共查询到20条相似文献,搜索用时 0 毫秒
1.
The time between swine (Sus scrofa) manure application to soil as a crop fertilizer, the first rainfall event, and the frequency of rainfall events should influence leaching potential of fecal pathogens. Soil microcosms were inoculated in the lab with a swine manure isolate of Escherichia coli, strain RS2G, expressing green fluorescent protein, to examine how timing and frequency of rainfall events influences RS2G leaching and survival in soil. Liquid swine manure inoculated with RS2G was applied to intact soil cores (20 cm in diameter x 30 cm long) 4, 8, or 16 d before the first rainfall event (50.8 mm over a 4-h period), and each core received one to three rainfall events. Manure application methods (no-till surface-broadcast, broadcast and incorporated, and tilled before broadcast) had no affect on leaching, although there was greater survival in soils when the manure had been incorporated. Most of the RS2G in the leachate appeared following the first rainfall event and RS2G leaching decreased with increasing time between manure application and the first rainfall, although leachates contained as much as 3.4 to 4.5 log colony forming units (CFU) 100 mL(-1) of RS2G when the first rainfall occurred 16 d after manure application. With increasing frequency of rainfalls there was a decrease in subsequent concentrations of RS2G in the leachate. There was no correlation between leachate RS2G and total coliforms or fecal streptococci concentrations. Soil RS2G numbers were 1 to 10% of the inoculum regardless of the length of time between manure application and the first rainfall. RS2G leaching was mostly influenced by the time between manure application and first rainfall event, and significant leaching and survival in soil was possible even if the first rain occurred 16 d after manure application. 相似文献
2.
Land application of wastewater presents potential for ground water pollution if not properly managed. In situ breakthrough tests were conducted using potato (Solanum tuberosum L.)-processing wastewater and a Br tracer to characterize P leaching in seasonally frozen sandy outwash soils. In the first test, P and Br breakthrough were measured in a 7-m deep well following wastewater [2.94 mg L(-1) total P (TP); 280 mg L(-1) Br] application at the site that had 13.1 mg water-extractable P (WEP) kg(-1)and 94.4 mg Bray-1 P kg(-1). Bromide was detected in the well after approximately 0.4 pore volumes, but there was no P break-through after 7 pore volumes. In the second breakthrough test, wastewater containing 3.6 mg L(-1) TP and 259 mg L(-1) Br was applied on 1.5-m deep lysimeters at low (0.8 mg WEP kg(-1); 12.1 mg Bray-1 P kg(-1)) and high soil test P sites (104 mg WEP kg(-1); 585 mg Bray-1 P kg(-1)). Leachate TP concentration during the test remained constant (0.04 mg L(-1)) at the low P sites but increased from approximately 3.5 to 5.6 mg L(-1) at the high P sites. These results indicate no P leaching in low P soils, but leaching in high P soils, thus suggesting that most of the P leached at the high P sites was mainly due to desorption and dissolution of weakly adsorbed P from prior P applications. This was consistent with P transport simulations using the convective-dispersive equation. We conclude that P concentration in land-applied wastewater should be regulated based on soil test-P level plus wastewater P loading. 相似文献
3.
Due to ever-increasing state and federal regulations, the future use of fumigants is predicted on reducing negative environmental impacts while offering sufficient pestcontrol efficacy. To foster the development of a best management practice, an integrated tool is needed to simultaneously predict fumigant movement and pest control without having to conduct elaborate and costly experiments. The objective of this study was (i) to present a two-dimensional (2-D) mathematical model to describe both fumigant movement and pestcontrol and (ii) to evaluate the model by comparing the simulated and observed results. Both analytical and numerical methods were used to predict methyl iodide (MeI) transport and fate. To predict pest control efficacy, the concentration-time index (CT) was defined and a two-parameter logistic survival model was used. Dose-response curves were experimentally determined for MeI against three types of pests (barnyardgrass [Echinochloa crus-galli] seed, citrus nematode [Tylenchulus semipenetrans], and fungi [Fusarium oxysporum]). Methyl iodide transport and pest control measurements collected from a 2-D experiimental system (60 by 60 cm) were used to test the model. Methyl iodide volatilization rates and soil gas-phase concentrations over time were accurately simulated by the model. The mass balance analysis indicates that the fraction of MeI degrading in the soil was underestimated when determined by the appearance of iodide concentration. The experimental results showed that after 24 h of MeI fumigation in the 2-D soil chamber, fungal population was not suppressed; > 90% of citrus nematodes were killed; and barnyardgrass seeds within 20-cm distance from the center were affected. These experimental results were consistent with the predicted results. The model accurately estimated the MeI movement and control of various pests and is a powerful tool to evaluate pesticides in terms of their negative environmental impacts and pest control under various environmental conditions and application methods. 相似文献
4.
Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato 总被引:2,自引:0,他引:2
High N fertilizer and irrigation amounts applied to potato (Solanum tuberosum L.) on coarse-textured soils often result in nitrate (NO3) leaching and low recovery of applied fertilizer N. This 3-yr study compared the effects of two rates (140 and 280 kg N ha(-1)) of a single polyolefin-coated urea (PCU) application versus split applications of urea on 'Russet Burbank' potato yield and on NO3 leaching and N recovery efficiency (RE) on a loamy sand. Standard irrigation was applied in all years and excessive irrigation was used in another experiment in the third year. At the recommended rate of 280 kg N ha(-1), NO3 leaching during the growing season was 34 to 49% lower with PCU than three applications of urea. Under standard irrigation in the third year, leaching from five applications of urea (280 kg N ha(-1)) was 38% higher than PCU. Under leaching conditions in the first year (> or = 25 mm drainage water in at least one 24-h period) and excessive irrigation in the third year, PCU at 280 kg N ha(-1) improved total and marketable tuber yields by 12 to 19% compared with three applications of urea. Fertilizer N RE estimated by the difference and 15N isotope methods at the 280 kg N ha(-1) rate was, on average, higher with PCU (mean 50%) than urea (mean 43%). Fertilizer N RE values estimated by the isotope method (mean 51%) were greater than those estimated by the difference method (mean 47%). Results from this study indicate that PCU can reduce leaching and improve N recovery and tuber yield during seasons with high leaching. 相似文献
5.
Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil 总被引:19,自引:0,他引:19
Application of biochar has been suggested to improve water- and fertilizer-retaining capacity of agricultural soil. The objective of this study was to evaluate the effects of bagasse charcoal (sugarcane [ L.] bagasse-derived biochar) on nitrate (NO) leaching from Shimajiri Maji soil, which has low water- and fertilizer-retaining capacity. The nitrate adsorption properties of bagasse charcoal formed at five pyrolysis temperatures (400-800° C) were investigated to select the most suitable bagasse charcoal for NO adsorption. Nitrate was able to adsorb onto the bagasse charcoal formed at pyrolysis temperatures of 700 to 800° C. Nitrate adsorption by bagasse charcoal (formed at 800° C) that passed through a 2-mm sieve was in a state of nonequilibrium even at 20 h after the addition of 20 mg N L KNO solution. Measurements suggested that the saturated and unsaturated hydraulic conductivity of bagasse charcoal (800° C)-amended soils are affected by changes in soil tortuosity and porosity and the presence of meso- and micropores in the bagasse charcoal, which did not contribute to soil water transfer. In NO leaching studies using bagasse charcoal (800° C)-amended soils with different charcoal contents (0-10% [w/w]), the maximum concentration of NO in effluents from bagasse charcoal-amended soil columns was approximately 5% less than that from a nonamended soil column because of NO adsorption by bagasse charcoal (800° C). We conclude that application of bagasse charcoal (800°C) to the soil will increase the residence time of NO in the root zone of crops and provide greater opportunity for crops to absorb NO. 相似文献
6.
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels. In this study, we measured leaching of total phosphorus (TP) and dissolved reactive phosphorus (DRP) during three years in undisturbed soil columns of five soils. The soils were collected at sites, established between 1957 and 1966, included in a long-term Swedish fertility experiment with four P fertilization levels at each site. Total P losses varied between 0.03 and 1.09 kg ha(-1) yr(-1), but no general correlation could be found between P concentrations and soil test P (Olsen P and phosphorus content in ammonium lactate extract [P-AL]) or P sorption indices (single-point phosphorus sorption index [PSI] and P sorption saturation) of the topsoil. Instead, water transport mechanism through the soil and subsoil properties seemed to be more important for P leaching than soil test P value in the topsoil. In one soil, where preferential flow was the dominant water transport pathway, water and P bypassed the high sorption capacity of the subsoil, resulting in high losses. On the other hand, P leaching from some soils was low in spite of high P applications due to high P sorption capacity in the subsoil. Therefore, site-specific factors may serve as indicators for P leaching losses, but a single, general indicator for all soil types was not found in this study. 相似文献
7.
