首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
Pesticide runoff research relies heavily on rainfall simulation experiments. Most are conducted at a constant intensity, i.e., at a fixed rainfall rate; however, large differences in natural rainfall intensity is common. To assess implications we quantified runoff of two herbicides, fluometuron and pendimethalin, and applied preemergence after planting cotton on Tifton loamy sand. Rainfall at constant and variable intensity patterns representative of late spring thunderstorms in the Atlantic Coastal Plain region of Georgia (USA) were simulated on 6-m2 plots under strip- (ST) and conventional-tillage (CT) management. The variable pattern produced significantly higher runoff rates of both compounds from CT but not ST plots. However, on an event-basis, runoff totals (% applied) were not significantly different, with one exception: fluometuron runoff from CT plots. There was about 25% more fluometuron runoff with the variable versus the constant intensity pattern (P = 0.10). Study results suggest that conduct of simulations using variable intensity storm patterns may provide more representative rainfall simulation-based estimates of pesticide runoff and that the greatest impacts will be observed with CT. The study also found significantly more fluometuron in runoff from ST than CT plots. Further work is needed to determine whether this behavior may be generalized to other active ingredients with similar properties [low K(oc) (organic carbon partition coefficient) approximately 100 mL g(-1); high water solubility approximately 100 mg L(-1)]. If so, it should be considered when making tillage-specific herbicide recommendations to reduce runoff potential.  相似文献   

2.
Runoff from farm fields is a common source of herbicide residues in surface waters. Incorporation by irrigation has the potential to reduce herbicide runoff risks. To assess impacts, rainfall was simulated on plots located in a peanut (Arachis hypogaea L.) field in Georgia's Atlantic Coastal Plain region after pre-emergence application of metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-[(1S)-2-methoxy-1-methylethyl]-acetamide) and pendimethalin (N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitro-benzenamine). Runoff, sediment, and herbicide loss as function of strip tillage (ST) versus conventional tillage (CT) were compared with and without irrigation (12.5 mm) after application of an herbicide tank mixture. For the CT system, metolachlor runoff was reduced 2x and pendimethalin 1.2x when compared with the non-irrigated treatment. The difference in irrigated and non-irrigated metolachlor means was significant (P = 0.05). Irrigation reduced metolachlor runoff by 1.3x in the ST system, but there was a 1.4x increase for pendimethalin. Overall results indicated that irrigation incorporation reduces herbicide runoff with the greatest impact when CT is practiced and products like metolachlor, which have relatively low K(oc) and high water solubility, are used. The lower ST system response was likely due to a combination of spray interception and retention by the ST system cover crop mulch and higher ST soil organic carbon content and less total runoff. During the study, the measured K(oc) of both herbicides on runoff sediment was found to vary with tillage and irrigation after herbicide application. Generally, K(oc) was higher for ST sediment and when irrigation incorporation was used with the CT system. These results have significant implications for simulation model parametization.  相似文献   

3.
The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were or=1.0 for CT plots (except for first 20 min). Maximum CER for CT-Ic, CT-Iv, ST-Ic, and ST-Iv were 2.0, 2.2, 1.0, and 1.2, respectively. Transport of sediment, carbon, and agrichemicals would be better understood if variable rainfall intensity patterns derived from natural rainfall were used in rainfall simulations to evaluate their fate and transport from CT and ST systems.  相似文献   

