首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modelling of pollutant dispersion at the street scale in an urban environment requires the knowledge of turbulence generated by the traffic motion in streets. In this paper, a theoretical framework to estimate mechanical turbulence induced by traffic in street canyons at low wind speed conditions is established. The standard deviation of the velocity fluctuations is adopted as a measure of traffic-produced turbulence (TPT). Based on the balance between turbulent kinetic energy production and dissipation, three different parameterisations for TPT suitable for different traffic flow conditions are derived and discussed. These formulae rely on the calculations of constants that need to be estimated on the basis of experimental data. One such estimate has been made with the help of a wind tunnel data set corresponding to intermediate traffic densities, which is the most common regime, with interacting vehicle wakes.  相似文献   

2.
Several air toxics are emitted from mobile sources on roadways and these emissions account for a significant fraction of the health risks to the population. In addition, health effect studies are now becoming more comprehensive and some account for the spatial heterogeneities of air pollutant concentration fields (as is the case near roadways). Standard models can simulate either the near-source concentration fields or the urban background, but no model can handle both spatial scales in the vicinity of roadways in a coherent and scientifically correct manner. Here, we present a model that provides such an integrated treatment by combining a grid-based air quality model of the urban background with a plume-in-grid representation of roadway emissions. The model is applied to simulate near-roadway concentrations due to emissions from a busy interstate highway in New York City. Qualitative comparisons with typical measured concentration profiles show that the model captures the observed features of toxic air pollutant concentrations near roadways.  相似文献   

3.
The paper addresses the problem of the parameterisation of traffic induced turbulent motion in urban dispersion models. Results from a variety of full-scale and wind-tunnel studies are analysed and interpreted within a modelling framework based on scaling considerations. The combined effects of traffic and wind induced dispersive motions are quantified for different traffic situations (variable traffic densities, vehicle velocities and vehicle types) and incorporated into the developed parameterisations. A new dispersive velocity scale is formulated and recommendations regarding its application in urban dispersion models are given. The necessity of accounting for traffic induced air motions in predictions of street-canyon pollution levels is demonstrated. Further research is needed to verify the empirical constants in the proposed parameterisations and to generalize the developed approach for a broader range of urban building configurations, meteorological conditions, and traffic situations.  相似文献   

4.
在我国近岸海域环境中,三苯基锡分布十分广泛。本研究以假微型海链藻(Thalassiosira pseudonana)为目标物种,研究了4个不同温度条件下(10℃、15℃、25℃与30℃)三苯基锡暴露对其细胞生长以及光合作用参数(Fv/Fm与ФII)的影响。结果表明,假微型海链藻的细胞生长速率在高温与低温条件下均显著下降,而光合作用参数仅在30℃条件下受到显著影响。在暴露温度为10℃、15℃、25℃与30℃时,三苯基锡(triphenyltin,TPT)对假微型海链藻的生长抑制IC50值分别为1.81、1.69、1.09与0.73μg·L-1。TPT对假微型海链藻光合作用抑制的IC50随着温度的升高呈降低趋势。Two-way ANOVA分析结果显示,温度与三苯基锡的相互作用显著影响假微型海链藻的光合作用。上述研究结果可以为了解不同温度下三苯基锡对海洋微藻的毒性效应提供科学依据。  相似文献   

5.
In the present article, the potential of embedded large eddy simulation (ELES) approach to reliably predict pollutant dispersion around a model building in atmospheric boundary layer is assessed. The performance of ELES in comparison with large eddy simulation (LES) is evaluated in several ways. These include a number of qualitative and quantitative comparisons of time-averaged and instantaneous results with wind tunnel measurements supplemented by statistical data analyses using scatter plots and standard evaluation metrics. Results obtained by both LES and ELES approaches show very good agreement with the experiment. However, addition of turbulence to mean flow at Reynolds averaged Navier–Stokes (RANS)–LES interface in ELES approach not only increases the turbulence intensity, it also results in larger values of turbulent kinetic energy (TKE) as well as a shorter reattachment length in the wake region. Accordingly, higher levels of TKE predicted by ELES increase the local intensity of concentration leading to shorter plume shapes as compared with LES. In general, ELES shows better agreement with experiment on the surfaces of model building and also in the downstream wake region. In terms of computational costs, the CPU time required to obtain statistical values in ELES is about 49 % lower than that of LES and the number of iterations per time step is also reduced by 55 % as compared with LES.  相似文献   

