首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil concentrations and degradation rates of methyl isothio-cyanate (MITC), chloropicrin (CP), 1,3-dichloropropene (1,3-D), and dimethyl disulfide (DMDS) were determined under fumigant application scenarios representative of commercial raised bed, plastic mulched vegetable production systems. Five days after application, 1,3-D, MITC, and CP were detected at concentrations up to 3.52, 0.72, and 2.45 μg cm, respectively, in the soil atmosphere when applications were made in uniformly compacted soils with a water content >200% of field capacity and covered by a virtually impermeable or metalized film. By contrast, DMDS, MITC, and CP concentrations in the soil atmosphere were 0.81, 0.02, and 0.05 μg cm, respectively, 5 d after application in soil containing undecomposed plant residue, numerous large (>3 mm) clods, and water content below field capacity and covered by low-density polyethylene. Ranked in order of impact on the persistence of fumigants in soil were soil water content (moisture), soil tilth (the physical condition of soil as related to its fitness as a planting bed), the type of plastic film used to cover fumigated beds, and soil texture. Fumigants were readily detected 13 d after application when applied in uniformly compacted soils with water contents >200% of capacity and covered by a virtually impermeable or metalized film. By contrast, 1,3-D and MITC had dissipated 5 d after application in soils with numerous large (>3 mm) clods and water contents below field capacity that were covered by low-density polyethylene. Soil degradation of CP, DMDS, and MITC were primarily attributed to biological mechanisms, whereas degradation of 1,3-D was attributed principally to abiotic factors. This study demonstrates improved soil retention of agricultural fumigants in application scenarios representative of good agricultural practices.  相似文献   

2.
The mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) is used as a preplant soil fumigant. In comparison with individual fumigants, application of a mixture may affect the environmental dissipation and fate of each chemical, such as emission and degradation. We investigated the degradation of CP, 1,3-D, and their mixture in fresh soils and sterile soils, and evaluated the competitive characteristic of fumigants in the mixture. The degradation of low concentrations of CP in fresh soil was accelerated at early times in the presence of 1,3-D, whereas the addition of CP reduced the degradation rate of trans-1,3-D, possibly by inhibiting the activity of trans-1,3-D degrading microorganisms. The potential of applying amendments to the soil to increase the rate of CP and 1,3-D degradation was also illustrated. The degradation of both fumigants was significantly enhanced in soils amended with ammonium thiosulfate (ATS) and sodium diethyldithiocarbamate (Na-DEDTC) compared with unamended soil. Competitive degradation was observed for CP in amended soils in the presence of 1,3-D. The degradation of cis-1,3-D in amended soils spiked as a mixture of 1,3-D and CP was repressed compared with the rate of degradation in samples spiked with 1,3-D only. This implied that in abiotic degradation, CP and cis-1,3-D competed for a limited number of reaction sites in amended soil, resulting in decreased degradation rates. No significant influence of fumigant mixtures was observed for trans-1,3-D in amended soil.  相似文献   

3.
Recent studies have observed enhanced degradation of methyl isothiocyanate (MITC) from repeated fumigation in agricultural soils. Little is known about fumigant degradation in forest and nursery soils. This study was conducted to determine degradation rates of MITC and chloropicrin (CP) in two forest soils and the impacts of nursery management on degradation of MITC and CP. The half-life values of MITC and CP were evaluated in the laboratory under isothermal conditions (22 +/- 2 degrees C). Three rates representing 0.5x, 1x, and 2x field application rates for each fumigant were used in laboratory incubations. Effect of microbial degradation was determined by conducting incubations with both fresh and sterilized soils. Soil moisture effects were also studied. There was no difference in MITC or CP degradation between fumigated and nonfumigated forest nursery soils. Soil sterilization and high soil moisture content (15% by wt.) reduced MITC and CP degradation. The degradation rates of MITC and CP varied with factors such as nursery history, fumigant application rates, and freshness of tested soils.  相似文献   

4.
The soil fumigants 1,3-dichloropropene (1,3-D) and chloropicrin (CP) are often used for controlling soil-borne plant pathogens and parasitic nematodes before reestablishing new vineyards and orchards. To evaluate crop safety and environmental risks with the replant fumigation, four field experiments were performed over 2 yr to examine 1,3-D and CP lateral movement away from the treated fields. Shank injection with or without a virtually impermeable film (V1F) was used in two vineyard fumigation experiments, and spot drip application without tarp cover was used in two orchard experiments. Results showed that 1,3-D and CP gases moved laterally to 6 m from the treated fields when the fumigants were applied by shank injection. The maximum 1,3-D or CP soil gas concentration at 6 m was approximately 10 ng cm(-3) when the fumigated plot was not cover with a tarp. With VIF, the measured maximum concentration increased to approximately 100 ng cm(-3). In the spot drip application, maximum 1,3-D and CP gas concentrations reached approximately 100 ng cm(-3) but at 1.5 m radial distance from the point of fumigant injection.  相似文献   

