首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
Surface covers are used to isolate contaminants in hazardous and low-level radioactive sites for time frames ranging from hundreds of years to millennia or more. In the absence of data for such durations, the long-term performance of surface barriers can only be represented with short-term tests or inferred from analogs and modeling. This paper provides evidence of field performance of soil covers for periods up to 17 yr. The results of lysimeter studies from a semiarid site in Washington State show that a cover design known as the Hanford Barrier, which consists of 1.5 m of silt loam above a sand-gravel capillary break, can nearly eliminate drainage. The results were similar if plants were present or not, demonstrating the robustness of the design. Furthermore, reducing the silt loam thickness to 1.0 m (as might occur via erosion), with or without plants, did not lead to drainage. When irrigated to mimic 3x average precipitation conditions, the vegetated Hanford Barrier continued to prevent drainage. Overall, the results showed no loss in performance during the 17 yr of testing. Only when plants were eliminated completely from the 3x precipitation test did drainage occur (rates ranged from 6 to 16 mm yr(-1)). In a separate test, replacing the top 0.2 m of silt loam with dune sand and reducing the plant cover did not lead immediately to the onset of drainage, but soil matric heads within the silt loam noticeably increased. This observation suggests that dune sand migration onto a surface cover has the potential to reduce a cover's ability to minimize deep drainage.  相似文献   

2.
Abstract: Bioretention as sustainable urban stormwater management has gathered much recent attention, and implementation is expanding in mesic locations that receive more than 1,000 mm of annual precipitation. The arid southwestern United States is the fastest growing and most urbanized region in the country. Consequently, there is a need to establish design recommendations for bioretention to control stormwater from expanding urban development in this ecologically sensitive region. Therefore, we review the ecological limits and opportunities for designing bioretention in arid and semiarid regions. We incorporated USEPA Stormwater Management Model (SWMM) simulations to synthesize ecologically based design recommendations for bioretention in arid climates. From our review, an ideal bioretention garden area should be 6 to 8% of the contributing impervious drainage area (depending on region) with two layers of media, a 0.5‐m low‐nutrient topsoil layer above a 0.6‐m porous media layer that acts as temporary storage during a storm event. When planted with the suggested vegetation, this design maximizes stormwater treatment by promoting ecological treatment in the topsoil while promoting infiltration and evapotranspiration of stormwater by deep‐rooted shrubs that require no irrigation after establishment. This synthesis improves water resources management in arid and semiarid regions by introducing a sustainable bioretention design that protects local surface waters while reducing regional water demands for irrigation.  相似文献   

3.
Avoiding percolation of water into refuse is the key function of landfill covers. ‘Phytocapping’ has been considered as an effective, economical and environment-friendly technique for landfill remediation. In this technique, trees are established on a layer of soil cap placed over the refuse. Soil cover acts as a ‘storage’ and trees act as ‘bio-pump and filters’. For effective functioning of this technique, it is critical that an ‘optimum’ depth of soil is placed over the refuse, and ‘suitable’ plant species are used as plant cover. Preliminary results of a phytocapping trial (using 21 tree species and two depths of soil layers) show that the established trees can remove more water than that received via rainfall and rainfall interception can reduce up to 20% of the rain reaching the soil in a 1.5 year old plantation. The study is also trialling an US numeric model ‘STOMP’ (Subsurface Transport over Multiple Phases), to calculate daily water balance, to identify suitable plant species and to optimise thickness of the soil cover to be used in phytocapping.  相似文献   