6.
A comparative study of turbulence in a wind-tunnel model canopy is performed, using Large eddy simulation (LES) and experimental data from PIV and hot-wire anemometry measurements. The model canopy is composed of thin cylindrical stalks. In the LES, these are represented using a plant-scale approach, while the scale-dependent Lagrangian dynamic model is used as subgrid-scale model. LES predictions of turbulence statistics and energy spectra are found to be in good agreement with the experimental data. Turbulent kinetic energy (TKE) budgets from the LES simulation are analyzed to provide more information absent in the measurements. Results confirm that sloshing motions at the low levels of the canopy are mainly driven by pressure fluctuations. A difference between the energy flux obtained from the energy spectrum and the SGS dissipation rate is observed, consistent with a spectral bypass mechanism in which the real spectral flux due to cascade is smaller than that implied by the energy-spectrum level, due to direct drain by the canopy.  相似文献   

7.
High-resolution computational fluid dynamics (CFD) simulations have been performed to assess the dispersion of air pollutants (CO2) emanating from traffic in a busy street and in the vicinity of a complex configuration of buildings located in Salmiya, Kuwait City. New buildings are planned for this area, and the work here includes predictions for the dispersion of pollutants after the buildings’ completion. The CFD simulations are based on calculated CO2 concentration levels for traffic counts taken on location in Salmiya with the existing configuration of buildings. As the computer code used in this work has been evaluated previously, it will be applied here to predict with confidence any potential air pollution problem areas on the addition of the new buildings. It was found for very light wind, that the proposed new buildings help reduce pollution in the vicinity of residential buildings within the configuration of buildings, but as the wind becomes moderate to strong, there was a tendency for the pollutant to get trapped in the residential area. Results are given for both exceptionally high ambient temperatures and very light wind, which are not often reported in studies found in the literature.  相似文献   

8.
Ben Ramoul  L.  Korichi  A.  Popa  C.  Zaidi  H.  Polidori  G. 《Environmental Fluid Mechanics》2019,19(2):379-400
Environmental Fluid Mechanics - The flow characteristics and pollutant dispersion around building are investigated numerically using three RANS turbulence closure models, i.e. Standard...  相似文献   

9.
Three different modelling techniques to simulate the pollutant dispersion in the atmosphere at the microscale and in presence of obstacles are evaluated and compared. The Eulerian and Lagrangian approaches are discussed, using RAMS6.0 and MicroSpray models respectively. Both prognostic and diagnostic modelling systems are considered for the meteorology as input to the Lagrangian model, their differences and performances are investigated. An experiment from the Mock Urban Setting Test field campaign observed dataset, measured within an idealized urban roughness, is used as reference for the comparison. A case in neutral conditions was chosen among the available ones. The predicted mean flow, turbulence and concentration fields are analysed on the basis of the observed data. The performances of the different modelling approaches are compared and their specific characteristics are addressed. Given the same flow and turbulence input fields, the quality of the Lagrangian particle model is found to be overall comparable to the full-Eulerian approach. The diagnostic approach for the meteorology shows a worse agreement with observations than the prognostic approach but still providing, in a much shorter simulation time, fields that are suitable and reliable for driving the dispersion model.  相似文献   

10.
机动车污染模拟和地理信息系统支持   总被引:1,自引:0,他引:1  
机动车污染是城市大气污染物的重要来源,对街区机动车污染排放量的预测和排放模拟对了解城市街区环境污染状况有重要价值。文章中将CAR模式的模拟计算和GIS集成在一起,通过VisualBasic进行了一个样例开发,其中GIS功能由MapX控件实现。  相似文献   

