共查询到20条相似文献,搜索用时 15 毫秒
1.
D.H. Pote T.R. Way K.R. Sistani P.A. Moore Jr. 《Journal of environmental management》2009,90(11):3534-3539
Poultry litter is known to be an excellent organic fertilizer, but the common practice of spreading litter on the surface of pastures has raised serious water-quality concerns and may limit potential benefits of litter applications. Because surface-applied litter is completely exposed to the atmosphere, runoff can transport nutrients into nearby streams and lakes, and much of the ammonium nitrogen volatilizes before it can enter the soil. Our previous research showed that a manual knifing technique to apply dry litter under a perennial pasture surface effectively prevented about 90% of nutrient loss with runoff from surface-applied litter, and tended to increase forage yield. However, this technique (known as subsurface banding) cannot become a practical management option for producers until it is mechanized. To begin that process, we tested an experimental single-shank, tractor-drawn implement designed to apply poultry litter in subsurface bands. Our objective was to compare this mechanized subsurface-banding method against conventional surface application to determine effects on nutrient loss with runoff from a perennial grassland treated with dry poultry litter. Early in the growing season, broiler litter was applied (6.7 dry-weight Mg ha−1) to each plot (except three control plots) using one of two application methods: surface broadcast manually or subsurface banded using the tractor-drawn implement. Simulated rainfall (5 cm h−1) generated 20 min of runoff from each plot for volume and analytical measurements. Results showed that subsurface-banded litter increased forage yield while decreasing nutrient (e.g. N and P) loss in runoff by at least 90% compared to surface-broadcast litter. 相似文献
2.
Aluminum sulfate [alum; Al2(SO4)3] amendment of poultry litters has been suggested as a best management practice to help reduce the potential environmental effects of poultry production. Past research has shown that alum treatment reduced NH3 emissions from litters, decreased the loss in runoff of P and trace metals from litter-amended soils, improved poultry health, and reduced the costs of poultry production. We conducted a large scale, "on-farm" evaluation of alum as a poultry (broiler) litter amendment on the Delmarva peninsula to determine the effect of alum on (i) litter properties and elemental composition and (ii) the solubility of several elements in litter that are of particular concern for water quality (Al, As, Cu, P, and Zn). Alum was applied over a 16-mo period to 97 poultry houses on working poultry farms; 97 houses on other farms served as controls (no alum). Litter samples were analyzed initially and after approximately seven alum applications. We found that alum decreased litter pH and the water solubility of P, As, Cu, and Zn. Alum-treated houses also had higher litter total N, NH4-N, and total S concentrations and thus a greater overall fertilizer value than litters from the control houses. Higher litter NH4-N values also suggest that alum reduced NH3 losses from litters. Thus, alum appears to have promise as a best management practice (BMP) for poultry production. Future research should focus on the long-term transformations of P, Al, As, Cu, and Zn in soils amended with alum-treated litters. 相似文献
3.
Penn CJ Vitale J Fine S Payne J Warren JG Zhang H Eastman M Herron SL 《Journal of environmental quality》2011,40(1):233-241
Transportation of poultry litter out of nutrient limited watersheds such as the Illinois River basin (eastern Oklahoma) is a logical solution for minimizing phosphorus (P) losses from soils to surface waters. Transportation costs are basedon mass of load and distance transported. This study investigated an alternative litter storage technique designed to promote carbon (C) degradation, thereby concentrating nutrients for the purpose of decreasing transportation costs through decreased mass. Poultry litter was stored in 0.90-Mg conical piles under semipermeable tarps and adjusted to 40% moisture content, tested with and without addition of alum (aluminum sulfate). additional study was conducted using 3.6-Mg piles under the same conditions, except tested with and without use of aeration pipes. Samples were analyzed before and after (8 wk) storage. Litter mass degradation (i.e., loss in mass due to organic matter decomposition) was estimated on the basis of changes in litter total P contents. Additional characterization included pH, total nutrients, moisture content, total C, and degree of humification. Litter storage significantly decreased litter mass (16 to 27%), concentrated nutrients such as P and potassium (K) and increased proportion of fulvic and humic acids. The addition of aeration pipes increased mass degradationrelative to piles without aeration pipes. Nitrogen volatilization losses were minimized with alum additions. Increases in P and K concentrations resulted in greater monetary value per unit mass compared with fresh litter. Such increases translate to increased litter shipping distance and cost savings of $17.2 million over 25 yr for litter movement out of eastern Oklahoma. 相似文献
4.