4.
Determining long-term (decadal) deep drainage rate using multiple tracers   总被引:1,自引:0,他引:1  
The deep drainage rate is a critical hydrological parameter in understanding contamination mechanisms of soil and groundwater. Little research has been conducted on the temporal variations in deep drainage rate during the last century. The objective of this study was to determine the long-term deep drainage rate on a cultivated loamy soil in the Canadian Prairies. Three tracers were used: KCl applied in 1971, fallout tritium in 1963, and NO3* released during the initial cultivation of the field (1923). Two soil cores to a depth of 3.6 m were taken along a flat portion of the field, and soil Cl(-), 3H, and NO3* concentrations were measured as a function of depth. An additional four cores were taken for soil water content measurements between 2000 and 2003. Distinct peaks in the depth distribution of these three tracers were located at 1.27 m for Cl(-), 1.31 m for 3H, and 1.52 m for NO3*, 32, 40, and 80 yr after the application of Cl(-), 3H, and NO3*, respectively. The average deep drainage rates, calculated as the product of the estimated tracer velocity and volumetric soil water content below the active root zone, were 2.0 mm yr(-1) from the Cl(-) tracer, 2.2 mm yr(-1) from 3H, and 2.5 mm yr(-1) from the NO3* tracer. Therefore, there was little temporal variability in the groundwater recharge over the eight decades that the field has been cultivated. The recharge rates are less than 1% of the mean annual precipitation (333 mm).  相似文献   

5.
Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (<0.01-100 g m d) with most cover types, including both final covers, averaging <0.1 g m d with 10 to 40% of surface areas characterized by negative fluxes (uptake of atmospheric CH). The northern California intermediate cover (50 cm) had the highest CH fluxes. For both the intermediate (50-100 cm) and final (>200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers.  相似文献   

6.
Rainwater harvesting (RWH) has traditionally been implemented in areas with (semi) arid climates or limited access to potable water supplies; however, recent droughts in the humid southeastern United States have led to increased implementation of RWH systems. The objectives of this study were twofold: (1) present usage characteristics and performance results for four RWH systems installed in humid North Carolina (NC) as compared with systems located in arid/semiarid regions and (2) identify system benefits and modifications that could help improve the performance of RWH systems installed in humid regions of the world. For this study four RWH systems were installed in NC. Their usage was monitored for at least one year and compared with similar studies. Results revealed that dedicated water uses and usage characteristics for RWH systems in NC differed from those previously reported in the literature. Two of the systems studied met 100 and 61% of the potable water demand with designated uses of animal kennel flushing and greenhouse irrigation, respectively. The designated uses yielding the greatest potable water replacement were often seasonal or periodic, thus necessitating the need for identifying and implementing secondary objectives for these systems, namely, stormwater management. Otherwise, the expense and effort required to implement RWH systems in humid areas will most likely preclude their use.  相似文献   

7.
ABSTRACT: The purpose of this study was to determine the relationships between precipitation at the seasonal and annual scale and water discharge per surface area for seven contiguous first - and second-order tributaries of the Rhode River, a small tidal tributary to Chesapeake Bay, Maryland, USA. The goal was to quantify the effects of a wide range of precipitation, representative of inter-annual variations in weather in this region. The discharges measured included both overland storm flows and groundwater, since the aquifers were perched on a clay aquiclude. Precipitation varied from 824 to 1684 mm/yr and area-weighted Rhode River watershed discharge varied from 130 to 669 mm/yr with an average of 332 mm/yr or 29.1 percent of average precipitation. Average annual dis. charges from three first-order watersheds were significantly lower per surface area and varied from 16.0 to 21.9 percent of precipitation. Winter season precipitation varied from 125 to 541 mm. Area-weighted Rhode River winter discharge varied from 26.3 to 230 mm with an average of 115 mm or 43.9 percent of average precipitation. Spring season precipitation varied from 124 to 510 mm and watershed discharge varied from 40.0 to 321 mm with an average of 138 mm or 46.9 percent of average precipitation. In the summer and fall seasons, watershed discharge averaged 40.6 and 40.9 mm or 13.5 and 14.3 percent of average precipitation, respectively. Except in winter, the proportion of precipitation discharged in the streams increased rapidly with increasing volume of precipitation. Stream order showed a higher correlation with volume of discharge than vegetative cover on the watershed.  相似文献   