11.
The strong fluctuating component in the measured concentration time series of a dispersing gaseous pollutant in the atmospheric boundary layer, and the hazard level associated to short-term concentration levels, demonstrate the necessity of calculating the magnitude of turbulent fluctuations of concentration using computational simulation models. Moreover the computation of concentration fluctuations in cases of dispersion in realistic situations, such as built-up areas or street canyons, is of special practical interest for hazard assessment purposes. In this paper, the formulation and evaluation of a model for concentration fluctuations, based on a transport equation, are presented. The model is applicable in cases of complex geometry. It is included in the framework of a computational code, developed for simulating the dispersion of buoyant pollutants over complex geometries. The experimental data used for the model evaluation concerned the dispersion of a passive gas in a street canyon between 4 identical rectangular buildings performed in a wind tunnel. The experimental concentration fluctuations data have been derived from measured high frequency concentrations. The concentration fluctuations model is evaluated by comparing the model's predictions with the observations in the form of scatter plots, quantile-quantile plots, contour plots and statistical indices as the fractional bias, the geometrical mean variance and the factor-of-two percentage. From the above comparisons it is concluded that the overall model performance in the present complex geometry case is satisfactory. The discrepancies between model predictions and observations are attributed to inaccuracies in prescribing the actual wind tunnel boundary conditions to the computational code.  相似文献   

12.
CFD evaluations were performed to examine the applicability of the RANS methods in simulating pollutant dispersion near, within and over three typical building configurations: (1) an isolated building, (2) a building array and (3) an urban intersection. The CFD results are compared with values obtained from wind tunnel tests. In some situations major differences between the wind tunnel tests and the CFD results were observed. The main source of difference between the CFD and wind tunnel results was inadequate modelling of local flow patterns using the RANS turbulence models. Also inappropriate evaluation of high intermittent turbulent mixing in the RANS approach may lead to either over-prediction or under-prediction of the concentration level, by up to a factor of 10, depending on the case investigated.  相似文献   

13.
Animal movement is a pivotal element of many ecological processes, and on ocean-exposed sandy shores, ghost crabs (genus Ocypode) undertake extensive nocturnal forays on the beach surface. Because crab populations are also threatened by vehicle traffic, indicators that can detect sublethal effects before population declines are manifest are important. To this end, we tested on a barrier island in Eastern Australia whether movement patterns of crabs respond predictably to disturbance by vehicles; this was done by tracking (using the spool-and-line technique) crabs at night in beach sections open and closed to traffic. Beach traffic not only halved population densities of crabs on the unvegetated beach seawards of the dunes, but it also fundamentally changed crab behaviour and movement: individuals from beach areas rutted by tyre tracks travelled shorter distances in a more erratic zigzag pattern, and they had significantly compressed home ranges. Such behavioural changes linked to human pressures could be well suited as an early warning signal for wider negative ecological impacts (as demonstrated by reduced abundances). They also emphasize the need to incorporate sublethal effects into the assessment and management of ecological changes resulting from beach recreation.  相似文献   

14.
A series of simulations under weakly to moderately stable boundary layers (SBLs) have been performed using the proposed subgrid-scale (SGS) model implemented into the Terminal Area Simulation System (TASS). The proposed SGS model incorporates some aspects of the two-part eddy viscosity SGS model of Sullivan et al. (1994) and further refinements which include the dependence of SGS mixing length on stratification, two-part separation of the SGS eddy diffusivity of heat, and more realistic empirical forms of Monin–Obukhov similarity functions. The potential temperature profiles from simulations clearly show a three-layer structure: a stable surface layer of strong gradients, a middle layer of small gradients, and an inversion layer on the top. The wind speed profiles show the formation of low level jet (LLJ). However, the sub-layer structures under moderately SBLs differ from those under weakly SBLs. Both the momentum and heat fluxes decrease almost linearly in the lower part of the SBL. The near surface values of the normalized turbulent kinetic energy (TKE/u * 2) in all simulations are about 4 which is much less than the typical value of 5.5 under the neutral condition. The decay of turbulence first occurs in the area with large values of Richardson number (R i<0.2). Generally, instantaneous values of the TKE and R i at the various grid points are negatively correlated, but there is not a unique relationship between the two parameters.  相似文献   

