首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.  相似文献   

2.
Dissolved phosphorus (DP) can be released from wetlands as a result of flooding or shifts in water column concentrations. Our objectives were to determine the long-term (1460 d) DP retention and release characteristics of an in-stream wetland, and to evaluate how these characteristics respond to flooding, draining, and changes in DP concentrations. The studied in-stream wetland drains an agriculturally intensive subwatershed in the North Carolina Coastal Plain region. The wetland's DP retention and release characteristics were evaluated by measuring inflow and outflow DP concentrations, DP mass balance, and DP movement across the sediment-water column interface. Phosphorus sorption isotherms were measured to determine the sediment's equilibria P concentration (EPCo), and passive samplers were used to measure sediment pore water DP concentrations. Initially, the in-stream wetland was undersized (0.31 ha) and released 1.5 kg of DP. Increasing the in-stream wetland area to 0.67 ha by flooding resulted in more DP retention (28 kg) and low outflow DP concentrations. Draining the in-stream wetland from 0.67 to 0.33 ha caused the release of stored DP (12.1 kg). Shifts both in sediment pore water DP concentrations and sediment EPCo values corroborate the release of stored DP. Reflooding the wetland from 0.33 to 0.85 ha caused additional release of stored DP into the outflowing stream (10.9 kg). We conclude that for a time period, this in-stream wetland did provide DP retention. During other time periods, DP was released due to changes in wetland area, rainfall, and DP concentrations.  相似文献   

3.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9methano-2,4,3-benzodioxathiepin 3-oxide), a pesticide that is highly toxic to aquatic organisms, is widely used in the cotton (Gossypium hirsutum L.) industry in Australia and is a risk to the downstream riverine environment. We used the GLEAMS model to evaluate the effectiveness of a range of management scenarios aimed at minimizing endosulfan transport in runoff at the field scale. The field management scenarios simulated were (i) Conventional, bare soil at the beginning of the cotton season and seven irrigations per season; (ii) Improved Irrigation, irrigation amounts reduced and frequency increased to reduce runoff from excess irrigation; (iii) Dryland, no irrigation; (iv) Stubble Retained, increased soil cover created by retaining residue from the previous crop or a specially planted winter cover crop; and (v) Reduced Sprays, a fewer number of sprays. Stubble Retained was the most effective scenario for minimizing endosulfan transport because infiltration was increased and erosion reduced, and the stubble intercepted and neutralized a proportion of the applied endosulfan. Reducing excess irrigation reduced annual export rates by 80 to 90%, but transport in larger storm events was still high. Reducing the number of pesticide applications only reduced transport when three or fewer sprays were applied. We conclude that endosulfan transport from cotton farms can be minimized with a combination of field management practices that reduce excess irrigation and concentration of pesticide on the soil at any point in time; however, discharges, probably with endosulfan concentrations exceeding guideline values, will still occur in storm events.  相似文献   

4.
A survey of storm runoff fecal coliform bacteria (FCB) from working farm and ranch pastures is presented in conjunction with a survey of FCB in manure management systems (MMS). The cross-sectional survey of pasture runoff was conducted on 34 pastures on five different dairies over 2 yr under varying conditions of precipitation, slope, manure management, and use of conservation practices such as vegetative filter strips. The MMS cross-sectional survey consisted of samples collected during 1 yr on nine different dairies from six loafing barns, nine primary lagoons, 12 secondary lagoons, and six irrigation sample points. Pasture runoff samples were additionally analyzed for Cryptosporidium sp. and Giardia duodenalis, whereby detectable concentrations occurred sporadically at higher FCB concentrations resulting in poor correlations with FCB. Prevalence of both parasites was lower relative to high-use areas studied simultaneously on these same farms. Application of manure to pastures more than 2 wk in advance of storm-associated runoff was related to a > or =80% reduction in FCB concentration and load compared to applications within 2 wk before a runoff event. For every 10 m of buffer length, a 24% reduction in FCB concentration was documented. A one-half (75%), one (90%), and two (99%) log10 reduction in manure FCB concentration was observed for manure holding times in MMS of approximately 20, 66, and 133 d, respectively. These results suggest that there are several management and conservation practices for working farms that may result in reduced FCB fluxes from agricultural operations.  相似文献   