5.
Minimizing atmospheric emissions of soil fumigants is critical for protecting human and environmental health. Covering the soil surface with a plastic tarp is a common approach to restrict fumigant emissions. The mass transfer of the fumigant vapors through the tarp is often the rate-limiting factor in fumigant emissions. An approach for standardizing measurements of film permeability is proposed that is based on determining the resistance (R) of films to diffusion of fumigants. Using this approach, values were determined for more than 200 film-chemical combinations under a range of temperature, relative humidity, and film handling conditions. Resistance to diffusion was specific for each fumigant/film combination, with the largest range of values observed for the fumigant chloropicrin. For each fumigant, decreased with increasing temperature. Changes in film permeability due to increases in temperature or field installation were generally less than a factor of five. For one film, values determined under conditions of very high relative humidity (approximately 100%) were at least 100 times lower than when humidity was very low (approximately 2%). This approach simplifies the selection of appropriate films for soil fumigation by providing rapid, reproducible, and precise measurements of their permeability to specific fumigants and application conditions.  相似文献   

6.
Understanding the control mechanisms of fumigant movement in soil is a fundamental step for developing management strategies to reduce atmospheric emissions. Most soil fumigants including chloropicrin (CP) are applied by shank injection, and the application process often leaves vertical soil fractures that would potentially cause preferential fumigant movement and increased emissions. This potential transport pathway was evaluated by comparing cumulative emissions and soil air concentrations of CP from direct field measurements with those predicted using analytical and numerical models after assuming either point or rectangle sources for the injected CP. Results clearly showed that shank-injected CP, when treated as vertical rectangle sources, produced cumulative emission losses similar to the field measurements. Treating the shanked CP as point sources caused approximately 50% underprediction than the field measurements. The study also demonstrated that fumigant cumulative emissions can be predicted, with reasonable accuracy, using either analytical or numerical simulations.  相似文献   

7.
Methods for measuring and estimating flux density of soil fumigants under field conditions are important for the purpose of providing inputs to air dispersion models and for comparing the effects of management practices on emission reduction. The objective of this study was to measure the flux of 1,3-dichloropropene (1,3-D) and chloropicrin at a site in Georgia (GA) using the aerodynamic method and the dynamic flux chamber (FC) method. A secondary objective was to compare the effects of high density polyethylene (HDPE), and virtually impermeable film (VIF) tarps on fumigant flux at a site in Florida (FL). Chloropicrin and 1,3-D were applied by surface drip application of In-Line soil fumigant on vegetable beds covered by low density polyethylene (LDPE), HDPE, or VIF. The surface drip fumigation using In-Line and LDPE tarp employed in this study resulted in volatilization of 26.5% of applied 1,3-D and 11.2% of the applied chloropicrin at the GA site, as determined using the aerodynamic method. Estimates of mass loss obtained from dynamic FCs were 23.6% for 1,3-D and 18.0% for chloropicrin at the GA site. Flux chamber trials at the FL site indicate significant additional reduction in flux density, and cumulative mass loss when VIF tarp is used. This study supports the use of dynamic FCs as a valuable tool for estimating gas flux density from agricultural soils, and evaluating best management practices for reducing fumigant emissions to the atmosphere.  相似文献   

8.
Soil fumigation using shank injection creates high fumigant concentration gradients in soil from the injection point to the soil surface. A temperature gradient also exists along the soil profile. We studied the degradation of methyl isothiocyanate (MITC) and 1,3-dichloropropene (1,3-D) in an Arlington sandy loam (coarse-loamy, mixed, thermic Haplic Durixeralf) at four temperatures and four initial concentrations. We then tested the applicability of first-order, half-order, and second-order kinetics, and the Michaelis-Menten model for describing fumigant degradation as affected by temperature and initial concentration. Overall, none of the models adequately described the degradation of MITC and 1,3-D isomers over the range of the initial concentrations. First-order and half-order kinetics adequately described the degradation of MITC and 1,3-D isomers at each initial concentration, with the correlation coefficients greater than 0.78 (r2> 0.78). However, the derived rate constant was dependent on the initial concentration. The first-order rate constants varied between 6 and 10x for MITC for the concentration range of 3 to 140 mg kg(-1), and between 1.5 and 4x for 1,3-D isomers for the concentration range of 0.6 to 60 mg kg(-1), depending on temperature. For the same initial concentration range, the variation in the half-order rate constants was between 1.4 and 1.7x for MITC and between 3.1 and 6.1x for 1,3-D isomers, depending on temperature. Second-order kinetics and the Michaelis-Menten model did not satisfactorily describe the degradation at all initial concentrations. The degradation of MITC and 1,3-D was primarily biodegradation, which was affected by temperature between 20 and 40 degrees C, following the Arrhenius equation (r2 > 0.74).  相似文献   