4.
ABSTRACT: Control of runoff (reducing infiltration) and erosion at shallow land burials is necessary in order to assure environmentally safe disposal of low-level radioactive-waste and other waste products. This study evaluated the runoff and erosion response of two perennial grass species on simulated waste burial covers at Idaho National Engineering and Environmental Laboratory (INEEL). Rainfall simulations were applied to three plots covered by crested wheatgrass [Agropyron desertorum(Fischer ex Link) Shultes], three plots covered by streambank wheatgrass [Elymus lanceolatus(Scribner and Smith) Gould spp. lanceolaus], and one bare plot. Average total runoff for rainfall simulations in 1987, 1989, and 1990 was 42 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Average total soil loss for rainfall simulations in 1987 and 1990 was 105 percent greater on streambank wheatgrass plots than on crested wheatgrass plots. Total runoff and soil loss from natural rainfall and snowmelt events during 1987 were 25 and 105 percent greater, respectively, on streambank wheatgrass plots than on crested wheatgrass plots. Thus, crested wheatgrass appears to be better suited in revegetation of waste burial covers at INEEL than streambank wheatgrass due to its much lower erosion rate and only slightly higher infiltration rate (lower runoff rate).  相似文献   

5.
Reducing surface and subsurface losses of herbicides in the soil and thus their potential contamination of water resources is a national concern. This study evaluated the effectiveness of sugarcane (Saccharum spp.) residue (mulch cover) in reducing nonpoint-source contamination of applied herbicides from sugarcane fields. Specifically, the effect of mulch residue on herbicide retention was quantified. Two main treatments were investigated: a no-till treatment and a no-mulch treatment. The amounts of extractable atrazine [2-chloro-4-(isopropylamino)-6-ethylamino-s-triazine], metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one], and pendimethalin [N-(ethylpropyl)-3,4-dimethyl-2,6-dinitroaniline] from the mulch residue and the surface soil layer were quantified during the 1999 and 2000 growing seasons. Significant amounts of applied herbicides were intercepted by the mulch residue. Extractable concentrations were at least one order of magnitude higher for the mulch residue compared with that retained by the soil. Moreover, the presence of mulch residue on the sugarcane rows was highly beneficial in minimizing runoff losses of the herbicides applied. When the residue was not removed, a reduction in runoff-effluent concentrations, as much as 50%, for atrazine and pendimethalin was realized. Moreover, the presence of mulch residue resulted in consistently lower estimates for rates of decay or disappearance of atrazine and pendimethalin in the surface soil.  相似文献   

6.
Use of small plots and rainfall simulators to extrapolate trends in runoff water quality requires careful consideration of hydrologic process represented under such conditions. A modified version of the National Phosphorus Runoff Project (NPRP) protocol was used to assess the hydrology of paired 1 x 2 m plots established on two soils with contrasting hydrologic properties (somewhat poorly drained vs. well drained). Rain simulations (60 mm h(-1)) were conducted to generate 30 min of runoff. For the somewhat poorly drained soil, simulations were conducted in October and May to contrast dry conditions typically targeted by NPRP protocols with wet conditions generally associated with natural runoff. For the well-drained soil, only dry conditions (October) were evaluated. Under dry antecedent moisture conditions, an average of 64 mm of rainfall was applied to the somewhat poorly drained soil to generate 30 min of runoff, as opposed to 96 mm to the well-drained soil. At an extreme, differences in rainfall were equivalent to a 50-yr rainfall-return period. An absence of detectable spatial trends in surface soil moisture suggests uniformity of runoff processes within the plots. No differences in applied rainfall were evident between wet and dry antecedent conditions for the somewhat poorly drained soil. However, significant differences in runoff generation processes were observed in dissolved P concentrations between wet and dry conditions. As natural runoff from the somewhat poorly drained soil is largely under wet antecedent conditions, this study highlights the need for care in interpreting findings from generalized protocols that favor infiltration-excess runoff mechanisms.  相似文献   