5.
Southern Alberta, which has a cold climate dominated by strong chinook winds, has the highest density of feedlot cattle in Canada. However, the quantity and quality of runoff from beef cattle (Bos taurus) feedlots in this unique region has not been investigated. Our objectives were to compare runoff quantity (1998-2002) with catch-basin design criteria; determine concentrations of selected inorganic chemical parameters (1998-2000) in runoff in relation to water quality guidelines and the potential implications of irrigating adjacent crop-land; and determine if total heterotrophs, total coliforms, and Escherichia coli (1998-2000) persisted in the catch-basin water and soil. Runoff (< 0.1 to 42.5 mm) for a 24-h duration that included maximum peak discharge was less than the recommended design criteria of 90 mm based on runoff from 24 h of rainfall with a 30-yr return period. We found that curve numbers between 52 and 96 (mode of 90) were required to match the USDA Natural Resources Conservation Service predicted runoff and actual runoff volumes. Total P posed the greatest threat to water quality guidelines, and K posed the greatest threat for exceeding crop fertilizer requirements if catch-basin effluent was used as irrigation water. Water in the catch basin had continually high populations of E. coli throughout the study, with values ranging between log10 2 and log10 8 100 mL(-1). In contrast, soil in the catch basin generally had low populations of E. coli that were < log10 2 g(-1) wet wt., but at times higher populations between log10 2 and log10 6 g(-1) wet wt. were also found.  相似文献   

6.
To examine possible connections between lake trophic status and runoff from surrounding subwatersheds, we determined patterns of sediment and nutrient deposition in a hypereutrophic, 16-ha impoundment on the Virginia coastal plain. Spatial survey of nutrients in surface sediments documented a strong correlation between total P and extractable Fe (r2 = 0.53). Elevated biogenic silica concentrations up to 0.25% by weight were measured in sections of the lake receiving perennial stream discharge. Sediment C to N ratios were > 20 in those same sections, suggesting a large allochthonous contribution to organic matter deposition. Sediment cores 0.9 to 2.3 m in length, representing 70 years of deposition, were analyzed to develop vertical profiles of changes in sediment and nutrient deposition in deltas downstream from two more-developed and three less-developed subwatersheds (with 49 and 9% commercial and residential development, respectively). The average sediment weight percent +/- standard deviation of biogenic silica (0.027 +/- 0.037 vs. 0.009 +/- 0.006%) and total P (0.040 +/- 0.025 vs. 0.024 +/- 0.019%) was significantly higher downstream of more-developed subwatersheds. Using elevated P loadings and biogenic silica deposition as proxies for algal production, transition of the lake to its current hypereutrophic state appears to have occurred in the last 70 yr. Changes in trophic status as revealed by sediment analysis of this small lake on the Virginia coastal plain reflect a common pattern of eutrophication observed for the entire Chesapeake Bay drainage basin. Analysis of sediments from stream deltas appears to be a reasonable strategy for identifying and targeting subwatershed areas needing better management of nutrient runoff that otherwise would lead to eutrophication of downstream waters.  相似文献   

7.
Nitrogen and phosphorus exports from channelizedstream watersheds were elevated over those from nearby natural swamp-stream watersheds. Nitrate exports were significantly greater from channelized-stream watersheds, and higher exports were attributed to faster groundwater drawdown, continual streamflow, and transformation of former floodplain to croplands following channelization. Exports of total organic nitrogen and total nitrogen were also significantly greater from channelized-stream watersheds. Differences in the exports of ammonium, filterable reactive phosphorus, and filterable unreactive phosphorus between the two watershed types were not detectable. Particulate phosphorus exports were significantly higher from channelized-stream watersheds, presumably because of greater erosion potential of nearby croplands and steep channel banks in the altered watersheds. The presence of nonpoint sources of pollution increased watershed exports of nutrients regardless of stream morphology. Examination of nutrient budgets for a portion of swamp floodplain at the base of one natural-stream watershed revealed that changes in local groundwater hydrology and stream morphology associated with channelization appeared to have greater effect on nutrient exports than simply the loss of bordering forested floodplain.  相似文献   