8.
Many engineered barriers are expected to function for hundreds of years or longer. Over the course of time, it is likely that some barriers will experience infiltration to the point of breakthrough. This study compares the recovery from breakthrough of two storage-evapotranspiration type engineered barriers. Replicates of test plots comprising thick soil and capillary-biobarrier covers were wetted to breakthrough in 1997. Test plots were kept cleared of vegetation to maximize hydrologic stress during recovery. Following cessation of drainage resulting from the wetting irrigations, water storage levels in all plots were at elevated levels compared with pre-irrigation levels. As a result, infiltration of melting snow during the subsequent spring overloaded the storage capacity and produced drainage in all plots. Relatively rapid melting of accumulated snowfall produced the most significant infiltration events each year during the study. Capillary barriers yielded less total drainage than thick soil barriers. By limiting drainage, capillary barriers increased water storage in the upper portions of the test plots, which led to increased evaporation from the capillary barrier plots compared with thick soil plots. Increased evaporation in the capillary barrier plots allowed more water to infiltrate in the second season following the wetting tests without triggering drainage. All thick soil plots again yielded drainage in the second season. Within two years of intentionally induced breakthrough, evaporation alone (without transpiration) restored the capability of the capillary barrier covers to function as intended, although water storage in these covers remained at elevated levels.  相似文献   

9.
To estimate the freshwater loss in coastal aquifers due to salinisation, a numerical model based on the sharp interface assumption has been introduced. The developed methodology will be useful in areas where limited hydrological data are available. This model will elaborate on the changes in fresh groundwater loss with respect to climate change, land use pattern and hydrologic soil condition. The aridity index has been introduced to represent the variations in precipitation and temperature. The interesting finding is that the deforestation leads to increase groundwater recharge in arid areas, because deforestation leads to reduce evapotranspiration even though it favors runoff. The combined climate and land use scenarios show that when the aridity index is less than 60, the agricultural lands give higher groundwater recharge than other land use patterns for all hydrologic soil conditions. The calculated recharge was then used to estimate the freshwater-saltwater interface and percentage of freshwater loss due to salinity intrusion. We found that in arid areas, the fresh groundwater loss increases as the percentage of forest cover increases. The combined effects of deforestation and aridity index on fresh groundwater loss show that deforestation causes an increase in the recharge and existing fresh groundwater resource in areas having low precipitation and high temperature (arid climates).  相似文献   

10.
Agricultural chemical transport to surface water and the linkage to other hydrological compartments, principally ground water, was investigated at five watersheds in semiarid to humid climatic settings. Chemical transport was affected by storm water runoff, soil drainage, irrigation, and how streams were linked to shallow ground water systems. Irrigation practices and timing of chemical use greatly affected nutrient and pesticide transport in the semiarid basins. Irrigation with imported water tended to increase ground water and chemical transport, whereas the use of locally pumped irrigation water may eliminate connections between streams and ground water, resulting in lower annual loads. Drainage pathways in humid environments are important because the loads may be transported in tile drains, or through varying combinations of ground water discharge, and overland flow. In most cases, overland flow contributed the greatest loads, but a significant portion of the annual load of nitrate and some pesticide degradates can be transported under base-flow conditions. The highest basin yields for nitrate were measured in a semiarid irrigated system that used imported water and in a stream dominated by tile drainage in a humid environment. Pesticide loads, as a percent of actual use (LAPU), showed the effects of climate and geohydrologic conditions. The LAPU values in the semiarid study basin in Washington were generally low because most of the load was transported in ground water discharge to the stream. When herbicides are applied during the rainy season in a semiarid setting, such as simazine in the California basin, LAPU values are similar to those in the Midwest basins.  相似文献   