7.
While numerous studies have evaluated the efficacy of outdoor rainfall simulations to predict P concentrations in surface runoff, few studies have linked indoor rainfall simulations to P concentrations in surface runoff from agricultural fields. The objective of this study was to evaluate the capacity of indoor rainfall simulation to predict total dissolved P concentrations [TP(<0.45)] in field runoff for four dominant agricultural soils in South Dakota. Surface runoff from 10 residue-free field plots (2 m wide by 2 m long, 2-3% slope) and packed soil boxes (1 m long by 20 cm wide by 7.5 cm high, 2-3% slope) was compared. Surface runoff was generated via rainfall simulation at an intensity of 65 mm h(-1) and was collected for 30 min. Packed boxes produced approximately 24% more runoff (range = 2.8-3.4 cm) than field plots (range = 2.3-2.7 cm) among all soils. No statistical differences in either TP(<0.45) concentration or TP(<0.45) loss was observed in runoff from packed boxes and field plots among soil series (0.17 < P < 0.83). Three of four soils showed significantly more total P lost from packed boxes than field plots. The TP(<0.45) concentration in surface runoff from field plots can be predicted from TP(<0.45) concentration in surface runoff from the packed boxes (0.68 < r(2) < 0.94). A single relationship was derived to predict field TP(<0.45) concentration in surface runoff using surface runoff TP(<0.45) concentration from packed boxes. Evidence is provided that indoor runoff can adequately predict TP(<0.45) concentration in field surface runoff for select soils.  相似文献   

8.
Minimizing herbicide runoff and mobility in the soil and thus potential contamination of water resources is a national concern. Metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] and atrazine [2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine] dynamics in surface soils and in runoff waters were studied on six 0.2-ha sugarcane (Saccharum spp.) plots of a Commerce silt loam (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquept) during three growing seasons under different best management practices. Metribuzin was applied in the spring as a postemergence herbicide and atrazine was applied following winter harvest. Both herbicides were applied on top of the sugarcane rows as 0.6- or 0.9-m band width application, or broadcast application, where the entire area was treated. Maximum effluent concentrations were measured from the broadcast treatment and ranged from 600 to 1100 microg L(-1) for atrazine and 250 to 450 microg L(-1) for metribuzin. Atrazine runoff losses were highest for the broadcast treatment (2.8-11% of that applied) and lowest for the 0.6-m band treatment (1.9-7.6%), with a similar trend for metribuzin losses. Measured extractable herbicides from the surface soil exhibited a sharp decrease with time and were well described with a simple first-order decay model. For atrazine, estimates for the decay rate (lambda) were higher than for metribuzin. Results based on laboratory adsorption-desorption (kinetic-batch) measurements were consistent with field observations. The distribution coefficients (Kd) for atrazine exhibited stronger retention over time in comparison with metribuzin on the Commerce soil. Moreover, discrepancies between adsorption isotherm and desorption indicated slower release and that hysteresis was more pronounced for atrazine compared with metribuzin.  相似文献   

9.
A runoff study was conducted near Tifton, GA to measure the losses of water, sediment, and diclosulam (N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro-[1,2,4]triazolo-[1,5c]-pyrimidine- 2-sulfonamide), a new broadleaf herbicide, under a 50-mm-in-3-h simulated rainfall event on three separate 0.05-ha plots. Results of a runoff study were used to validate the Pesticide Root Zone Model (PRZM, v. 3.12) using field-measured soil, chemical, and weather inputs. The model-predicted edge-of-field diclosulam loading was within 1% of the average observed diclosulam runoff from the field study; however, partitioning between phases was not as well predicted. The model was subsequently used with worst-case agricultural practice inputs and a 41-yr weather record from Dublin, GA to simulate edge-of-field runoff losses for the two most prevalent soils (Tifton and Bibb) in the southeastern U.S. peanut (Arachis hypogaea L.) market for 328 simulation years, and showed that the 90th percentile runoff amounts, expressed as percent of applied diclosulam, were 1.8, 0.6, and 5.2% for the runoff study plots and Tifton and Bibb soils, respectively. The runoff study and modeling indicated that more than 97% of the total diclosulam runoff was transported off the field by water, with < 3% associated with the sediment. Diclosulam losses due to runoff can be further reduced by lower application rates, tillage and crop residue management practices that reduce edge-of-field runoff, and conservation practices such as vegetated filter strips.  相似文献   