8.
Riparian buffers are used throughout the world for the protection of water bodies from nonpoint-source nitrogen pollution. Few studies of riparian or treatment wetland denitrification consider the production of nitrous oxide (N2O). The objectives of this research were to ascertain the level of potential N2O production in riparian buffers and identify controlling factors for N2O accumulations within riparian soils of an agricultural watershed in the southeastern Coastal Plain of the USA. Soil samples were obtained from ten sites (site types) with different agronomic management and landscape position. Denitrification enzyme activity (DEA) was measured by the acetylene inhibition method. Nitrous oxide accumulations were measured after incubation with and without acetylene (baseline N2O production). The mean DEA (with acetylene) was 59 microg N2O-N kg(-1) soil h(-1) for all soil samples from the watershed. If no acetylene was added to block conversion of N2O to N2, only 15 microg N2O-N kg(-1) soil h(-1) were accumulated. Half of the samples accumulated no N2O. The highest level of denitrification was found in the soil surface layers and in buffers impacted by either livestock waste or nitrogen from legume production. Nitrous oxide accumulations (with acetylene inhibition) were correlated to soil nitrogen (r2=0.59). Without acetylene inhibition, correlations with soil and site characteristics were lower. Nitrous oxide accumulations were found to be essentially zero, if the soil C/N ratios>25. Soil C/N ratios may be an easily measured and widely applicable parameter for identification of potential hot spots of N2O productions from riparian buffers.  相似文献   

9.
Further studies on the quality of runoff from tillage and cropping systems in the southeastern USA are needed to refine current risk assessment tools for nutrient contamination. Our objective was to quantify and compare effects of constant (Ic) and variable (Iv) rainfall intensity patterns on inorganic nitrogen (N) and phosphorus (P) losses from a Tifton loamy sand (Plinthic Kandiudult) cropped to cotton (Gossypium hirsutum L.) and managed under conventional (CT) or strip-till (ST) systems. We simulated rainfall at a constant intensity and a variable intensity pattern (57 mm h(-1)) and collected runoff continuously at 5-min intervals for 70 min. For cumulative runoff at 50 min, the Iv pattern lost significantly greater amounts (p < 0.05) of total Kjeldahl N (TKN) and P (TKP) (849 g N ha(-1) and 266 g P ha(-1) for Iv; 623 g N ha(-1) and 192 g P ha(-1) for Ic) than did the Ic pattern. However, at 70 min, no significant differences in total losses were evident for TKN or TKP from either rainfall intensity pattern. In contrast, total cumulative losses of dissolved reactive P (DRP) and NO3-N were greatest for ST-Ic, followed by ST-Iv, CT-Ic, and CT-Iv in diminishing order (69 g DRP ha(-1) and 361 g NO3-N ha(-1); 37 g DRP ha(-1) and 133 g NO3-N ha(-1); 3 g DRP ha(-1) and 58 g NO3-N ha(-1); 1 g DRP ha(-1) and 49 g NO3-N ha(-1)). Results indicate that constant-rate rainfall simulations may overestimate the amount of dissolved nutrients lost to the environment in overland flow from cropping systems in loamy sand soils. We also found that CT treatments lost significantly greater amounts of TKN and TKP than ST treatments and in contrast, ST treatments lost significantly greater amounts of DRP and NO3-N than CT treatments. These results indicate that ST systems may be losing more soluble fractions than CT systems, but only a fraction the total N (33%) and total P (11%) lost through overland flow from CT systems.  相似文献   

10.
Continuous N-based application of biosolids contributes to a gradual increase of trace elements and P in soils. The objectives of this study were to assess the accumulation and vertical transport of Cu, Zn, C, N, and P within the profile of two coastal plain soils. Liquid (6-8% total solids) biosolids were applied to an Acredale silt loam (fine silty, mixed, thermic typic Ochraqualfs) and Bojac loamy sand (coarse loamy, mixed, thermic typic Hapludult) annually from 1984 to 1998. The repeated applications supplied 70, 204, and 3823 kg ha(-1) of Cu, Zn, and P, respectively, to the Acredale and 81, 225, and 4265 kg ha(-1) of Cu, Zn, and P, respectively, to the Bojac. The total C and N contents were not different than background levels in the Bojac soil and were slightly higher in the Acredale soil 7 years after cessation of biosolids application. Phosphorus, Cu and Zn are still concentrated in the top 0.25 m of the Acredale soil. Enrichment of P, Cu, and Zn were detected to the deepest soil increment in the coarse-textured Bojac soil. Approximately 20 to 40% of the Cu and Zn applied in the biosolids could not be accounted, which was likely due to a combination of leaching and incomplete extraction. Excessive Mehlich 1-P concentrations and a high degree of P saturation were found in amended soil, raising the potential for P release to runoff or leaching water.  相似文献   

