation actions to quantify how often unintended outcomes occur and to elucidate their underlying causes. To evaluate conservation outcomes, we developed a community assessment framework for systematically mapping the range of possible interaction types for 111 case studies. Applying this tool, we quantified the number of interaction types considered in each study and documented the nature and strength of intended and unintended outcomes. Intended outcomes were reported in 51% of cases, a combination of intended outcomes and unintended outcomes in 26%, and strictly unintended outcomes in 10%. Hence, unintended outcomes were reported in 36% of all cases evaluated. In evaluating overall conservations outcomes (weighing intended vs. unintended effects), some unintended effects were fairly innocuous relative to the conservation objective, whereas others resulted in serious unintended consequences in recipient communities. Studies that assessed a greater number of community interactions with the target species reported unintended outcomes more often, suggesting that unintended consequences may be underreported due to insufficient vetting. Most reported unintended outcomes arose from direct effects (68%) or simple density-mediated or indirect effects (25%) linked to the target species. Only a few documented cases arose from more complex interaction pathways (7%). Therefore, most unintended outcomes involved simple interactions that could be predicted and mitigated through more formal vetting. Our community assessment framework provides a tool for screening future conservation actions by mapping the recipient community interaction web to identify and mitigate unintended outcomes from intentional species introductions and eradications for conservation.  相似文献   

4.
Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.  相似文献   

5.
Quantitative approaches to the analysis of stable isotope food web data   总被引:1,自引:0,他引:1  
Ecologists use stable isotopes (delta13C, delta15N) to better understand food webs and explore trophic interactions in ecosystems. Traditionally, delta13C vs. delta15N bi-plots have been used to describe food web structure for a single time period or ecosystem. Comparisons of food webs across time and space are increasing, but development of statistical approaches for testing hypotheses regarding food web change has lagged behind. Here we present statistical methodologies for quantitatively comparing stable isotope food web data. We demonstrate the utility of circular statistics and hypothesis tests for quantifying directional food web differences using two case studies: an arthropod salt marsh community across a habitat gradient and a freshwater fish community from Lake Tahoe, USA, over a 120-year time period. We calculated magnitude and mean angle of change (theta) for each species in food web space using mean delta13C and delta15N of each species as the x, y coordinates. In the coastal salt marsh, arthropod consumers exhibited a significant shift toward dependence on Spartina, progressing from a habitat invaded by Phragmites to a restored Spartina habitat. In Lake Tahoe, we found that all species from the freshwater fish community shifted in the same direction in food web space toward more pelagic-based production with the introduction of nonnative Mysis relicta and onset of cultural eutrophication. Using circular statistics to quantitatively analyze stable isotope food web data, we were able to gain significant insight into patterns and changes in food web structure that were not evident from qualitative comparisons. As more ecologists incorporate a food web perspective into ecosystem analysis, these statistical tools can provide a basis for quantifying directional food web differences from standard isotope data.  相似文献   

6.
How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (-25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities.  相似文献   

7.
盐沼植物群落研究进展:分布、演替及影响因子   总被引:2,自引:0,他引:2  
盐沼是全球温带及亚热带地区的主要滨海湿地类型之一,在我国分布广泛。盐沼湿地生态系统敏感、脆弱且具有重要的生态系统服务功能。理解盐沼植物群落时空分布动态的一般规律与生态学机制,是开展盐沼生态系统研究的基础与关键。海陆交界的特殊环境特征是影响盐沼湿地植物群落的空间分布及演替过程的主要因素。在海洋潮汐作用下,盐沼湿地中的盐度、水淹强度、氧化还原电位等非生物因子往往呈梯度分布,这也导致了生物群落中种内、种间关系的变化。在非生物及生物因子的共同作用下,盐沼植物群落也往往沿高程梯度呈带状分布。环境变化是盐沼植物群落演替的驱动因素,在海岸线相对较为稳定的盐沼,植物群落的演替多属自发演替,而在靠近的大型河口的一些持续淤涨的盐沼,植物群落演替通常属于异发演替。沿海地区的水产业、流域上游及沿海地区的工程、污染及生物入侵等直接或间接的人类活动已对盐沼湿地植物群落的产生了深刻影响。经过数十年发展,国际上盐沼植物群落学研究的热点领域主要包括盐沼植物群落与其他生物群落的相互关系、植物群落在盐沼生态系统过程中的作用等。在全球变化背景下,盐沼植物群落对气候变化与海平面升高也日益成为盐沼植物群落学相关的热点。  相似文献   