10.
Further studies on the quality of runoff from tillage and cropping systems in the southeastern USA are needed to refine current risk assessment tools for nutrient contamination. Our objective was to quantify and compare effects of constant (Ic) and variable (Iv) rainfall intensity patterns on inorganic nitrogen (N) and phosphorus (P) losses from a Tifton loamy sand (Plinthic Kandiudult) cropped to cotton (Gossypium hirsutum L.) and managed under conventional (CT) or strip-till (ST) systems. We simulated rainfall at a constant intensity and a variable intensity pattern (57 mm h(-1)) and collected runoff continuously at 5-min intervals for 70 min. For cumulative runoff at 50 min, the Iv pattern lost significantly greater amounts (p < 0.05) of total Kjeldahl N (TKN) and P (TKP) (849 g N ha(-1) and 266 g P ha(-1) for Iv; 623 g N ha(-1) and 192 g P ha(-1) for Ic) than did the Ic pattern. However, at 70 min, no significant differences in total losses were evident for TKN or TKP from either rainfall intensity pattern. In contrast, total cumulative losses of dissolved reactive P (DRP) and NO3-N were greatest for ST-Ic, followed by ST-Iv, CT-Ic, and CT-Iv in diminishing order (69 g DRP ha(-1) and 361 g NO3-N ha(-1); 37 g DRP ha(-1) and 133 g NO3-N ha(-1); 3 g DRP ha(-1) and 58 g NO3-N ha(-1); 1 g DRP ha(-1) and 49 g NO3-N ha(-1)). Results indicate that constant-rate rainfall simulations may overestimate the amount of dissolved nutrients lost to the environment in overland flow from cropping systems in loamy sand soils. We also found that CT treatments lost significantly greater amounts of TKN and TKP than ST treatments and in contrast, ST treatments lost significantly greater amounts of DRP and NO3-N than CT treatments. These results indicate that ST systems may be losing more soluble fractions than CT systems, but only a fraction the total N (33%) and total P (11%) lost through overland flow from CT systems.  相似文献   

11.
An 8-yr study was conducted to better understand factors influencing year-to-year variability in field-scale herbicide volatilization and surface runoff losses. The 21-ha research site is located at the USDA-ARS Beltsville Agricultural Research Center in Beltsville, MD. Site location, herbicide formulations, and agricultural management practices remained unchanged throughout the duration of the study. Metolachlor [2-chloro--(2-ethyl-6-methylphenyl)--(2-methoxy-1-methylethyl) acetamide] and atrazine [6-chloro--ethyl--(1-methylethyl)-1,3,5-triazine-2,4-diamine] were coapplied as a surface broadcast spray. Herbicide runoff was monitored from a month before application through harvest. A flux gradient technique was used to compute volatilization fluxes for the first 5 d after application using herbicide concentration profiles and turbulent fluxes of heat and water vapor as determined from eddy covariance measurements. Results demonstrated that volatilization losses for these two herbicides were significantly greater than runoff losses ( < 0.007), even though both have relatively low vapor pressures. The largest annual runoff loss for metolachlor never exceeded 2.5%, whereas atrazine runoff never exceeded 3% of that applied. On the other hand, herbicide cumulative volatilization losses after 5 d ranged from about 5 to 63% of that applied for metolachlor and about 2 to 12% of that applied for atrazine. Additionally, daytime herbicide volatilization losses were significantly greater than nighttime vapor losses ( < 0.05). This research confirmed that vapor losses for some commonly used herbicides frequently exceeds runoff losses and herbicide vapor losses on the same site and with the same management practices can vary significantly year to year depending on local environmental conditions.  相似文献   