9.
Metam-sodium had become the most heavily used soil fumigant in recent years as the deadline approached for methyl bromide to phase out in January 2005. After application, metam-sodium decomposes rapidly to methyl isothiocyanate (MITC), a highly toxic compound capable of killing a wide spectrum of soil-borne pests. Inhalation risk of MITC ranked high among airborne agricultural pesticides in California. Information about off-gassing intensity and percentage of emission is essential for exposure risk assessment and mitigation measures, but is limited, especially for new application methods such as drip chemigation. Air concentrations of MITC were monitored around a field treated with metam-sodium through surface drip irrigation system. The field was tarped with plastic films before the chemigation. The air concentrations at receptor locations were simulated for the period of air monitoring with the Industrial Source Complex (ISC3) Dispersion Model, and soil flux density of MITC at various periods after chemigation was estimated through a back-calculation procedure. The estimated soil flux density of MITC showed a diurnal pattern, with the daytime flux stronger than nighttime. However, the average air concentration at nighttime was higher than that at daytime. Soil flux density peaked at 4.30 microg m-2 s-1 in the first 12-h period after chemigation, then declined with time. The MITC emission percentage in the first 60-h was 2.65% of applied mass, of which 57% occurred in the first 24-h after chemigation. The study indicated that the tarped bed drip application method of metam-sodium had a relatively good control of MITC emission from soil.  相似文献   

10.
Reducing emissions is essential for minimizing the impact of soil fumigation on the environment. Water application to the soil surface (or water seal) has been demonstrated to reduce 1,3-dichloropropene (1,3-D) emissions in soil column tests. This study determined the effectiveness of water application to reduce emissions of 1,3-D and chloropicrin (CP) in comparison to other surface seals under field conditions. In a small-plot field trial on a Hanford sandy loam soil (coarse-loamy, mixed, superactive, nonacid, thermic Typic Xerorthents) in the San Joaquin Valley, CA. Telone C35 (61% 1,3-D and 35% CP) was shank-applied at a depth of 46 cm at a rate of 610 kg ha-1. Soil surface seal treatments included control (no tarp and no water application), standard high density polyethylene (HDPE) tarp over dry and pre-irrigated soil, virtually impermeable film (VIF) tarp, initial water application by sprinklers immediately following fumigation, and intermittent water applications after fumigation. The atmospheric emissions and gas-phase distribution of fumigants in soil profile were monitored for 9 d. Among the surface seals, VIF and HDPE tarp over dry soil resulted in the lowest and the highest total emission losses, respectively. Intermittent water applications reduced 1,3-D and CP emissions significantly more than HDPE tarp alone. The initial water application also reduced emission peak and delayed emission time. Pre-irrigated soil plus HDPE tarp reduced fumigant emissions similarly as the intermittent water applications and also yielded the highest surface soil temperature, which may improve overall soil pest control.  相似文献   

11.
在水溶液中,以微波辅助无极汞灯(Microwave-Assisted Eletrodeless Discharge Mercury Lamp,MW-EDML)降解氯氰菊酯、甲氰菊酯和功夫菊酯等3种拟除虫菊酯农药(Synthetic pyrethroids,SPs),采用固相萃取(Solid Phase Extraction,SPE)富集后,用GC-MS鉴定降解产物,并根据降解产物重点探讨了SPs的降解机理。3种SPs的主要降解产物有6种,其降解途径有:酯键水解、氰基水解、脱羧、醚键断裂、氧化、苯环的羟基化以及与溶剂反应等。实验结果还表明:MW-EDML是个高效、简便的降解SPs类农药手段,可应用于其他有机污染物的降解过程。  相似文献   