11.
Recent work has shown that a significant portion of the total loss of phosphorus (P) from agricultural soils may occur via subsurface drainflow. The aim of this study was to compare the concentrations of different P forms in surface and subsurface runoff, and to assess the potential algal availability of particulate phosphorus (PP) in runoff waters. The material consisted of 91 water-sample pairs (surface runoff vs. subsurface drainage waters) from two artificially drained clayey soils (a Typic Cryaquept and an Aeric Cryaquept) and was analyzed for total suspended solids (TSS), total phosphorus (TP), dissolved molybdate-reactive phosphorus (DRP), and anion exchange resin-extractable phosphorus (AER-P). On the basis of these determinations, we calculated the concentrations of PP, desorbable particulate phosphorus (PPi), and particulate unavailable (nondesorbable) phosphorus (PUP). Some water samples and the soils were also analyzed for 137Cs activity and particle-size distribution. The major P fraction in the waters studied was PP and, on average, only 7% of it was desorbable by AER. However, a mean of 47% of potentially bioavailable P (AER-P) consisted of PPi. The suspended soil material carried by drainflow contained as much PPi (47-79 mg kg-1) as did the surface runoff sediment (45-82 mg kg-1). The runoff sediments were enriched in clay-sized particles and 137Cs by a factor of about two relative to the surface soils. Our results show that desorbable PP derived from topsoil may be as important a contributor to potentially algal-available P as DRP in both surface and subsurface runoff from clayey soils.  相似文献   

12.
The typical method of cool-season grass-seed production in Mediterranean climates briefly exposes surface waters to potentially high concentrations of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] during the initial season of growth. To better understand the process, and the degree, of diuron transport from agricultural fields, two grass-seed fields in the Willamette Valley of Oregon were monitored for diuron loss in surface runoff and tile drainage during the first wet season after planting. Initial diuron concentrations in surface runoff were high (>1000 microg L(-1) in one field and >100 microg L(-1) in the other), though they decreased by two orders of magnitude by the end of the season. Concentrations in the tile drains were as much as 1000 times lower than in the surface runoff during the first few weeks of runoff events, and they remained lower than surface water concentrations throughout the season. Total losses in surface runoff were between 1.3 and 3% of the amount applied-much higher than losses via the tile drains. It is also shown by means of a simple first-order decay model that, when little information is available, it may be best to describe diuron depletion in runoff water as a function of cumulative rainfall during the wet season.  相似文献   

13.
A 3-yr field study quantified leaching and runoff losses of antibiotics from land application of liquid hog (chlortetracycline and tylosin) and solid beef (chlortetracycline, monensin, and tylosin) manures under chisel plowing and no-tillage systems. The study was conducted in southwestern Wisconsin, a karst area with steep, shallow, macroporous soils. Relative mass losses of chlortetracycline, monensin, and tylosin were <5% of the total amount applied with manure. Chlortetracycline was only detected in runoff, whereas monensin and tylosin were detected in leachate and runoff. Highest concentrations of monensin and tylosin in the leachate were 40.9 and 1.2 microg L(-1), respectively. Highest chlortetracycline, monensin, and tylosin concentrations in runoff were 0.5, 57.5, and 6.0 microg L(-1), respectively. For all three antibiotics, >90% of detections and 99% of losses occurred during the non-growing season due to fall manure application and slow degradation of antibiotics at cold temperatures. During years of high snowmelt, runoff accounted for nearly 100% of antibiotic losses, whereas during years of minimal snowmelt, runoff accounted for approximately 40% of antibiotic losses. Antibiotic losses were generally higher from the no-tillage compared with chisel plow treatment due to greater water percolation as a result of macroporosity and greater runoff due to lack of surface roughness in the no-tillage plots during the non-growing season. The results from this study suggest that small quantities of dissolved antibiotics could potentially reach surface and ground waters in the Upper Midwestern USA from manure-amended shallow macroporous soils underlain with fractured bedrock.  相似文献   

14.
Bioavailable phosphorus (BAP) in stormwater runoff is a key issue for control of eutrophication in agriculturally impacted watersheds. Laboratory experiments were conducted in soil runoff boxes to determine BAP content in simulated storm runoff in 10 (mostly) calcareous soils from the Minnesota River basin in southern Minnesota. The soluble reactive phosphorus (SRP) portion of the runoff BAP was significantly correlated with soil Mehlich-III P, Olsen P, and water-extractable P (all r2 > 0.90 and p < 0.001). A linear relationship (r2 = 0.88, p < 0.001) also was obtained between SRP in runoff and the phosphorus saturation index based on sorptivity (PSIs) calculated with sorptivity as a measure of the inherent soil P sorption capacity. Runoff levels of BAP estimated with iron oxide-impregnated paper were predicted well by various soil test P methods and the PSI, of the soils, but correlation coefficients between these variables and runoff BAP were generally lower than those for runoff SRP. Using these relationships and critical BAP levels for stream eutrophication, we found corresponding critical levels of soil Mehlich-III P and Olsen P (which should not be exceeded) to be 65 to 85 and 40 to 55 mg kg(-1), respectively.  相似文献   