Phosphorus leaching at cold temperatures as affected by wastewater application and soil phosphorus levels 总被引:1,自引:0,他引:1
Land application of wastewater in the northern-tier United States during winter months has been suggested as a means to reduce cost of building storage lagoons. A study was initiated in 1996 to assess land application of potato-processing wastewater on a 120-ha field at Park Rapids, MN. One objective of this study was to evaluate the effects of soil P levels and temperature on P leaching in soil columns. In this paper, we report the P sorption, desorption, and leaching characteristics of a high-P (>200 mg kg(-1)) and a low-P (<25 mg kg(-1)) surface soil from the wastewater irrigation site. The leaching experiment was done with wastewater at 4 +/- 2 or 10 +/- 2 degrees C. The high-P soil resulted in an equilibrium P concentration of 8.0 mg L(-1) compared with 0.14 mg L(-1) for the low-P soil. When low-P wastewater was applied to the high-P soil, the soil acted as a P source, and the total phosphorus (TP) concentration in the leachate was 3.5 times higher than the input TP concentration (C0). When high-P wastewater was applied to the high-P soil, the soil acted as a P sink retarding the TP concentration in the leachate by 80%. Phosphorus desorption was higher at 10 degrees C compared with 4 degrees C. The results showed that depending on P levels of the soil and the wastewater, reduction or increase in leachate P will occur below the surface soil. However, further mobility of this P under field conditions will depend on the volume and rate of percolating water as well as the sorption-desorption characteristics of the subsoil. 相似文献
8.
Barton L Schipper LA Barkle GF McLeod M Speir TW Taylor MD McGill AC van Schaik AP Fitzgerald NB Pandey SP 《Journal of environmental quality》2005,34(2):635-643
Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from the Recent Soil was the result of increased leaching of native soil organic N due to the higher hydraulic loading from the effluent irrigation. 相似文献
9.
van den Berg F Tiktak A Heuvelink GB Burgers SL Brus DJ de Vries F Stolte J Kroes JG 《Journal of environmental quality》2012,41(1):253-261
In the new Dutch decision tree for the evaluation of pesticide leaching to groundwater, spatially distributed soil data are used by the GeoPEARL model to calculate the 90th percentile of the spatial cumulative distribution function of the leaching concentration in the area of potential usage (SP90). Until now it was not known to what extent uncertainties in soil and pesticide properties propagate to spatially aggregated parameters like the SP90. A study was performed to quantify the uncertainties in soil and pesticide properties and to analyze their contribution to the uncertainty in SP90. First, uncertainties in the soil and pesticide properties were quantified. Next, a regular grid sample of points covering the whole of the agricultural area in the Netherlands was randomly selected. At the grid nodes, realizations from the probability distributions of the uncertain inputs were generated and used as input to a Monte Carlo uncertainty propagation analysis. The analysis showed that the uncertainty concerning the SP90 is 10 times smaller than the uncertainty about the leaching concentration at individual point locations. The parameters that contribute most to the uncertainty about the SP90 are, however, the same as the parameters that contribute most to uncertainty about the leaching concentration at individual point locations (e.g., the transformation half-life in soil and the coefficient of sorption on organic matter). Taking uncertainties in soil and pesticide properties into account further leads to a systematic increase of the predicted SP90. The important implication for pesticide regulation is that the leaching concentration is systematically underestimated when these uncertainties are ignored. 相似文献
10.
Use of adjuvants to minimize leaching of herbicides in soil 总被引:1,自引:0,他引:1
Excessive leaching of herbicides affects their efficacy against target weeds and results in contamination of groundwater.
Use of adjuvants that can weakly bind herbicides and in turn release them slowly is a valuable technique to prolong the efficacy
of herbicides and to minimize their leaching into groundwater. Effects of activated charcoal, three humic substances (Enersol
SP 85%, Enersol 12%, and Agroliz), or a synthetic polymer (Hydrosorb) on the leaching of bromacil, dicamba, and simazine were
investigated in leaching columns using a Candler fine sand (Typic Quartzipsamment). The addition of adjuvants had no harmful
effects on physical properties of the soil as evident from lack of its affects on water percolation. When no adjuvants were
used, 69%, 37%, and 4% of applied dicamba, bromacil, and simazine, respectively, were leached in the first pore volume of
leachate (⋍3.2 cm rainfall). With five pore volumes of leachate (⋍16 cm rainfall), bromacil and dicamba were leached completely
and only 80% of simazine was leached. Using Enersol 12% adjuvant resulted in a 13%–18% reduction in leaching of dicamba and
bromacil in five pore volumes of leachate. The leaching of simazine was significantly decreased when any of the five adjuvants
mentioned above were used. However, the decrease in leaching was significantly greater when using Enersol SP 85% or Enersol
12% (24%–28%) than when using the other adjuvants (12%–16%). 相似文献
11.