12.
Preplant soil fumigation is an important pest management practice in coastal California strawberry production regions. Potential atmospheric emissions of fumigants from field treatment, however, have drawn intensive environmental and human health concerns; increasingly stringent regulations on fumigant use have spurred research on low-emission application techniques. The objectives of this research were to determine the effects of a new low-permeability film, commonly known as totally impermeable film (TIF), on fumigant emissions and on fumigant distribution in soil. A 50/50 mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) was shank-applied at 314 kg ha in two location-separate field plots (0.4 ha each) in Ventura County, California, in fall 2009. One plot was surface-covered with standard polyethylene (PE) film, and the other was covered with TIF immediately after fumigant application. Data collection included emissions, soil-gas phase concentration profile, air concentration under the film, and soil residuals of the applied fumigants. Peak emission flux of 1,3-D and CP from the TIF field was substantially lower than from the PE field. Total through-film emission loss was 2% for 1,3-D and <1% for CP from the TIF field during a 6-d film covering period, compared with 43% for 1,3-D and 12% for CP from the PE field. However, on film-cutting, greater retention of 1,3-D in the TIF field resulted in a much higher emission surge compared with the PE field, while CP emissions were fairly low in both fields. Higher concentrations and a more uniform distribution in the soil profile for 1,3-D and CP were observed under the TIF compared with the PE film, suggesting that the TIF may allow growers to achieve satisfactory pest control with lower fumigant rates. The surging 1,3-D emissions after film-cutting could result in high exposure risks to workers and bystanders and must be addressed with additional mitigation measures.  相似文献   

13.
Hydrolysis is the major pathway for fumigant 1,3-dichloropropene (1,3-D) degradation in water and soil, yet the process is not well understood. Experiments were conducted to investigate the effect of various environmental factors on the rate of 1,3-D hydrolysis. Cis-, trans-1,3-D and their isomeric mixture were spiked into water and Arlington soil (coarse-loamy, mixed, thermic Haplic Durixeralfs) and incubated under different conditions. The rate of 1,3-D hydrolysis in water and soil were evaluated based on its residual amount and Cl- release, respectively. 1,3-D hydrolyzed rapidly in deionized water, with a half-life of 9.8 d at 20 degrees C. The hydrolysis was pH dependent, with low pH inhibiting and high pH favoring the reaction. Other factors such as isomeric differences, photo irradiation, suspended particles, and small amounts of co-solutes had little effect on the reaction. In soil, 1,3-D hydrolyzed following pseudo first-order kinetics. The hydrolysis rate constant increased with soil moisture content and decreased with the initial 1,3-D concentration. At 20 degrees C, > 60% of the 1,3-D applied at < 0.61 g kg(-1) in 10% moisturized soil hydrolyzed within 30 d. The soil particle size and mineralogy had little effect on the reaction rate. Organic matter promoted 1,3-D degradation via direct substitution reactions, and the trans-isomer showed preference over the cis- to react with certain organic molecules. Microbial contributions were initially insignificant, and became important as soil microorganisms adapted to the fumigant. The results suggest that to accelerate 1,3-D degradation, pH, soil moisture, and organic amendment should be considered.  相似文献   

14.
Soil fumigation is an important management practice for controlling soil pests and enabling successful replanting of orchards. Reducing emissions is required to minimize the possible worker and bystander risk and the contribution of fumigants to the atmosphere as volatile organic compounds that lead to the formation of ground-level ozone. A field trial was conducted in a peach orchard replant field to investigate the effects of fumigation method (shank-injection vs. subsurface drip-application treatments) and surface treatments (water applications and plastic tarps) on emissions of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) from shank-injection of Telone C-35 and drip application of InLine. Treatments included control (no water or soil surface treatment); standard high-density polyethylene (HDPE) tarp, virtually impermeable film (VIF) tarp, and pre-irrigation, all over shank injection; and HDPE tarp over and irrigation with micro-sprinklers before and after the drip application. The highest 1,3-D and CP emission losses over a 2-wk monitoring period were from the control (36% 1,3-D and 30% CP) and HDPE tarp (43% 1,3-D and 17% CP) over shank injection. The pre-irrigation 4 d before fumigation and VIF tarp over shank injection had similar total emission losses (19% 1,3-D and 8-9% CP). The HDPE tarp and irrigations over subsurface drip-application treatments resulted in similar and the lowest emission losses (12-13% 1,3-D, and 2-3% CP). Lower fumigant concentrations in the soil-gas phase were observed with drip-application than in the shank-injection treatments; however, all treatments provided 100% kill to citrus nematodes in bags buried from 30 to 90 cm depth. Pre-irrigation and drip application seem to be effective to minimize emissions of 1,3-D and CP.  相似文献   