15.
Concern over nonpoint source P losses from agricultural lands to surface waters in frigid climates has focused attention on the role of freezing and thawing on P loss from catch crops (cover crops). This study evaluated the effect of freezing and thawing on the fate of P in bare soils, soils mixed with dairy manure, and soils with an established catch crop of annual ryegrass (Lolium multiflorum L.). Experiments were conducted to evaluate changes in P runoff from packed soil boxes (100 by 20 by 5 cm) and P leaching from intact soil columns (30 cm deep). Before freezing and thawing, total P (TP) in runoff from catch-cropped soils was lower than from manured and bare soils due to lower erosion. Repeated freezing and thawing significantly increased water-extractable P (WEP) from catch crop biomass and resulted in significantly elevated concentrations of dissolved P in runoff (9.7 mg L(-1)) compared with manured (0.18 mg L(-1)) and bare soils (0.14 mg L(-1)). Catch crop WEP was strongly correlated with the number of freeze-thaw cycles. Freezing and thawing did not change the WEP of soils mixed with manures, nor were differences observed in subsurface losses of P between catch-cropped and bare soils before or after manure application. This study illustrates the trade-offs of establishing catch crops in frigid climates, which can enhance P uptake by biomass and reduce erosion potential but increase dissolved P runoff.  相似文献   

16.
Phosphorus-enriched runoff from cropland can hasten eutrophication of surface waters. A soil P level exceeding crop needs due to long-term fertilizer and/or manure applications is one of several potential sources of increased P losses in runoff from agricultural systems. Field experiments were conducted at locations representative of three major soil regions in Wisconsin in corn (Zea mays L.) production systems to determine the effect of tillage, recent manure additions, soil P extraction method, and soil sampling depth (0-2, 0-5, and 0-15 cm) on the relationship between soil test P level and P concentrations in runoff. Runoff from simulated rainfall (75 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved phosphorus (DP), total phosphorus (TP), and sediment. The DP fraction of the TP concentration in runoff ranged from 5 to 17% among sites with most of the variation in TP due to varying sediment concentration on the well-drained silt loam soils and to soil test P level on the poorly drained silty clay loam soil. In 213 observations across a range of soils and managements, good relationships occurred between soil test P level and DP concentration in runoff for most of the tests and sampling depths used. Recent manure additions and high levels of surface cover from corn residue sometimes masked this relationship. The slope of DP relative to soil test P level was markedly higher on the silty clay loam soil than on the silt loam soils possibly due to soil permeability-infiltration rate differences. Agronomic soil P tests were as effective as environmentally oriented soil P tests for predicting DP concentrations in runoff.  相似文献   

17.
Grassed waterways (GWWs) drain surface runoff from fields without gullying along the drainageway. Secondary functions include reducing runoff volume and velocity and retaining sediments and harmful substances from adjacent fields. Grass cover (sward)-damaging sedimentation in the GWW is commonly reduced by frequent mowing, but in doing so the effectiveness of the waterway relative to the secondary functions is reduced. Our objectives were to (i) evaluate whether the maintenance of a GWW can be reduced if on-site erosion control is effective, (ii) measure the effectiveness of such a GWW, and (iii) analyze the underlying mechanisms. A long-term (1994-2000) landscape experiment was performed in four watersheds, where two had GWWs for which maintenance was largely neglected. An intensive soil conservation system was established on all fields. Runoff and sediment delivery were continuously measured in the two watersheds with GWWs and in their paired watersheds that were similar, but without GWWs. Runoff was reduced by 90 and 10% for the two sets of paired watersheds, respectively. The different efficiencies of the GWWs resulted from different layouts (doubled width and flat-bottomed vs. v-shaped drainageway). The GWWs reduced sediment delivery by 97 and 77%, respectively, but the sward was not damaged by sedimentation. Grain sizes > 50 microm were settled due to gravity in both GWWs. Smaller grain sizes were primarily settled due to infiltration, which increased with a more effective runoff reduction. In general, the results indicated a high potential of GWWs for reducing runoff volume and velocity, sediments, and agrochemicals coming from agricultural watersheds.  相似文献   