11.
One method for recovering degraded soils in semiarid regions is to add organic matter to improve soil characteristics, thereby enhancing biogeochemical nutrient cycling. In this paper, we studied the changes in soil biological properties as a result of adding a crushed cotton gin compost (CCGC) and a poultry manure (PM) for 4 yr to restore a Xerollic Calciorthid located near Seville (Guadalquivir Valley, Andalusia, Spain). Organic wastes were applied at rates of 5, 7.5, and 10 Mg organic matter ha(-1). One year after the assay began, spontaneous vegetation had appeared in the treated plots, particularly in that receiving a high PM and CCGC dose. After 4 yr, the plant cover in these treated plots was around 88 and 79%, respectively, compared with 5% for the control. The effects on soil microbial biomass and six soil enzymatic activities (dehydrogenase, urease, BBA-protease, beta-glucosidase, arylsulfatase, and alkaline phosphatase activities) were ascertained. Both added organic wastes had a positive effect on the biological properties of the soil, although at the end of the experimental period and at high dosage, soil microbial biomass and soil enzyme activities were generally higher in the PM-amended soils compared to the CCGC-amended soils. Enzyme activity from the PM-amended soil was 5, 15, 13, 19, 22, 30, and 6% greater than CCGC-amended soil for soil microbial biomass, urease, BBA-protease, beta-glucosidase, alkaline phosphatase, arylsulfatase, and dehydrogenase activities, respectively. After 4 yr, the percentage of plant cover was > 48% in all treated plots and 5% in the control.  相似文献   

12.
It is often necessary to find a simpler method in different climatic regions to calculate reference crop evapotranspiration (ETo) since the application of the FAO‐56 Penman‐Monteith method is often restricted due to the unavailability of a comprehensive weather dataset. Seven ETo methods, namely the standard FAO‐56 Penman‐Monteith, the FAO‐24 Radiation, FAO‐24 Blaney Criddle, 1985 Hargreaves, Priestley‐Taylor, 1957 Makkink, and 1961 Turc, were applied to calculate monthly averages of daily ETo, total annual ETo, and daily ETo in an arid region at Aksu, China, in a semiarid region at Tongchuan, China, and in a humid region at Starkville, Mississippi, United States. Comparisons were made between the FAO‐56 method and the other six simple alternative methods, using the index of agreement D, modeling efficiency (EF), and root mean square error (RMSE). For the monthly averages of daily ETo, the values of D, EF, and RMSE ranged from 0.82 to 0.98, 0.55 to 0.98, and 0.23 to 1.00 mm/day, respectively. For the total annual ETo, the values of D, EF, and RMSE ranged from 0.21 to 0.91, ?43.08 to 0.82, and 24.80 to 234.08 mm/year, respectively. For the daily ETo, the values of D, EF, and RMSE ranged from 0.58 to 0.97, 0.57 to 0.97, and 0.30 to 1.06 mm/day, respectively. The results showed that the Priestly‐Taylor and 1985 Hargreaves methods worked best in the arid and semiarid regions, while the 1957 Makkink worked best in the humid region.  相似文献   

13.
Mine tailings are moderately to severely impacted sites that lack normal plant cover, soil structure and development, and the associated microbial community. In arid and semiarid environments, tailings and their associated contaminants are prone to eolian dispersion and water erosion, thus becoming sources of metal contamination. One approach to minimize or eliminate these processes is to establish a permanent vegetation cover on tailings piles. Here we report a revegetation trial conducted at a moderately impacted mine tailings site in southern Arizona. A salt and drought-tolerant plant, four-wing saltbush [Atriplex canescens (Pursh) Nutt.], was chosen for the trial. A series of 3 by 3 m plots were established in quadruplicate on the test site to evaluate growth of four-wing saltbush transplants alone or with compost addition. Results show that >80% of the transplanted saltbush survived after 1.5 yr in both treatments. Enumeration of heterotrophs and community structure analysis were conducted to monitor bacterial community changes during plant establishment as an indicator of plant and soil health. The bacterial community was evaluated using denaturing gradient gel electrophoresis (DGGE) analysis of 16S rDNA PCR gene products from tailings samples taken beneath transplant canopies. Significant differences in heterotrophic counts and community composition were observed between the two treatments and unplanted controls throughout the trial, but treatment effects were not observed. The results suggest that compost is not necessary for plant establishment at this site and that plants, rather than added compost, is the primary factor enhancing bacterial heterotrophic counts and affecting community composition.  相似文献   