15.
Traffic activities in roadways are the major source of heavy metal contamination on the northwestern Sichuan Plateau, China. To characterize the spatial pattern of heavy metal distribution, we collected soil samples and measured the concentrations of five heavy metals (Cd, Cu, Ni, Pb, and Zn) from nine sites in Hongyuan County, Sichuan Province, including three transects that reflected typical gradients of traffic density. Each transect consisted of three levels of traffic density sites. We calculated single pollution index, Nemerow multi-factor index, and potential ecological risk index, to assess the ecological risk of the heavy metal contamination. Results showed that the soils were contaminated by Cd and Zn, with higher concentrations than that of the natural soil background values in all sampling sites. Moreover, Cd and Zn concentrations increased with increasing traffic density, suggesting that traffic activities were potentially responsible for the metal contaminations. The single pollution index indicated that the study sites were heavily contaminated by Cd and slightly polluted by Ni, Pb, and Zn, and the Nemerow multi-factor and potential ecological risk indexes indicated moderate potential ecological risks at the study sites. Specifically, the sites with high traffic density were moderately contaminated and the sites with low traffic density were mildly contaminated. In general, Cd and Zn were highly accumulated in soils of the study region; therefore focus should be on the high ecological hazard associated with soil heavy metal contamination, even in undeveloped regions. © 2018 Science Press. All rights reserved.  相似文献   

16.
Micro-scale thermal profile data were acquired in four lakes in northwest England and southeast Australia that ranged from a small, sheltered pond with a surface area of about 1 ha to more open lakes with surface areas of several square kilometres. These lakes provided a range of topographic and climatic contexts, basin morphologies and dominant macrophyte species. The data were acquired using two SCAMP profilers, one deployed in the open water and the other mounted on a field traverse deployed within the vegetated littoral zone. From these profile data, turbulence parameters were calculated. The results show the variation in the influence of vegetation on turbulence in the four lakes, which depends on the combination of wind stress, solar radiative forcing and macrophyte mechanical properties. In the sheltered pond, the vegetation alters the light climate within the water, thus reducing stratification and allowing weak, thermally-driven mixing. In the larger lakes, however, the primary action of the vegetation is to prevent surface-generated TKE from penetrating the water column, although this effect becomes less important as the plant separation increases. A simple mechanistic model, calibrated against the field data, suggests that the macrophyte mechanical properties are most important in determining the turbulent kinetic energy (TKE) profile. Increasing the number of turbulence-generating plants reduces the transport of surface-generated TKE into the deeper water, consistent with the field observations. The model suggests that solar forcing, as measured by the temperature gradient between the surface and bottom waters, is of less importance since the TKE profile is similar in runs with different gradients. Perhaps most surprisingly, the value of the surface-wind stress used in the model is not important, within the limitations of the model, as it does not change the TKE profile, except in a thin surface layer.  相似文献   

17.
Theoretical analysis of boundary layer turbulence has suggested a feasibility of sufficiently accurate turbulence resolving simulations at relatively coarse meshes. However, large eddy simulation (LES) codes, which employ traditional eddy-viscosity turbulence closures, fail to provide adequate turbulence statistics at coarse meshes especially within a surface layer. Manual tuning of parameters in these turbulence closures may correct low order turbulence statistics but severely harms spectra of turbulence kinetic energy (TKE). For more than decade, engineering LES codes successfully employ dynamic turbulence closures. A dynamic Smagorinsky turbulence closure (DSM) has been already tried in environmental LES. The DSM is able to provide adequate turbulence statistics at coarse meshes but it is not completely consistent with the LES equations. This paper investigates applicability of an advanced dynamic mixed turbulence closure (DMM) to simulations of Ekman boundary layers of high Reynolds number flows. The DMM differs from the DSM by explicit calculation of the Leonard term in the turbulence stress tensor. The Horizontal Array Turbulence Study (HATS) field program has revealed that the Leonard term is indeed an important component of the real turbulence stress tensor. This paper presents validation of a new LES code LESNIC. The study shows that the LES code with the DMM provides rather accurate low order turbulence statistics and the TKE spectra at very coarse meshes. These coarse LES maintain more energetic small scale fluctuations of velocity especially within the surface layer. This is critically important for success of simulations. Accurate representation of higher order turbulence statistics, however, requires essentially better LES resolution. The study also shows that LES of the Ekman boundary layer cannot be directly compared with conventionally neutral atmospheric boundary layers. The depth of the boundary layer is an important scaling parameter for turbulence statistics.  相似文献   