15.
SOFEA (SOil Fumigant Exposure Assessment system; Dow AgroSciences, Indianapolis, IN) is a new stochastic numerical modeling tool for evaluating and managing human inhalation exposure potential associated with the use of soil fumigants. SOFEA calculates fumigant concentrations in air arising from volatility losses from treated fields for large agricultural regions using multiple transient source terms (treated fields), geographical information systems (GIS) information, agronomic specific variables, user-specified buffer zones, and field reentry intervals. A modified version of the USEPA Industrial Source Complex Short Term model (ISCST3) is used for air dispersion calculations. Weather information, field size, application date, application rate, application type, soil incorporation depth, pesticide degradation rates in air, tarp presence, field retreatment, and other sensitive parameters are varied stochastically using Monte Carlo techniques to mimic region and crop specific agronomic practices. Regional land cover, elevation, and population information can be used to refine source placement (treated fields), dispersion calculations, and risk assessments. This paper describes the technical algorithms of SOFEA and offers comparisons of simulation predictions for the soil fumigant 1,3-dichloropropene (1,3-D) to actual regional air monitoring measurements from Kern, California. Comparison of simulation results to daily air monitoring observations is remarkable over the entire concentration distribution (average percent deviation of 44% and model efficiency of 0.98), especially considering numerous inputs such as meteorological conditions for SOFEA were unavailable and approximated by neighboring regions. Both current and anticipated and/or forecasted fumigant scenarios can be simulated using SOFEA to provide risk managers and product stewards the necessary information to make sound regulatory decisions regarding the use of soil fumigants in agriculture.  相似文献   

16.
Clay minerals and humic substance (HS)-clay complexes are widely distributed in soil environments. Improved predictions on the uptake of organic pollutants by soil require a better understanding of fundamental mechanisms that control the relative contribution from organic and inorganic constituents. Five selected aromatic compounds varying in electronic structure, including nonpolar phenanthrene (PHEN), 1,2,4,5-tetrachlorobenzene (TeCB), polar 1,3-dinitrobenzene (DNB), 2,6-dichlorobenzonitrile (dichlobenil [DNL]), and 1-naphthalenyl methylcarbamate (carbaryl [CBL]), were sorbed separately from aqueous solution to Na(+)-, K(+)-, Cs(+)-, and Ca(2+)-saturated montmorillonites with and without the presence of dissolved HS at pH about 6. Upon normalizing for hydrophobic effects by solute aqueous solubility, the overall trend of sorptive affinity to HS-free K(+)-clay is DNB > DNL, CBL > PHEN, TeCB, indicating preferential adsorption of the polar solutes. With the presence of HS, sorption of PHEN, TeCB, and CBL increases by several times compared with the pure clay, attributed to HS-facilitated hydrophobic partition (PHEN and TeCB) or H-bonding (CBL). The enhanced sorption of PHEN by HS is cation dependent, where Cs(+) shows the strongest facilitative effect. Coadsorption of HS does not affect sorption of DNB and DNL to clays except that of DNB to Ca(2+)-clay because cation-dipole interactions between the polar group (NO(2) or CN) of solute and weakly hydrated exchangeable cations dominate the overall sorption.  相似文献   

17.
High emissions from soil fumigants increase the risk of detrimental impact on workers, bystanders, and the environment, and jeopardize future availability of fumigants. Efficient and cost-effective approaches to minimize emissions are needed. This study evaluated the potential of surface water application (or water seal) to reduce 1,3-dichloropropene (1,3-D) emissions from soil (Hanford sandy loam) columns. Treatments included dry soil (control), initial water application (8 mm of water just before fumigant application), initial plus a second water application (2.6 mm) at 12 h, initial plus two water applications (2.6 mm each time) at 12 and 24 h, standard high density polyethylene (HDPE) tarp, initial water application plus HDPE tarp, and virtually impermeable film (VIF) tarp. Emissions from the soil surface and distribution of 1,3-D in the soil-gas phase were monitored for 2 wk. Each water application abruptly reduced 1,3-D emission flux, which rebounded over a few hours. Peak emission rates were substantially reduced, but total emission reduction was small. Total fumigant emission was 51% of applied for the control, 46% for initial water application only, and 41% for the three intermittent water applications with the remaining water treatment intermediate. The HDPE tarp alone resulted in 45% emission, while initial water application plus HDPE tarp resulted in 38% emission. The most effective soil surface treatment was VIF tarp (10% emission). Surface water application can be as effective, and less expensive than, standard HDPE tarp. Frequent water application is required to substantially reduce emissions.  相似文献   