Pote DH Kingery WL Aiken GE Han FX Moore PA Buddington K 《Journal of environmental quality》2003,32(6):2392-2398
Poultry litter provides a rich source of nutrients for perennial forages, but the usual practice of surface-applying litter to pastures can degrade water quality by allowing nutrients to be transported from fields in surface runoff, while much of the NH4-N volatilizes. Incorporating litter into the soil can minimize such problems in tilled systems, but has not been used for perennial forage systems. In this study, we minimized disturbance of the crop, thatch, and soil structure by using a knifing technique to move litter into the root zone. Our objective was to determine effects of poultry litter incorporation on quantity and quality of runoff water. Field plots were constructed on a silt loam soil with well-established bermudagrass [Cynodon dactylon (L.) Pers.] and mixed grass forage. Each plot had 8 to 10% slopes, borders to isolate runoff, and a downslope trough with sampling pit. Poultry litter was applied (5.6 Mg ha(-1)) by one of three methods: surface-applied, incorporated, or surface-applied on soil-aeration cuts. There were six treatment replications and three controls (no litter). Nutrient concentrations and mass losses in runoff from incorporated litter were significantly lower (generally 80-95% less) than in runoff from surface-applied litter. By the second year of treatment, litter-incorporated soils had greater rain infiltration rates, water-holding capacities, and sediment retention than soils receiving surface-applied litter. Litter incorporation also showed a strong tendency to increase forage yield. 相似文献
5.
Pote DH Way TR Kleinman PJ Moore PA Meisinger JJ Sistani KR Saporito LS Allen AL Feyereisen GW 《Journal of environmental quality》2011,40(2):402-411
Poultry litter provides a rich nutrient source for crops, but the usual practice of surface-applying litter can degrade water quality by allowing nutrients to be transported from fields in surface runoff while much of the ammonia (NH3)-N escapes into the atmosphere. Our goal was to improve on conventional titter application methods to decrease associated nutrient losses to air and water while increasing soil productivity. We developed and tested a knifing technique to directly apply dry poultry litter beneath the surface of pastures. Results showed that subsurface litter application decreased NH3-N volatilization and nutrient losses in runoff more than 90% (compared with surface-applied litter) to levels statistically as low as those from control (no litter) plots. Given this success, two advanced tractor-drawn prototypes were developed to subsurface apply poultry litter in field research. The two prototypes have been tested in pasture and no-till experiments and are both effective in improving nutrient-use efficiency compared with surface-applied litter, increasing crop yields (possibly by retaining more nitrogen in the soil), and decreasing nutrient losses, often to near background (control plot) levels. A paired-watershed study showed that cumulative phosphorus losses in runoff from continuously grazed perennial pastures were decreased by 55% over a 3-yr period if the annual poultry litter applications were subsurface applied rather than surface broadcast. Results highlight opportunities and challenges for commercial adoption of subsurface poultry litter application in pasture and no-till systems. 相似文献
6.