12.
Cultural management practices that reduce the off-site transport of herbicides applied to row crops are needed to protect surface water quality. A soybean [Glycine max (L.) Merr.] field study was conducted near Stoneville, MS on Sharkey clay to evaluate row spacing (50 cm vs. 100 cm) effects on metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(methoxy-1-methylethyl) acetamide] transport. One day after the foliar application of metolachlor to 2.03 m wide by 2.43 m long plots, 60 mm h(-1) of simulated rainfall was applied until 25 min of runoff was generated per plot. The calculated mass of metolachlor intercepted by the soybean foliage was greater in narrow-row than wide-row soybean, 0.39 kg ha(-1) vs. 0.23 kg ha(-1), respectively. Field and laboratory studies indicated that less than 2% of the metolachlor intercepted by the soybean foliage was available for foliar wash-off 1 d after application. Antecedent soil water content at the start of the simulations was lower in narrow-row soybean. In turn, there was a 1.7-fold greater time to runoff on narrow-row plots. The greater time to runoff likely contributed to lower metolachlor concentration in runoff from narrow-row plots. Cumulative metolachlor losses were significantly greater in wide-row than narrow-row soybean, 3.7% vs. 2.2%, respectively. Findings indicate that narrow-row planting systems may reduce metolachlor runoff following a post-emergence application.  相似文献   

13.
Contamination by bacteria is a leading cause of impairment in U.S. waters, particularly in areas of livestock agriculture. We evaluated the effectiveness of several practices in reducing Escherichia coli levels in runoff from fields receiving liquid dairy (Bos taurus) manure. Runoff trials were conducted on replicated hay and silage corn (Zea mays L.) plots using simulated rainfall. Levels of E. coli in runoff were approximately 10(4) to 10(6) organisms per 100 mL, representing a significant pollution potential. Practices tested were: manure storage, delay between manure application and rainfall, manure incorporation by tillage, and increased hayland vegetation height. Storage of manure for 30 d or more consistently and dramatically lowered E. coli counts in our experiments, with longer storage providing greater reductions. Manure E. coli declined by > 99% after approximately 90 d of storage. On average, levels of E. coli in runoff were 97% lower from plots receiving 30-d-old and > 99% lower from plots receiving 90-d-old manure than from plots where fresh manure was applied. Runoff from hayland and cornland plots where manure was applied 3 d before rainfall contained approximately 50% fewer E. coli than did runoff from plots that received manure 1 d before rainfall. Hayland vegetation height alone did not significantly affect E. coli levels in runoff, but interactions with rainfall delay and manure age were observed. Manure incorporation alone did not significantly affect E. coli levels in cornland plot runoff, but incorporation could reduce bacteria export by reducing field runoff and interaction with rainfall delay was observed. Extended storage that avoids additions of fresh manure, combined with application several days before runoff, incorporation on tilled land, and higher vegetation on hayland at application could substantially reduce microorganism loading from agricultural land.  相似文献   

14.
ABSTRACT: Runoff and sediment production was measured under simulated and natural rain from 1×5 m plots established on a cutover and burned mixed pine-hardwood site in the Georgia Piedmont. Trees on the study site were cut and removed without mechanical disturbance. Slash was removed, kiln dried and replaced on the slope, and burned prior to plot installation. Three slopes, two rainfall intensities, three rainfall simulations representing three soil moisture conditions, and two replicate plots were used. The experiment was repeated four times during the period July 1989-July 1990 to investigate the effects of temporal changes in surface conditions and particularly root mat and residual forest floor decemposition. Runoff and sediment production from natural rainfall events was also measured from these plots during the period February-October 1990. Results of all measurements indicate that runoff and sediment production were generally low because of the protection afforded by the residual forest floor following burning. However, temporary hydrophobic conditions caused by a dry organic layer produced relatively high runoff rates and high sediment for the first few minutes of runoff for some of the simulated rainfall applications.  相似文献   