18.
Turbulent flow and dispersion characteristics over a complex urban street canyon are investigated by large-eddy simulation using a modified version of the Fire Dynamics Simulator. Two kinds of subgrid scale (SGS) models, the constant coefficient Smagorinsky model and the Vreman model, are assessed. Turbulent statistics, particularly turbulent stresses and wake patterns, are compared between the two SGS models for three different wind directions. We found that while the role of the SGS model is small on average, the local or instantaneous contribution to total stress near the surface or edge of the buildings is not negligible. By yielding a smaller eddy viscosity near solid surfaces, the Vreman model appears to be more appropriate for the simulation of a flow in a complex urban street canyon. Depending on wind direction, wind fields, turbulence statistics, and dispersion patterns show very different characteristics. Particularly, tall buildings near the street canyon predominantly generate turbulence, leading to homogenization of the mean flow inside the street canyon. Furthermore, the release position of pollutants sensitively determines subsequent dispersion characteristics.  相似文献   

19.
Street dust samples (120 in total) were collected under stable weather conditions during the hot, dry season (August and September) of 2004 from six different localities (industrial, heavy traffic, medium traffic, light traffic, low traffic and rural) in greater Amman, the capital of Jordan. The concentrations of Fe, Cu, Cd, Pb, Zn and Ni in the dusts were determined by atomic absorption spectrophotometry. The high concentrations of Pb, Fe and Zn in the street dust samples were related to both anthropogenic (industrial sources combined with traffic sources) and natural sources. Surprisingly, the concentrations of Cd in the dusts were low. Correlation coefficient analysis and principle component analysis identified three main sources of these elements and the corresponding distributions. The elements Pb, Zn, Cd, Fe, Cu and Ni were mainly derived from industrial sources, with Pb and Zn additionally derived from traffic sources. The street dusts were found to have highly elevated levels of Zn, particularly along the main trunk roads, indicating that the Zn in the street dusts may be derived from traffic sources, especially vehicle tyres. The concentrations of metals in the different street dust samples were found to vary depending on the density of traffic.  相似文献   

20.
Laboratory experiments are conducted to quantify the mean flow structure and turbulence properties downstream of a spanwise suspended linear array in a uniform ambient water flow using Particle Tracking Velocimetry. Eighteen experimental scenarios, with four depth ratios (array depth to water column depth) of 0.35, 0.52, 0.78, and 0.95 and bulk Reynolds number (length scale is the array depth) from 11,600 to 68,170, are investigated. Three sub-layers form downstream of the array: (1) an internal wake zone, where the time-averaged velocity decreases with increasing distance downstream, (2) a shear layer which increases in vertical extent with increasing distance downstream of the array, and the rate of the increase is independent of the bulk Reynolds number or the depth ratio, and (3) an external wake layer with enhanced velocity under the array. The location of the shear layer is dependent on the depth ratio. The spatially averaged and normalized TKE of the wake has a short production region, followed by a decay region which is comparable to grid turbulence decay and is dependent on the depth ratio. The results suggest that the shear layer increases the transfer of horizontal momentum into the internal wake zone from the fluid outside of the array and that the turbulence in the internal wake zone can be modeled similarly to that of grid turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号