Environmental concerns are driving manure management in many areas from a traditional nitrogen (N) basis toward phosphorus (P)-based nutrient management plans. We investigated how changing nutrient management from an N to a P basis affected crop yields and soil properties in high P soils over a 7-yr period. Three sites were established on farmers' fields, and at each site the same six treatments were applied for 6 or 7 yr. These treatments were (i) no P; (ii) poultry litter applied on an N basis; (iii) inorganic P, equal to the P applied in treatment 2; (iv) poultry litter applied on an estimated annual crop P removal basis; (v) inorganic P, equal to the P applied in treatment iv; and (vi) poultry litter applied once every 2 or 3 yr at a 2- or 3-yr crop removal P rate. All treatments received the same rate of plant-available N. Yields, P balance, soil pH, Mehlich 1 P, and water-soluble P (WSP) were monitored during the experiment. Over the course of the experiment, litter had the beneficial effect of raising soil pH relative to the inorganic treatments. After 7 yr, Mehlich 1 P and WSP were greatest in soils under the N-based treatments, smallest in the no P treatment, and intermediate in the P-based treatments. For example, at the Shenandoah site, Mehlich 1 P decreased by 35 mg kg(-1) under the no P treatment and increased by 36 mg kg(-1) under the inorganic N-based treatment. There were no significant differences between inorganic fertilizer and poultry litter nutrient sources. The results of this study show that soil test P can be decreased in high-P soils over a few years by changing from an N-based to a P-based nutrient management plan or stopping P applications without negatively affecting yields. 相似文献
7.
Sonneveld MP Schröder JJ de Vos JA Monteny GJ Mosquera J Hol JM Lantinga EA Verhoeven FP Bouma J 《Journal of environmental quality》2008,37(1):186-195
Dutch regulations for ammonia emission require farmers to inject slurry into the soil (shallow) or to apply it in narrow bands at the surface. For one commercial dairy farm in the Netherlands it was hypothesized that its alternative farming strategy, including low-protein feeding and surface spreading, could be an equally effective tool for ammonia emission abatement. The overall objective of the research was to investigate how management at this farm is related to nitrogen (N) losses to the environment, including groundwater and surface water. Gaseous emission of ammonia and greenhouse gasses from the naturally ventilated stables were 8.1 and 3.1 kg yr(-1) AU(-1) on average using the internal tracer (SF(6))-ratio method. Measurements on volatilization of ammonia from slurry application to the field using an integrated horizontal flux method and the micrometeorological mass balance method yielded relatively low values of ammonia emissions per ha (3.5-10.9 kg NH(3)-N ha(-1)). The mean nitrate concentration in the upper ground water was 6.7 mg L(-1) for 2004 and 3.0 mg L(-1) for 2005, and the half-year summer means of N in surface water were 2.3 mg N L(-1) and 3.4 mg N L(-1) for 2004 and 2005, respectively. Using a nutrient budget model for this farm, partly based on these findings, it was found that the calculated ammonia loss per ton milk (range 5.3-7.5 kg N Mg(-1)) is comparable with the estimated ammonia loss of a conventional farm that applies animal slurry using prescribed technologies. 相似文献
8.
Gilmour JT Koehler MA Cabrera ML Szajdak L Moore PA 《Journal of environmental quality》2004,33(1):402-405
While the poultry industry is a major economic benefit to several areas in the USA, land application of poultry litter to recycle nutrients can lead to impaired surface and ground water quality. Amending poultry litter with alum [Al3(SO4)2 x 14H2O] has received considerable attention as a method of economically reducing ammonia volatilization in the poultry house and soluble phosphorus in runoff waters. The objective of this study was to characterize the effect of alum on broiler litter decomposition and N dynamics under laboratory conditions. Litter that had been amended with alum in the poultry house after each of the first four of five flock cycles (Experiment I) and litter that had been amended with alum after removal from a poultry house after the third flock cycle (Experiment II) were compared with unamended litter in separate studies. The litters in Experiment I were surface-applied to simulate application to grasslands, while the litters in Experiment II were incorporated to simulate application to conventionally tilled crops. The only statistically significant differences in decomposition due to alum occurred early in Experiment II and the differences were small. The only statistically significant differences in net N mineralization, soil inorganic N, and soil NH4+-N in either experiment was found in Experiment I after 70 d of incubation where soil inorganic N was significantly greater for the alum treatment. Thus, alum had little effect on decomposition or N dynamics. Results of many of the studies on litter not amended with alum should be applicable to litters amended with alum to reduce P availability. 相似文献
9.