18.
Application of broiler (Gallus gallus domesticus) litter to grasslands can increase ammonium (NH4-N) and dissolved reactive phosphorus (DRP) concentrations in surface runoff, but it is not known for how long after a broiler litter application that these concentrations remain elevated. This long-term study was conducted to measure NH4-N and DRP in surface runoff from grasslands fertilized with broiler litter. Six 0.75-ha, fescue (Festuca arundinacea Schreb.-)bermudagrass [Cynodon dactylon (L.) Pers.] paddocks received broiler litter applications in the spring and fall of 1995-1996 and only inorganic fertilizer N in the spring of 1997-1998. Surface runoff from each paddock was measured and analyzed for NH4-N and DRP. Broiler litter increased flow-weighted NH4-N and DRP concentrations from background values of 0.5 and 0.4 mg L(-1), respectively, to values > 18 mg L(-1) in a runoff event that took place immediately after the third application. Ammonium concentrations decreased rapidly after an application and were not strongly related to time after application or runoff volume. In contrast, DRP concentrations tended to decrease more slowly, reaching values near 1 mg L(-1) by 19 mo after the last application. Dissolved reactive P concentrations decreased linearly with the natural logarithm of days after application (p<0.03), and increased linearly with the natural logarithm of runoff volume (p<0.0001).  相似文献   

19.
Colloidal particles in runoff may have an important role in P transfer from soils to waterbodies, but remain poorly understood. We investigated colloidal molybdate-reactive phosphorus (MRP) in surface runoff and water extracts of calcareous arable soils from the semiarid western United States. Colloidal MRP was determined by ultrafiltration and operationally defined as MRP associated with particles between 1 microm and 1 nm diameter, although a smaller pore-size filter (0.3 nm) was used to define the lower size limit of colloids in water extracts. In surface runoff from three calcareous soils generated by simulated sprinkler irrigation, colloidal MRP concentrations ranged between 0.16 and 3.07 microM, constituting between 11 and 56% of the MRP in the <1-microm fraction. Concentrations were strongly correlated with agronomic and environmental soil-test P concentrations for individual soils. Water extracts of a range of similar soils contained two size fractions of colloidal MRP: a larger fraction (1.0-0.2 microm) probably associated with fine clays, and a smaller fraction (3-0.3 nm) probably associated with Ca-phosphate minerals. Colloidal MRP was solubilized in the acidic medium of the colorimetric detection procedure, suggesting that a fraction of the filterable MRP in runoff from calcareous soils may not be as readily bioavailable as free phosphate in waterbodies. Our results suggest that colloidal MRP is an important but poorly understood component of P transfer in runoff from calcareous western U.S. soils and should be given greater consideration in mechanistic studies of the P transfer process.  相似文献   

20.
Runoff from sloping landscapes cropped with established alfalfa (Medicago sativa L.) may contain bioavailable P (BAP) which accelerates eutrophication of surface water bodies. Such BAP exists as either dissolved reactive P (DRP) or bioavailable reactive particulate P (BPP). We hypothesized that before and after harvest, sod-forming smooth bromegrass (Bromus inermis Leyss.) or alfalfa-smooth bromegrass mixtures would have less BAP, DRP, and BPP runoff losses than taprooted alfalfa. Swards established in 1992 near Lancaster, WI were subjected to a 72 mm simulated rainfall applied for 1 h in 1993 and 1994 to forage regrowth at 4 and 6 wk after first harvest and immediately (0 wk) after second harvest. Hourly BAP losses for all sward types were 82% less when 1.5 Mg ha(-1) of forage dry matter was present. High DRP losses (>0.050 kg ha(-1)) were associated with high DRP concentrations (>7.1 micromol L(-1)) and high surface soil P concentrations (>59 mg kg(-1)) resulting from broadcast maintenance P fertilizer. High BPP losses (>0.035 kg ha(-1)) were associated with high runoff volumes (>24 mm) and sediment concentrations (>2 g L(-1)). Summed over all 6 rainfall simulations, total BAP loss was only 0.07 kg ha(-1) at the 6 wk stage of regrowth compared with 0.35 at 4 wk, and 0.41 at 0 wk. Moreover, there was no significant difference between sward types for DRP concentration, DRP loss, or BAP loss. We conclude that avoiding excessive defoliation was more effective at reducing BAP losses than specific forage species selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号