8.
Ecosystem engineers affect ecological communities by physically modifying the environment. Understanding the factors determining the distribution of engineers offers a powerful predictive tool for community ecology. In this study, we examine whether the goldenrod bunch gall midge (Rhopalomyia solidaginis) functions as an ecosystem engineer in an old-field ecosystem by altering the composition of arthropod species associated with a dominant host plant, Solidago altissima. We also examine the suite of factors that could affect the distribution and abundance of this ecosystem engineer. The presence of bunch galls increased species richness and altered the structure of associated arthropod communities. The best predictors of gall abundance were host-plant genotype and plot-level genotypic diversity. We found positive, nonadditive effects of genotypic diversity on gall abundance. Our results indicate that incorporating a genetic component in studies of ecosystem engineers can help predict their distribution and abundance, and ultimately their effects on biodiversity.  相似文献   

9.
Feeley KJ  Terborgh JW 《Ecology》2006,87(1):144-150
Habitat fragmentation can alter herbivore abundances, potentially causing changes in the plant community that can propagate through the food web and eventually influence other important taxonomic groups such as birds. Here we test the relationship between the density of red howler monkeys (Alouatta seniculus) and bird species richness on a large set of recently isolated land-bridge islands in Lago Guri, Venezuela (n = 29 islands). Several of these islands host relict populations of howler monkeys at densities up to more than 30 times greater than those on the mainland. These "hyperabundant" herbivores previously have been shown to have a strong positive influence on aboveground plant productivity. We predicted that this should lead to a positive, indirect effect of howler monkey density on bird species richness. After accounting for passive sampling (the tendency for species richness to be positively associated with island area, regardless of differences in habitat quality) we found a significant positive correlation between howler monkey density and bird species richness. A path analysis incorporating data on tree growth rates from a subset of islands (n = 9) supported the hypothesis that the effect of howler monkeys on the resident bird communities is indirect and is mediated through changes in plant productivity and habitat quality. These results highlight the potential for disparate taxonomic groups to be related through indirect interactions and trophic cascades.  相似文献   

10.
11.
Hillebrand H  Bennett DM  Cadotte MW 《Ecology》2008,89(6):1510-1520
The composition of communities is strongly altered by anthropogenic manipulations of biogeochemical cycles, abiotic conditions, and trophic structure in all major ecosystems. Whereas the effects of species loss on ecosystem processes have received broad attention, the consequences of altered species dominance for emergent properties of communities and ecosystems are poorly investigated. Here we propose a framework guiding our understanding of how dominance affects species interactions within communities, processes within ecosystems, and dynamics on regional scales. Dominance (or the complementary term, evenness) reflects the distribution of traits in a community, which in turn affects the strength and sign of both intraspecifc and interspecific interactions. Consequently, dominance also mediates the effect of such interactions on species coexistence. We review the evidence for the fact that dominance directly affects ecosystem functions such as process rates via species identity (the dominant trait) and evenness (the frequency distribution of traits), and indirectly alters the relationship between process rates and species richness. Dominance also influences the temporal and spatial variability of aggregate community properties and compositional stability (invasibility). Finally, we propose that dominance affects regional species coexistence by altering metacommunity dynamics. Local dominance leads to high beta diversity, and rare species can persist because of source-sink dynamics, but anthropogenically induced environmental changes result in regional dominance and low beta diversity, reducing regional coexistence. Given the rapid anthropogenic alterations of dominance in many ecosystems and the strong implications of these changes, dominance should be considered explicitly in the analysis of consequences of altered biodiversity.  相似文献   

12.
Tylianakis JM  Tscharntke T  Klein AM 《Ecology》2006,87(12):3047-3057
Global biodiversity decline has prompted great interest in the effects of habitat modification and diversity on the functioning and stability of ecosystem processes. However, the applicability of previous modeled or mesocosm community studies to real diverse communities in different habitats remains ambiguous. We exposed standardized nesting resources for naturally occurring communities of cavity-nesting bees and wasps and their parasitoids in coastal Ecuador, to test the effects of host and parasitoid diversity on an ecosystem function (parasitism rates) and temporal variability in this function. In accordance with predictions of complementary host use, parasitism rates increased with increasing diversity, not simply abundance, of parasitoids. In contrast, parasitism decreased with increasing host diversity, possibly due to positive prey interactions or increased probability of selecting unpalatable species. Temporal variability in parasitism was lower in plots with high mean parasitoid diversity and higher in plots with temporally variable host and parasitoid diversity. These effects of diversity on parasitism and temporal stability in parasitism rates were sufficiently strong to be visible across five different habitat types, representing a gradient of increasing anthropogenic modification. Habitat type did not directly affect parasitism rates, but host and parasitoid diversity and abundance were higher in highly modified habitats, and parasitoid diversity was positively correlated with rates of parasitism. The slope of the richness-parasitism relationship did not vary significantly across habitats, although that for Simpson's diversity was significant only in rice and pasture. We also show that pooling data over long time periods, as in previous studies, can blur the effect of diversity on parasitism rates, and the appropriate spatiotemporal scale of study must be considered.  相似文献   