18.
The amendment of soil with compost may significantly influence the mobility and persistence of pesticides and thus affect their environmental fate. Factors like adsorption, kinetics, and rate of degradation of pesticides could be altered in amended soils. The aim of this study was to determine the effects of the addition of compost made from source-separated municipal waste and green waste, on the fate of triasulfuron [(2-(2-chloroethoxy)-N-[[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide], a sulfonylurea herbicide used in postemergence treatment of cereals. Two native soils with low organic matter content were used. A series of analyses was performed to evaluate the adsorption and degradation of the herbicide in soil and in solution after the addition of compost and compost-extracted organic fractions, namely humic acids (HA), fulvic acids (FA), and hydrophobic dissolved organic matter (HoDOM). Results have shown that the adsorption of triasulfuron to soil increases in the presence of compost, and that the HA and HoDOM fractions are mainly responsible for this increase. Hydrophobic dissolved organic matter applied to the soils underwent sorption reactions with the soils, and in the sorbed state, served to increase the adsorption capacity of the soil for triasulfuron. The rate of hydrolysis of triasulfuron in solution was significantly higher at acidic pH and the presence of organic matter fractions extracted from compost also slightly increased the rate of hydrolysis. The rate of degradation in amended and nonamended soils is explained by a two-stage degradation kinetics. During the initial phase, although triasulfuron degradation was rapid with a half-life of approximately 30 d, the presence of compost and HoDOM was found to slightly reduce the rate of degradation with respect to that in nonamended soil.  相似文献   

19.
The half-lives, degradation rates, and metabolite formation patterns of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were determined in an anaerobic wetland soil incubated at 24 degrees C for 112 d. At 0, 7, 14, 28, 42, 56, and 112 d, the soil and water were analyzed for atrazine and metolachlor, and their major metabolites. The soil oxidation-reduction potential reached -200 mV after 14 d. Degradation reaction rates were first-order for atrazine in anaerobic soil and for metolachlor in the aqueous phase. Zero-order reaction rates were best fit for atrazine in the aqueous phase and metolachlor in anaerobic soil. In anaerobic soil, the half-life was 38 d for atrazine and 62 d for metolachlor. In the aqueous phase above the soil, the half-life was 86 d for atrazine and 40 d for metolachlor. Metabolites detected in the anaerobic soil were hydroxyatrazine and deethylatrazine for atrazine, and relatively small amounts of ethanesulfonic acid and oxanilic acid for metolachlor. Metabolites detected in the aqueous phase above the soil were hydroxyatrazine, deethylatrazine, and deisopropylatrazine for atrazine, and ethanesulfonic acid and oxanilic acid for metolachlor. Concentrations of metabolites in the aqueous phase generally peaked within the first 25 d and then declined. Results indicate that atrazine and metolachlor can degrade under strongly reducing conditions found in wetland soils. Metolachlor metabolites, ethanesulfonic acid, and oxanilic acid are not significantly formed under anaerobic conditions.  相似文献   

20.
Contamination of water often results from the heavy use of agricultural chemicals, and the disposal of aqueous pesticide waste is a concern. Anodic Fenton treatment (AFT) has been shown to be a successful remediation method for pesticides in solution, but the effect of soil on the degradation kinetics of pesticides using this method has not been determined. The purpose of this study was to study the effect of humic acid, as a soil surrogate, on the degradation kinetics of alachlor [2-chloro-N-(2,6-diethylphenyl-N-(methoxymethyl) acetamide], a heavily used herbicide that has been studied in pure aqueous solution by AFT. The AFT consists of a controlled constant delivery of Fenton reagents, using an electrochemical half-cell to deliver ferrous iron. Alachlor was quickly degraded by AFT, and the kinetics were found to obey the previously developed AFT model well. Degradation of alachlor by AFT in humic acid slurry showed that when the amount of humic acid was increased, alachlor degradation was significantly slowed down and the degradation kinetics were shifted from the AFT model to a first-order model. Further experimentation indicated that humic acid not only competes with alachlor for hydroxyl radicals, reducing the degradation rate of the target compound, but also buffers the slurry at near neutral pH, blocking regeneration of ferrous ion from ferric ion and subsequently shifting the kinetics to first order. Degradation of several other pesticides in humic acid slurry also followed first-order kinetics. These results imply that higher concentrations of Fenton reagents will be required for soil remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号