14.
We attempted to restore native plants on disturbed sites at a former uranium mill on the Colorado Plateau near Tuba City, AZ. Four-wing saltbush [Atriplex canescens (Pursh) Nutt.] was successfully established in compacted caliche soil and in unconsolidated dune soil when transplants were irrigated through the first summer with 20 L/plant/wk. The caliche soil was ripped before planting to improve water-holding capacity. The diploid saltbush variety, angustifolia, had higher survival and growth than the common tetraploid variety, occidentalis, especially on dune soil. The angustifolia variety grew to 0.3 to 0.4 m3 per plant over 3 yr even though irrigation was provided only during the establishment year. By contrast, direct seeding of a variety of native forbs, grasses, and shrubs yielded poor results, despite supplemental irrigation throughout the first summer. In this arid environment (precipitation = 100 to 200 mm/yr), the most effective revegetation strategy is to establish keystone native shrubs, such as four-wing saltbush, using transplants and irrigation during the establishment year, rather than attempting to establish a diverse plant community all at once.  相似文献   

15.
Long-term water quality records for assessing natural variability, impact of management, and that guide regulatory processes to safeguard water resources are rare for California oak woodland rangelands. This study presents a 20-yr record (1981-2000) of nitrate-nitrogen (NO(3)-N) and suspended sediment export from a typical, grazed oak woodland watershed (103 ha) in the northern Sierra Nevada foothills of California. Mean annual precipitation over the 20-yr period was 734 mm yr(-1) (range 366-1205 mm yr(-1)). Mean annual stream flow was 353 mm y(-1) (range 87-848 mm yr(-1)). Average annual stream flow was 48.1 +/- 16% of precipitation. Mean annual NO(3)-N export was 1.6 kg ha(-1) yr(-1) (range 0.18-3.6 kg ha(-1) yr(-1)). Annual NO(3)-N export significantly (P < 0.05) increased with increasing annual stream flow and precipitation. Mean daily NO(3)-N export was 0.004 kg ha(-1) d(-1) (range 10(-5) to 0.55 kg ha(-1) d(-1)). Mean annual suspended sediment export was 198 kg ha(-1) yr(-1) (range 23-479 kg ha(-1) yr(-1)). There was a positive relationship (P < 0.05) between annual suspended sediment export, annual stream flow and precipitation. Mean daily suspended sediment export was 0.54 kg ha(-1) d(-1) (range 10(-4) to 155 kg ha(-1) d(-1)). Virtually no sediment was exported during the dry season. The large variation in daily and annual fluxes highlights the necessity of using long-term records to establish quantitative water quality targets for rangelands and demonstrates the difficulty of designing a water quality monitoring program for these ecosystems.  相似文献   

16.
In a sanitary landfill, the final cover plays an important role in reducing the landfill gas emission to the atmosphere and in preventing the ingress of rainwater into the dumped waste. The present study investigated the suitability of sugarcane bagasse biochar as an amendment to the cover soil to improve the required landfill liner properties. The amended cover soil sugarcane bagasse (SSB) was tested for its stability and effectiveness, in terms of both geotechnical properties and methane mitigation efficiency. The effects of amending 15%, 20%, and 25% of sugarcane bagasse biochar (passing through 300 micron Indian Standard sieve) on the geotechnical properties of the SSB indicated that the SSB with 25% biochar showed the required values as per the standard with maximum dry density of 1.57 grams per cubic centimeter (g/cm3), liquid limit, plasticity index, and percentage of fines 48.5%, 16.3%, and 74.7%, respectively, and permeability of 0.9 × 10?7. A column study that was conducted to determine the methane emission from the cover soil showed a 65.8% reduction in the methane emission compared to that of a column without SSB cover, with a cumulative methane emission of 410 milliliters (mL) at the end of 200 hours (h). On the other hand, the volume of methane emitted after 310 h from the column without cover and with the SSB cover was 1850 mL and 692 mL, respectively. The difference between these two values is found to be 22% of the total methane that the cover would have handled in its lifetime (5267 mL). Thus, there is an increase in the percentage of methane adsorption by soil cover from 15% to 22% when the soil was amended with 25% sugarcane bagasse biochar.  相似文献   