Seiter JM Staats-Borda KE Ginder-Vogel M Sparks DL 《Journal of environmental quality》2008,37(2):477-485
Aluminum sulfate (alum; Al(2)(SO(4))(3).14H(2)O) is used as a chemical treatment of poultry litter to reduce the solubility and release of phosphate, thereby minimizing the impacts on adjacent aquatic ecosystems when poultry litter is land applied as a crop fertilizer. The objective of this study was to determine, through the use of X-ray absorption near edge structure (XANES) spectroscopy and sequential extraction, how alum amendments alter P distribution and solid-state speciation within the poultry litter system. Our results indicate that traditional sequential fractionation procedures may not account for variability in P speciation in heterogeneous animal manures. Analysis shows that NaOH-extracted P in alum amended litters is predominantly organic ( approximately 80%), whereas in the control samples, >60% of NaOH-extracted P was inorganic P. Linear least squares fitting (LLSF) analysis of spectra collected of sequentially extracted litters showed that the P is present in inorganic (P sorbed on Al oxides, calcium phosphates) and organic forms (phytic acid, polyphosphates, and monoesters) in alum- and non-alum-amended poultry litter. When determining land application rates of poultry litter, all of these compounds must be considered, especially organic P. Results of the sequential extractions in conjunction with LLSF suggest that no P species is completely removed by a single extractant. Rather, there is a continuum of removal as extractant strength increases. Overall, alum-amended litters exhibited higher proportions of Al-bound P species and phytic acid, whereas untreated samples contained Ca-P minerals and organic P compounds. This study provides in situ information about P speciation in the poultry litter solid and about P availability in alum- and non-alum-treated poultry litter that will dictate P losses to ground and surface water systems. 相似文献
10.
Research has shown that alum [Al(2)(SO(4))(3).14H(2)O] applications to poultry litter can greatly reduce phosphorus (P) runoff, as well as decrease ammonia (NH(3)) volatilization. However, the long-term effects of fertilizing with alum-treated litter are unknown. The objectives of this study were to evaluate the long-term effects of normal poultry litter, alum-treated litter, and ammonium nitrate (NH(4)NO(3)) on aluminum (Al) availability in soils, Al uptake by tall fescue (Festuca arundinacea Schreb.), and tall fescue yields. A long-term study was initiated in April of 1995. There were 13 treatments (unfertilized control, four rates of normal litter, four rates of alum-treated litter, and four rates of NH(4)NO(3)) in a randomized block design. All fertilizers were broadcast applied to 52 small plots (3.05 x 1.52 m) cropped to tall fescue annually in the spring. Litter application rates were 2.24, 4.49, 6.73, and 8.98 Mg ha(-1) (1, 2, 3, and 4 tons acre(-1)); NH(4)NO(3) rates were 65, 130, 195, and 260 kg N ha(-1) and were based on the amount of N applied with alum-treated litter. Soil pH, exchangeable Al (extracted with potassium chloride), Al uptake by fescue, and fescue yields were monitored periodically over time. Ammonium nitrate applications resulted in reductions in soil pH beginning in Year 3, causing exchangeable Al values to increase from less than 1 mg Al kg(-1) soil in Year 2 to over 100 mg Al kg(-1) soil in Year 7 for many of the NH(4)NO(3) plots. In contrast, normal and alum-treated litter resulted in an increase in soil pH, which decreased exchangeable Al when compared to unfertilized controls. Severe yield reductions were observed with NH(4)NO(3) beginning in Year 6, which were due to high levels of acidity and exchangeable Al. Aluminum uptake by forage and Al runoff from the plots were not affected by treatment. Fescue yields were highest with alum-treated litter (annual average = 7.36 Mg ha(-1)), followed by normal litter (6.93 Mg ha(-1)), NH(4)NO(3) (6.16 Mg ha(-1)), and the control (2.89 Mg ha(-1)). These data indicate that poultry litter, particularly alum-treated litter, may be a more sustainable fertilizer than NH(4)NO(3). 相似文献
11.