15.
A phosphorus (P) index for pastures was developed to write nutrient management plans that determine how much P can be applied to a given field. The objectives of this study were to (i) evaluate and compare the P index for pastures, particularly the P source component, and an environmental threshold soil test P level by conducting rainfall simulations on contrasting soils under various management scenarios; and (ii) evaluate the P index for pastures on field-scale watersheds. Poultry litter was applied to 12 small plots on each of six farms based on either an environmental threshold soil test P level or on the P index for pastures, and P runoff was evaluated using rainfall simulators. The P index was also evaluated from two small (0.405 ha) watersheds that had been fertilized annually with poultry litter since 1995. Results from the small plot study showed that soil test P alone was a poor predictor of P concentrations in runoff water following poultry litter applications. The relationship between P in runoff and the amount of soluble P applied was highly significant. Furthermore, P concentrations in runoff from plots with and without litter applications were significantly correlated to P index values. Studies on pastures receiving natural rainfall and annual poultry litter applications indicated that the P index for pastures predicted P loss accurately without calibration (y = 1.16x - 0.23, r(2) = 0.83). These data indicate that the P index for pastures can accurately assess the risk of P loss from fields receiving poultry litter applications in Arkansas and provide a more realistic risk assessment than threshold soil test P levels.  相似文献   

16.
Cotton (Gossypium hirsutum L.) defoliant runoff was recently identified as an ecological risk. However, assessments are not supported by field studies. Runoff potential of three defoliant active ingredients, dimethipin (2,3-dihydro-5,6-dimethyl-1,4-dithiin 1,1,4,4-tetraoxide), thidiazuron (N-phenyl-N-1,2,3-thidiazol-5-yl-urea), and tribufos (S,S,S-tributyl phosphorotrithioate) was investigated by rainfall simulation on strip (ST) and conventionally tilled (CT) cotton in south central Georgia. Simulated rainfall timing relative to defoliant application (1 h after) represented an extreme worst-case scenario; however, weather records indicate that it was not unrealistic for the region. Thidiazuron and tribufos losses were 12 to 15% of applied. Only 2 to 5% of the more water soluble dimethipin was lost. Although ST erosion rates were less, loss of tribufos, a strongly sorbing compound, was not affected. Higher sediment-water partition coefficients (kd) were measured in ST samples. This likely explains why no tillage related differences in loss rates were observed, but it is unknown whether this result can be generalized. The study was conducted in the first year following establishment of tillage treatments at the study site. As soil conditions stabilize, ST impacts may change. Data provide an estimate of the maximum amount of the defoliants that will run off during a single postapplication storm event. Use of these values in place of the default value in runoff simulation models used in pesticide risk assessments will likely improve risk estimate accuracy and enhance evaluation of comparative risk among these active ingredients.  相似文献   

17.
Subsurface drainage systems are useful tools to study chemical leaching in soils. Our objective was to compare the breakthrough behavior of bromide, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamid] to tile drains under two fall tillage practices (conventional tillage [CT] with a moldboard plow, and reduced tillage [RT] with a chisel plow) in field plots cultivated with corn (Zea mays L.). Leachate volume were greater in RT than in CT, with no statistical differences. Soil analysis showed that bromide migrated deeper in the soil profile than both herbicides, with little tillage effect. All chemicals were detected in drainage water at the same time and followed an event-driven behavior. Tillage had no effect on atrazine and metolachlor found in drainage water, while bromide concentration peaks were higher in RT than in CT in 1999. Concentration peaks were recorded earlier for atrazine and metolachlor than for bromide. Plots of cumulative relative chemical mass (cumulative mass divided by total mass measured in drainage) as a function of cumulative drainage were mostly linear for bromide, while they were S-shaped for both herbicides. Drainage that corresponded to 50% of relative cumulative mass ranged from 40 to 55% for bromide and from 5 to 28% for both herbicides. Rapid chemical movement to tile drains suggested that preferential flow was important in both CT and RT, and that these tillage practices had little influence on this phenomena.  相似文献   