Maize (Zea mays L.) production in the smallholder farming areas of Zimbabwe is based on both organic and mineral nutrient sources. A study was conducted to determine the effect of composted cattle manure, mineral N fertilizer, and their combinations on NO3 concentrations in leachate leaving the root zone and to establish N fertilization rates that minimize leaching. Maize was grown for three seasons (1996-1997, 1997-1998, and 1998-1999) in field lysimeters repacked with a coarse-grained sandy soil (Typic Kandiustalf). Leachate volumes ranged from 480 to 509 mm yr(-1) (1395 mm rainfall) in 1996-1997, 296 to 335 mm yr(-1) (840 mm rainfall) in 1997-1998, and 606 to 635 mm yr(-1) (1387 mm rainfall) in 1998-1999. Mineral N fertilizer, especially the high rate (120 kg N ha(-1)), and manure plus mineral N fertilizer combinations resulted in high NO3 leachate concentrations (up to 34 mg N L(-1)) and NO3 losses (up to 56 kg N ha(-1) yr(-1)) in 1996-1997, which represent both environmental and economic concerns. Although the leaching losses were relatively small in the other seasons, they are still of great significance in African smallholder farming where fertilizer is unaffordable for most farmers. Nitrate leaching from sole manure treatments was relatively low (average of less than 20 kg N ha(-1) yr(-1)), whereas the crop uptake efficiency of mineral N fertilizer was enhanced by up to 26% when manure and mineral N fertilizer were applied in combination. The low manure (12.5 Mg ha(-1)) plus 60 kg N ha(-1) fertilizer treatment was best in terms of maintaining dry matter yield and minimizing N leaching losses. 相似文献
12.
Interactions between soil texture and placement of dairy slurry application: I. Flow characteristics and leaching of nonreactive components 总被引:1,自引:0,他引:1
Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry. 相似文献
13.
The soil organic partition coefficient (Koc) is one of the most important parameters to depict the transfer and fate of a chemical in the soil-water system. Predicting Koc by using a chromatographic technique has been developing into a convenient and low-cost method. In this paper, a soil leaching column chromatograpy (SLCC) method employing the soil column packed with reference soil GSE 17201 (obtained from Bayer Landwirtschaftszentrum, Monheim, Germany) and methanol-water eluents was developed to predict the Koc of hydrophobic organic chemicals (HOCs), over a log Koc range of 4.8 orders of magnitude, from their capacity factors. The capacity factor with water as an eluent (k'w) could be obtained by linearly extrapolating capacity factors in methanol-water eluents (k'w) with various volume fractions of methanol (symbol in text). The important effects of solute activity coefficients in water on k'w and Koc were illustrated. Hence, the correlation between log Koc and log k'w (and log k') exists in the soil. The correlation coefficient (r) of the log Koc vs. log k'w correlation for 58 apolar and polar compounds could reach 0.987, while the correlation coefficients of the log Koc -log k' correlations were no less than 0.968, with (symbol in text)ranging from 0 to 0.50. The smaller the (symbol in text), the higher the r. Therefore, it is recommended that the eluent of smaller (symbol in text), such as water, be used for accurately estimating Koc. Correspondingly, the r value of the log Koc -log k'w correlation on a reversed-phase Hypersil ODS (Thermo Hypersil, Kleinostheim, Germany) column was less than 0.940 for the same solutes. The SLCC method could provide a more reliable route to predict Koc indirectly from a correlation with k'w than the reversed-phase liquid chromatographic (RPLC) one. 相似文献
14.