Alum (Al2(SO4)(3).14H2O) additions to poultry litter result in lower ammonia (NH3) volatilization and phosphorus (P) runoff; however, the long-term effects of alum on soil P behavior have been unknown. The objectives of this study were to evaluate the long-term effects of poultry litter, alum-treated litter, and ammonium nitrate (NH4NO3) on P availability in soils and P runoff. Two studies were initiated in 1995: a small plot (1.5x3.0 m) study and a paired watershed (0.405 ha) study. In the small plot study 13 treatments (control, four rates of normal litter, four rates of alum-treated litter, and four rates of NH4NO3) were applied to tall fescue (Festuca arundinacea Schreb.) plots. Results show that after 7 yr water-extractable P (WEP) in surface soil samples was greater with normal litter, but Mehlich III P was greater in surface soils fertilized with alum-treated litter. When soil samples were taken at depth intervals to 50 cm in Year 7, Mehlich III P was only greater in the surface 5 cm for soils fertilized with alum-treated litter. At lower depths Mehlich III P was greater with normal litter, and WEP was up to 288% greater when normal litter was used, indicating that alum significantly reduced P leaching. Uptake of P by fescue was not affected by alum. Results from the paired watershed study showed P loss in runoff was 340% greater for normal litter than for alum-treated litter. This research, combined with earlier work that shows alum use improves air and soil quality, supports the use of alum as a long-term solution to reducing P runoff and leaching. 相似文献
12.
Makris KC Salazar J Quazi S Andra SS Sarkar D Bach SB Datta R 《Journal of environmental quality》2008,37(3):963-971
A growing body of literature reports 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) degradation in poultry litter (PL) to the more toxic inorganic arsenic (As). Aluminum-based drinking-water treatment residuals (WTR) present a low-cost amendment technology to reduce As availability in PL, similar to the use of alum to reduce phosphorus availability. Batch experiments investigated the effectiveness of WTR in removing roxarsone and inorganic As species from PL aqueous suspensions. Incubation experiments with WTR-amended PL evaluated the effects of WTR application rates (2.5-15% by weight) and incubation time (up to 32 d) at two incubation temperatures (23 and 35 degrees C) on As availability in PL. Batch PL aqueous experiments showed the high affinity of As(V), As(III), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and roxarsone for the WTR. The 10% WTR amendment rate decreased As availability in PL by half of that of the unamended (no WTR) PL-incubated samples. The reduction in dissolved As concentrations during incubation of WTR-amended PL samples was kinetically limited, being complete within 13 d. Parallel reductions in roxarsone, As(V), and DMA concentrations were observed with liquid chromatography-inductively coupled plasma mass spectrometry, whereas As(III) and MMA concentrations were always <5% of dissolved As. Incubation temperature did not significantly (p > 0.05) influence dissolved As concentrations in the WTR-amended PL. Potential formation of a copper-containing roxarsone metabolite was considered in PL aqueous suspensions with the aid of electrospray mass spectrometry. Further experiments in the field are necessary to ensure that sorbed As is stable in WTR-amended PL. 相似文献
13.