18.
Simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) losses via runoff in California are a potential source of environmental contamination because simazine is widely used for weed control during the rainy season from November to March. This study was conducted in two citrus orchards from three rainfall events to evaluate the effects of shallow mechanical incorporation on simazine losses in runoff during the winter. Simazine losses in runoff were compared between row middles that were either undisturbed, the normal orchard practice, or subjected to shallow mechanical incorporation. Mechanical incorporation of row middles significantly reduced runoff volumes by approximately 45 and 28% for the first and second runoff events, respectively. In undisturbed plots, simazine concentrations in runoff from the first runoff event ranged from 0.62 to 0.73 mg L(-1); then simazine concentrations rapidly decreased (0.03-0.35 mg L(-1)) from the second and third runoff events. In disturbed plots, simazine concentrations in runoff from the first runoff event ranged from 0.21 to 0.24 mg(-1), but simazine concentrations remained relatively constant between the three runoff events. Total mass recoveries of simazine in runoff ranged from 1.93 to 2.97% and from 0.70 to 0.74% of application from the undisturbed plots and from the disturbed plots, respectively. Low water infiltration rate inhibited surface-applied herbicide incorporation into the soil matrix with natural rainfall in compacted soils. Mechanical incorporation of row middles significantly reduced runoff volumes, simazine concentrations, and mass losses in runoff after application.  相似文献   

19.
Use of adjuvants to minimize leaching of herbicides in soil   总被引:1,自引:0,他引:1  
Excessive leaching of herbicides affects their efficacy against target weeds and results in contamination of groundwater. Use of adjuvants that can weakly bind herbicides and in turn release them slowly is a valuable technique to prolong the efficacy of herbicides and to minimize their leaching into groundwater. Effects of activated charcoal, three humic substances (Enersol SP 85%, Enersol 12%, and Agroliz), or a synthetic polymer (Hydrosorb) on the leaching of bromacil, dicamba, and simazine were investigated in leaching columns using a Candler fine sand (Typic Quartzipsamment). The addition of adjuvants had no harmful effects on physical properties of the soil as evident from lack of its affects on water percolation. When no adjuvants were used, 69%, 37%, and 4% of applied dicamba, bromacil, and simazine, respectively, were leached in the first pore volume of leachate (⋍3.2 cm rainfall). With five pore volumes of leachate (⋍16 cm rainfall), bromacil and dicamba were leached completely and only 80% of simazine was leached. Using Enersol 12% adjuvant resulted in a 13%–18% reduction in leaching of dicamba and bromacil in five pore volumes of leachate. The leaching of simazine was significantly decreased when any of the five adjuvants mentioned above were used. However, the decrease in leaching was significantly greater when using Enersol SP 85% or Enersol 12% (24%–28%) than when using the other adjuvants (12%–16%).  相似文献   

20.
Erosion and runoff from pastures may lead to degradation of surface water. A 2-yr grazing study was conducted to quantify the effects of grazing management on sediment, phosphorus (P), and pathogen loading of streams in cool-season grass pastures. Six adjoining 12.1-ha pastures bisected by a stream in central Iowa were divided into three treatments: continuous stocking with unrestricted stream access (CSU), continuous stocking with restricted stream access (CSR), and rotational stocking (RS). Rainfall simulations on stream banks resulted in greater ( < 0.10) proportions of applied precipitation and amounts of sediment and P transported in runoff from bare sites than from vegetated sites across grazing treatments. Similar differences were observed comparing vegetated sites in CSU and RS pastures with vegetated sites in CSR pastures. Bovine enterovirus was shed by an average of 24.3% of cows during the study period and was collected in the runoff of 8.3 and 16.7% of runoff simulations on bare sites in CSU pastures in June and October of 2008, respectively, and from 8.3% of runoff simulations on vegetated sites in CSU pastures in April 2009. Fecal pathogens (bovine coronavirus [BCV], bovine rotavirus group A, and O157:H7) shed or detected in runoff were almost nonexistent; only BCV was detected in feces of one cow in August of 2008. Erosion of cut-banks was the greatest contributor of sediment and P loading to the stream; contributions from surface runoff and grazing animals were considerably less and were minimized by grazing management practices that reduced congregation of cattle by pasture streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号