13.
Exotic species invasion is widely considered to affect ecosystem structure and function. Yet, few contemporary approaches can assess the effects of exotic species invasion at such an inclusive level. Our research presents one of the first attempts to examine the effects of an exotic species at the ecosystem level in a quantifiable manner. We used ecological network analysis (ENA) and a social network analysis (SNA) method called cohesion analysis to examine the effect of zebra mussel (Dreissena polymorpha) invasion on the Oneida Lake, New York, USA, food web. We used ENA to quantify ecosystem function through an analysis of food web carbon transfer that explicitly incorporated flow over all food web paths (direct and indirect). The cohesion analysis assessed ecosystem structure through an organization of food web members into subgroups of strongly interacting predators and prey. Our analysis detected effects of zebra mussel invasion throughout the entire Oneida Lake food web, including changes in trophic flow efficiency (i.e., carbon flow among trophic levels) and alterations of food web organization (i.e., paths of carbon flow) and ecosystem activity (i.e., total carbon flow). ENA indicated that zebra mussels altered food web function by shunting carbon from pelagic to benthic pathways, increasing dissipative flow loss, and decreasing ecosystem activity. SNA revealed the strength of zebra mussel perturbation as evidenced by a reorganization of food web subgroup structure, with a decrease in importance of pelagic pathways, a concomitant rise of benthic pathways, and a reorganization of interactions between top predator fish. Together, these analyses allowed for a holistic understanding of the effects of zebra mussel invasion on the Oneida Lake food web.  相似文献   

14.
Howeth JG  Leibold MA 《Ecology》2010,91(9):2727-2741
Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.  相似文献   

15.
Keitt TH  Fischer J 《Ecology》2006,87(11):2895-2904
The response of ecological communities to anthropogenic disturbance is of both scientific and practical interest. Communities where all species respond to disturbance in a similar fashion (synchrony) will exhibit large fluctuations in total biomass and dramatic changes in ecosystem function. Communities where some species increase in abundance while others decrease after disturbance (compensation) can maintain total biomass and ecosystem function in the face of anthropogenic change. We examined dynamics of the Little Rock Lake (Wisconsin, USA) zooplankton community in the context of an experimental pH manipulation conducted in one basin of the lake. A novel application of wavelets was used to partition patterns of synchrony and compensation by time scale. We find interestingly that some time series show both patterns of synchrony and compensation depending on the scale of analysis. Within the unmanipulated basin, we found subtle patterns of synchrony and compensation within the community, largely at a one-year time scale corresponding to seasonal variation. Within the acidified lake basin, dynamics shifted to longer time scales corresponding to the pattern of pH manipulation. Comparisons between pairs of species in different functional groups showed both strong compensatory and synchronous responses to disturbance. The strongest compensatory signal was observed for two species of Daphnia whose life history traits lead to synchrony at annual time scales, but whose differential sensitivity to acidification led to compensation at multiannual time scales. The separation of time scales inherent in the wavelet method greatly facilitated interpretation as patterns resulting from seasonal drivers could be separated from patterns driven by pH manipulation.  相似文献   

16.
Aitken KE  Martin K 《Ecology》2008,89(4):971-980
Resource selection plasticity and behavioral dominance may influence the ability of a species to respond to changes in resource availability, particularly if dominant species have highly specialized resource requirements. We examined the response of several dominant and subordinate cavity-nesting species to a reduction in the availability of an essential resource (nesting cavities) using the novel experimental approach of blocking the entrances to high-quality cavities. We monitored nest abundance on seven treatment and 13 control sites (aspen groves in a grassland matrix) in British Columbia, Canada, for two years pretreatment (2000-2001), two years during treatment (2002-2003), and two years posttreatment (cavities reopened; 2004-2005). At the community level, nest abundance declined by 50% on treatment sites following cavity blocking and returned to pretreatment levels following cavity reopening. Nest abundance of European Starlings (Sturnus vulgaris), a dominant secondary cavity-nester (SCN), declined by 89% and failed to recover posttreatment. Conversely, nest abundance of Mountain Bluebirds (Sialia currucoides; a subordinate SCN) increased following cavity blocking and remained high following reopening. Tree Swallows (Tachycineta bicolor) were unaffected by cavity blocking. We suggest that starlings, while being the dominant SCN, may be limited by availability of suitable nest sites, whereas bluebirds may be limited by starling abundance. We propose that plasticity in nest site preferences of subordinate cavity-nesters may enable them to contend with natural variation in availability of critical resources, such as nest cavities and food, in addition to coping with interspecific competition. This is the first community-level, multiyear study involving manipulation of nest site availability via experimental cavity blocking.  相似文献   