Warren JG Phillips SB Mullins GL Keahey D Penn CJ 《Journal of environmental quality》2006,35(1):172-182
Field trials were established to compare alum-treated poultry litter (ATPL), normal poultry litter (NPL), and triple superphosphate (TSP) as fertilizer sources for corn (Zea mays L.) when applied at rates based on current litter management strategies in Virginia. Trials were established in the Costal Plain and Piedmont physiographic regions near Painter and Orange, VA, respectively. Nitrogen-based applications of ATPL or NPL applied at rates estimated to supply 173 kg of plant-available nitrogen (PAN) ha(-1) resulted in significantly lower grain yields than treatments receiving commercial fertilizer at the same rate in 2000 and 2001 at Painter. These decreases in grain yield at the N-based application rates were attributed to inadequate N availability, resulting from overestimates of PAN as demonstrated by tissue N concentrations. However, at Orange no treatment effects on grain yield were observed. Applications of ATPL did not affect Al concentrations in corn ear-leaves at either location. Exchangeable soil Al concentrations were most elevated in treatments receiving only NH4NO3 as an N source. At N-based application rates, the ATPL resulted in lower Mehlich 1-extractable P (M1-P) and water-extractable soil phosphorus (H2O-P) concentrations compared to the application of NPL. A portion of this reduction could be attributed to lower rates of P applied in the N-based ATPL treatments. Runoff collected from treatments which received ATPL 2 d before conducting rainfall simulations contained 61 to 71% less dissolved reactive phosphorus (DRP) than treatments receiving NPL. These results show that ATPL may be used as a nutrient source for corn production without significant management alterations. Alum-treated poultry litter can also reduce the environmental impact of litter applications, primarily through minimizing the P status of soils receiving long-term applications of litter and reductions in runoff DRP losses shortly after application. 相似文献
14.
Water quality effects of clearcut harvesting and forest fertilization with best management practices
Nine small (2.5 ha) and four large (70-135 ha) watersheds were instrumented in 1999 to evaluate the effects of silvicultural practices with application of best management practices (BMPs) on stream water quality in East Texas, USA. Two management regimes were implemented in 2002: (i) conventional, with clearcutting, herbicide site preparation, and BMPs and (ii) intensive, which added subsoiling, aerial broadcast fertilization, and an additional herbicide application. Watershed effects were compared with results from a study on the same small watersheds in 1981, in which two combinations of harvesting and mechanical site preparation without BMPs or fertilization were evaluated. Clearcutting with conventional site preparation resulted in increased nitrogen losses on the small watersheds by about 1 additional kg ha(-1) each of total Kjeldahl nitrogen (TKN) and nitrate-nitrogen (NO(3)-N) in 2003. First-year losses were not significantly increased on the large watershed with a conventional site preparation with BMPs. Fertilization resulted in increased runoff losses in 2003 on the intensive small watersheds by an additional 0.77, 2.33, and 0.36 kg ha(-1) for NO(3)-N, TKN, and total phosphorus, respectively. Total loss rates of ammonia nitrogen (NH(4)-N) and NO(3)-N were low overall and accounted for only approximately 7% of the applied N. Mean loss rates from treated watersheds were much lower than rainfall inputs of about 5 kg ha(-1) TKN and NO(3)-N in 2003. Aerial fertilization of the 5-yr-old stand on another large watershed did not increase nutrient losses. Intensive silvicultural practices with BMPs did not significantly impair surface water quality with N and P. 相似文献
15.
The use of spectroscopic techniques (especially phosphorus-31 nuclear magnetic resonance [(31)P-NMR] and X-ray absorption near edge structure spectroscopy) has recently advanced the analysis of the speciation of P in poultry litter (PL) and greatly enhanced our understanding of changes in P pools in PL that receive alum (aluminum sulfate) to reduce water-soluble P and control ammonia emissions from poultry houses. Questions remain concerning changes of P species during long-term storage, drying, or after application of PL to cropland or for other uses, such as turfgrass. In this study, we investigated a set of six PL samples (of which three were alum-amended and three were unamended) that had been characterized previously. The P speciation was analyzed using solid-state (31)P-NMR spectroscopy, and the mineralogy was analyzed by powder X-ray diffraction (XRD) after storing the samples moist and dried for up to 5 yr under controlled conditions. The magnesium ammonium phosphate mineral struvite was identified in all but one PL samples. Struvite concentrations were generally lower in dried samples (< or = 14%) than in samples stored moist (23 and 26%). The moist samples also had higher concentrations of phosphate bound to aluminum hydroxides. Solid-state NMR spectroscopy was in general more sensitive than XRD in detecting and quantifying P species. Although phosphate associated with calcium and aluminum made up a large proportion of P species, they were not detected by XRD. 相似文献
16.