17.
Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.  相似文献   

18.
Ecologists are beginning to recognize the effect of heterogeneity on structure and function in arid and semiarid ecosystems. Additionally, the influences of temperature on ecosystems are widely documented, but landscape temperature patterns and relationships with vegetation are rarely reported in ecological studies. To better understand the importance of temperature patterns to the conservation and restoration of native ecosystems, we designed an experiment to investigate relationships among soil surface temperature, landscape heterogeneity, and grazing intensity. Grazing intensity did influence the vegetation structure and composition. Heavy treatments had the greatest bare ground and the least vertical structure. Ungrazed treatments had the most litter and live grass cover. However, average temperatures among the three grazing treatments were not different and ranged less than 2°C during midday summer periods. The temperature difference between riparian and upland landscapes within grazing treatments was 21°C. Landscape position (riparian vs. upland) did have a significant influence on soil surface temperature and produced a variation in temperature 11 times greater than grazing intensities. Thermal heterogeneity did not differ among grazing treatments. Lower soil surface temperatures (associated with riparian areas) may provide a critical thermal refuge for many animals in arid and semiarid ecosystems on hot summer days, when air temperatures can exceed 37°C. Riparian zones, specifically riparian vegetation, are an important component in ecosystem management.  相似文献   

19.
Since the 1970s, the sediment flux of the Yellow River to the sea has shown a marked tendency to decrease, which is unfavorable for wetland protection and oil extraction in the Yellow River delta. Thus, an effort has been made to elucidate the relation between the sediment flux to the sea and the drainage basin factors including climate and human activities. The results show that the sediment flux to the sea responds to the changed precipitation in different ways for different runoff and sediment source areas in the drainage basin. If other factors are assumed to be constant, when the annual precipitation in the area between Longmen and Sanmenxia decreases by 10 mm, the sediment flux to the sea will decrease by 27.5 million t/yr; when the precipitation in the area between Hekouzhen and Longmen decreases by 10 mm, the sediment flux to the sea will decrease by 14.3 million t/yr; when the precipitation in the area above Lanzhou decreases by 10 mm, the sediment flux to the sea will decrease by 17.4 million t/yr. A multiple regression equation has been established between the sediment flux to the sea and the influencing factors, such as the area of land terracing and tree and grass planting, the area of the land created by the sediment trapped by check dams, the annual precipitation, and the annual quantity of water diversion by man. The equation may be used to estimate the change in the sediment flux to the sea when the influencing variables are further changed, to provide useful knowledge for the environmental planning of the Yellow River drainage basin and its delta.  相似文献   

20.
Many regions of southern California's coastal sage scrub (CSS) are rapidly declining as exotic annual plants replace native shrubs. During this conversion, the subsurface hydrology of the semiarid hillslopes that support CSS may be altered. This could chronically suppress the ability of native shrubland to revegetate the landscape since ecosystem processes of nutrient availability and of seedling establishment rely on spatial patterns of available soil water. In this work, soil water and nutrient N regimes were compared over a 2-yr period between a southern California site where CSS has declined (approximately 5% shrub cover) with high additions of anthropogenic N, and one where CSS remains dominant (over 50% shrub cover) with predominantly background atmospheric additions of N. These two sites have similar climate, bedrock lithology, soils, and topography, and had the same vegetation type (Riversidean CSS) 30 years ago. We found that the depth and rate of rainwater percolation into wildland hillslope soils in response to early-season storm events has been greatly reduced after loss of CSS shrubs and vegetation type conversion to invasive grassland. With decreased rainwater redistribution to soil depths of 100 to 150 cm, the predominant zone of soil water has become the upper 25 cm. This shift exacerbates vegetation type conversion by (i) concentrating smog-produced nitrogenous (N) chemicals in the uppermost soil, where they become readily available, along with high soil water, to shallow-rooted exotic grasses early in the growing season and (ii) depriving adult and juvenile shrubs of deeper regolith water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号