17.
Lamb EG 《Ecology》2008,89(1):216-225
Multiple factors linked through complex networks of interaction including fertilization, aboveground biomass, and litter control the diversity of plant communities. The challenge of explaining plant diversity is to determine not only how each individual mechanism directly influences diversity, but how those mechanisms indirectly influence diversity through interactions with other mechanisms. This approach is well established in the study of plant species richness, but surprisingly little effort has been dedicated toward understanding the controls of community evenness, despite the recognition that this aspect of diversity can influence a variety of critical ecosystem functions. Similarly, studies of diversity have predominantly focused on the influence of shoot, rather than root, biomass, despite the fact that the majority of plant biomass is belowground in many natural communities. In this study, I examine the roles of belowground biomass, live aboveground biomass, litter, and light availability in controlling the species richness and evenness of a rough fescue grassland community using structural equation modeling. Litter was the primary mechanism structuring grassland diversity, with both richness and evenness declining with increasing litter cover. There were few relationships between shoot biomass, shading, and diversity, and more importantly, no relationship between root biomass and diversity. The lack of relationship between root biomass and species richness and evenness suggests that, even though root competition in grasslands is intense, belowground interactions may not play an important role in structuring community diversity or composition.  相似文献   

18.
Genetic variation within and among key species can have significant ecological consequences at the population, community, and ecosystem levels. In order to understand ecological properties of systems based on habitat-forming clonal plants, it is crucial to clarify which traits vary among plant genotypes and how they influence ecological processes, and to assess their relative contribution to ecosystem functioning in comparison to other factors. Here we used a mesocosm experiment to examine the relative influence of genotypic identity and extreme levels of nitrogen loading on traits that affect ecological processes (at the population, community, and ecosystem levels) for Zostera marina, a widespread marine angiosperm that forms monospecific meadows throughout coastal areas in the Northern Hemisphere. We found effects of both genotype and nitrogen addition on many plant characteristics (e.g., aboveground and belowground biomass), and these were generally strong and similar in magnitude, whereas interactive effects were rare. Genotypes also strongly differed in susceptibility to herbivorous isopods, with isopod preference among genotypes generally matching their performance in terms of growth and survival. Chemical rather than structural differences among genotypes drove these differences in seagrass palatability. Nitrogen addition uniformly decreased plant palatability but did not greatly alter the relative preferences of herbivores among genotypes, indicating that genotype effects are strong. Our results highlight that differences in key traits among genotypes of habitat-forming species can have important consequences for the communities and ecosystems that depend on them and that such effects are not overwhelmed by known environmental stressors.  相似文献   

19.
Freestone AL  Osman RW 《Ecology》2011,92(1):208-217
While communities are shaped by both local interactions and enrichment from the regional species pool, we propose a hypothesis that the balance of these forces shifts with latitude, with regional enrichment dominating at high latitudes and local interactions dominating at low latitudes. To test this hypothesis, we conducted a latitudinal-scale experiment with marine epifaunal communities. In four regions of the North Atlantic Ocean and Caribbean Sea, we used mimics of ecosystem engineers to manipulate biogenic structural complexity. We iteratively evaluated diversity patterns of experimental communities up to one year after deployment. Additional data were also collected from one of our tropical sites 2.5 years after initial deployment. As hypothesized, we found a reciprocal latitudinal gradient in the effects of the structurally complex mimics and regional enrichment. In the tropics, local diversity was always higher in association with the mimics than in exposed areas that were more open to predation. This effect was consistent across two spatial scales and beyond the one-year timescale of the experiment. In temperate communities, no consistent effects of the mimics on diversity were observed. However, the proportion of species from the regional species pool that were present at the local scale increased from the tropics to the temperate zone, consistent with the hypothesis that higher-latitude communities may experience greater influence from the regional species pool than communities at low latitudes. This study represents the first large-scale experimental demonstration that suggests that the relative impact of local interactions and regional enrichment on community diversity may depend on latitude.  相似文献   

20.
Grewell BJ 《Ecology》2008,89(6):1481-1488
Outbreaks of infectious agents in natural ecosystems are on the rise. Understanding host-pathogen interactions and their impact on community composition may be central to the conservation of biological diversity. Infectious agents can convey both exploitive and facilitative effects that regulate host populations and community structure. Parasitic angiosperms are highly conspicuous in many plant communities, and they provide a tractable model for understanding parasite effects in multispecies communities. I examined host identity and variation in host infectivity of a holoparasitic vine (Cuscuta salina) within a California salt marsh. In a two-year parasite removal experiment, I measured the effect of C. salina on its most frequent host, a rare hemiparasite, and the plant community. C. salina clearly suppressed the dominant host, but rare plant fitness and plant species diversity were enhanced through indirect effects. Priority effects played a role in the strength of the outcome due to the timing of life history characteristics. The differential influence of parasites on the fecundity of multiple hosts can change population dynamics, benefit rare species, and alter community structure. The continuum of negative to positive consequences of parasitic interactions deserves more attention if we are to understand community dynamics and successfully restore tidal wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号