Large and repeated manure applications can exceed the P sorption capacity of soil and increase P leaching and losses through subsurface drainage. The objective of this study was to evaluate the fate of P applied with increasing N rates in dairy wastewater or poultry litter on grassland during a 4-yr period. In addition to P recovery in forage, soil-test phosphorus (STP) was monitored at depths to 180 cm in a Darco loamy sand (loamy, siliceous, semiactive, thermic Grossarenic Paleudults) twice annually. A split-plot arrangement of a randomized complete block design comprised four annual N rates (0, 250, 500, and 1000 kg ha(-1)) for each nutrient source on coastal bermudagrass [Cynodon dactylon (L.) Pers.] over-seeded with ryegrass (Lolium multiflorum L. cv. TAM90). Increasing annual rates of N and P in wastewater and poultry litter increased P removal in forage (P = 0.001). At the highest N rate of each nutrient source, less than 13% of applied P was recovered in forage. The highest N rates delivered 8 times more P in wastewater or 15 times more P in poultry litter than was removed in forage harvests during an average year. Compared with controls, annual P rates up to 188 kg ha(-1) in dairy wastewater did not increase STP concentrations at depths below 30 cm. In contrast, the highest annual P rate (590 kg ha(-1)) in poultry litter increased STP above that of controls at depth intervals to 120 cm during the first year of sampling. Increases in STP at depths below 30 cm in the Darco soil were indicative of excessive P rates that could contribute to nonpoint-source pollution in outflows from subsoil through subsurface drainage. 相似文献
17.
Blazier MA Gaston LA Clason TR Farrish KW Oswald BP Evans HA 《Journal of environmental quality》2008,37(4):1546-1558
Fertilizing pastures with poultry litter has led to an increased incidence of nutrient-saturated soils, particularly on highly fertilized, well drained soils. Applying litter to silvopastures, in which loblolly pine (Pinus taeda L.) and bahiagrass (Paspalum notatum) production are integrated, may be an ecologically desirable alternative for upland soils of the southeastern USA. Integrating subterranean clover (Trifolium subterraneum) into silvopastures may enhance nutrient retention potential. This study evaluated soil nutrient dynamics, loblolly pine nutrient composition, and loblolly pine growth of an annually fertilized silvopasture on a well drained soil in response to fertilizer type, litter application rate, and subterranean clover. Three fertilizer treatments were applied annually for 4 yr: (i) 5 Mg litter ha(-1) (5LIT), (ii) 10 Mg litter ha(-1) (10LIT), and (iii) an inorganic N, P, K pasture blend (INO). Litter stimulated loblolly pine growth, and neither litter treatment produced soil test P concentrations above runoff potential threshold ranges. However, both litter treatments led to accumulation of several nutrients (notably P) in upper soil horizons relative to INO and unfertilized control treatments. The 10LIT treatment may have increased N and P leaching potential. Subterranean clover kept more P sequestered in the upper soil horizon and conferred some growth benefits to loblolly pine. Thus, although these silvopasture systems had a relatively high capacity for nutrient use and retention at this site, litter should be applied less frequently than in this study to reduce environmental risks. 相似文献
18.
Environmental impacts of composting poultry litter with chemical amendments at the field scale have not been well quantified. The objectives of this study were to measure (i) P runoff and (ii) forage yield and N uptake from small plots fertilized with composted and fresh poultry litter. Two composting studies, aerated using mechanical turning, were conducted in consecutive years. Composted litter was collected at the completion of each study for use in runoff studies. Treatments in runoff studies included an unfertilized control, fresh (uncomposted) poultry litter, and litter composted with no amendment, H3PO4, alum, or a microbial mixture. An additional treatment, litter composted with alum plus the microbial mixture, was evaluated during the first year. Fertilizer treatments were applied at rates equivalent to 8.96 Mg ha(-1) and rainfall simulators were used to produce a 5 cm h(-1) storm event. Composted poultry litter, regardless of treatment, had higher total P concentrations than fresh poultry litter. Composting poultry litter resulted in reductions of N/P ratios by as much as 51%. Soluble reactive P concentrations were lowest in alum-treated compost, which reduced soluble P concentrations in runoff water by as much as 84%. Forage yields and N uptake were greatest from plots fertilized with fresh poultry litter. Composting poultry litter without the addition of C sources can increase P concentrations in the end product and surface runoff. This study also indicated that increased rates of composted poultry litter would be required to meet equivalent N rates supplied by fresh poultry litter. 相似文献
19.
Effect of chemical and microbial amendments on ammonia volatilization from composting poultry litter 总被引:6,自引:0,他引:6
Research has shown that aluminum sulfate (alum) and phosphoric acid greatly reduce ammonia (NH3) volatilization from poultry litter; however, no studies have yet reported the effects of these amendments on field-scale composting of poultry litter. The objectives of this study were to (i) evaluate NH3 volatilization from composting litter by measuring both NH3 volatilization and changes in total nitrogen (N) in the litter and (ii) evaluate potential methods of reducing NH3 losses from composting poultry litter. Poultry litter was composted for 68 d the first year and 92 d the second year. Eleven treatments were screened in Year 1, which included an unamended control, a microbial mixture, a microbial mixture with 5% alum incorporated into the litter, 5 and 10% alum rates either surface-applied or incorporated, and 1 and 2% phosphoric acid rates either surface-applied or incorporated. Treatments in Year 2 included an unamended control, a microbial mixture, alum (7% by fresh wt.), and phosphoric acid (1.5% by fresh wt.). Alum and phosphoric acid reduced NH3 volatilization from composting poultry litter by as much as 76 and 54%, respectively. The highest NH3 emission rates were from microbial treatments each year. Compost treated with chemical amendments retained more initial N than all other treatments. Due to the cost and N loss associated with composting poultry litter, composting is not economical from an agronomic perspective compared with the use of fresh poultry litter. 相似文献
20.
Cook KL Rothrock MJ Warren JG Sistani KR Moore PA 《Journal of environmental quality》2008,37(6):2360-2367
Microbial mineralization of urea and uric acid in poultry litter results in the production of ammonia, which can lead to decreased poultry performance, malodorous emissions, and loss of poultry litter value as a fertilizer. Despite the fact that this is a microbial process, little is known about how the microbial populations, especially ammonia-producing (ureolytic) organisms in poultry litter, respond to litter amendments such as aluminum sulfate (Al(2)(SO(4))(3).14H(2)O; alum). The goal of this study was to measure the temporal changes in total bacterial and fungal populations and urease-producing microorganisms in nontreated litter or litter treated with 10% alum. Quantitative real-time polymerase chain reaction was used to target the bacterial 16S rRNA gene, the fungal 18S rRNA gene, or the urease gene of bacterial and fungal ammonia producers in a poultry litter incubation study. Nontreated poultry litter had relatively high total (2.8 +/- 0.8 x 10(10) cells g(-1) litter) and ureolytic (2.8 +/- 1.3 x 10(8) cells g(-1) litter) bacterial populations. Alum treatment reduced the total bacterial population by 50% and bacterial urease producers by 90% within 4 wk. In contrast, at 16 wk after alum treatment, the fungal population was three orders of magnitude higher in alum-treated litter than in nontreated litter (3.5 +/- 0.8 x 10(7) cells g(-1) litter and 5.5 +/- 2.5 x 10(4) cells g(-1) litter, respectively). The decrease in pH produced by alum treatment is believed to inhibit bacterial populations and favor growth of fungi that may be responsible for the mineralization of organic nitrogen in alum-treated litters. 相似文献