In this study we developed and tested a spray method to visualize bromide water tracer in soil profiles. The method is based on the transformation reaction of a white precipitate into a colored one (Prussian blue) in the presence of Br-. After application of water containing bromide (0.2-0.4% wt.), a soil profile is dug out from the irrigated area and sprayed with a Br- indication suspension containing ferric ion and silver ferrocyanide precipitate. About two hours later, the pattern of irrigation water movement in the soil profile appears due to the formation of Prussian blue complex. We describe the method and demonstrate its use in a field experiment to visualize water flow paths. Since this method might be subject to possible interference from Cl-, a newly designed method with iodide ion as a water tracer and its indication solution containing soluble starch and ferric ion is also presented and recommended for use in soils with high chloride background. 相似文献
15.
Dynamics of potassium leaching on a hillslope grassland soil 总被引:1,自引:0,他引:1
There have been only a few studies of potassium (K) losses from grassland systems, and little is known about their dynamics, especially in relation to nitrogen (N) management. A study was performed during the autumn and winter of 1999 and 2000 to understand the effects of N and drainage on the dynamics of K leaching on a hillslope grassland soil in southwestern England. Two N application rates were studied (0 and 280 kg N ha(-1) yr(-1)), both with and without tile drainage. Treatments receiving N also received farmyard manure (FM). Higher total K losses and K concentrations in the leachates were found in the N + FM treatments (150 and 185% higher than in 0 N treatments), which were related to K additions in the FM. Drainage reduced K losses by 35% because of an increase in dry matter production and a reduction in overland and preferential flow. The pattern of change in K concentration in the leachates was associated with preferential flow at the beginning of the drainage season and with matrix flow later in winter, and was best described by a double exponential curve. Rainfall intensity and the autumn application of FM were the main determinants of K losses by leaching. The study provided new insights into the relationships between soil hydrology, rainfall, and K leaching and its implications for grassland systems. 相似文献
16.
Murphy JD Johnson DW Miller WW Walker RF Carroll EF Blank RR 《Journal of environmental quality》2006,35(2):479-489
A wildfire burned through a previously sampled research site, allowing pre- and post-burn measurements of the forest floor, soils, and soil leaching near Lake Tahoe, Nevada. Fire and post-fire erosion caused large and statistically significant (P < or = 0.05) losses of C, N, P, S, Ca, and Mg from the forest floor. There were no statistically significant effects on mineral soils aside from a decrease in total N in the surface (A11) horizon, an increase in pH in the A11 horizon, and increases in water-extractable SO4(2-) in the A11 and A12 horizons. Burning caused consistent but nonsignificant increases in exchangeable Ca2+ in most horizons, but no consistent or statistically significant effects on exchangeable K+ or Mg2+, or on Bray-, bicarbonate-, or water-extractable P concentrations. Before the burn, there were no significant differences in leaching, but during the first winter after the fire, soil solution concentrations of NH4+, NO3-, ortho-P, and (especially) SO4(2-) were elevated in the burned area, and resin lysimeters showed significant increases in the leaching of NH4+ and mineral N. The leaching losses of mineral N were much smaller than the losses from the forest floor and A11 horizons, however. We conclude that the major short-term effects of wildfire were on leaching whereas the major long-term effect was the loss of N from the forest floor and soil during the fire. 相似文献
17.
The fate of sulfate in acidified pig slurry during storage and following application to cropped soil 总被引:3,自引:0,他引:3
Acidification of slurry with sulfuric acid is a recent agricultural practice that may serve a double purpose: reducing ammonia emission and ensuring crop sulfur sufficiency. We investigated S transformations in untreated and acidified pig slurry stored for up to 11 mo at 2, 10, or 20 degrees C. Furthermore, the fertilizer efficiency of sulfuric acid in acidified slurry was investigated in a pot experiment with spring barley. The sulfate content from acidification with sulfuric acid was relatively stable and even after 11 mo of storage the majority was in the plant-available sulfate form. Microbial sulfate reduction during storage of acidified pig slurry was limited, presumably due to initial pH effects and a limitation in the availability of easily degradable organic matter. Sulfide accumulation was observed during storage but the sulfide levels in acidified slurry did not exceed those of the untreated slurry for several months after addition. The S fertilizer value of the acidified slurry was considerable as a result of the stable sulfate pool during storage. The high content of inorganic S in the acidified slurry may potentially lead to development of odorous volatile sulfur-containing compounds and investigations are needed into the relationship between odor development and the C and S composition of the slurry. 相似文献
18.
Mine reclamation with biosolids increases revegetation success but nutrient addition well in excess of vegetation requirements has the potential to increase leaching of NO3 and other biosolids constituents. A 3-yr water quality monitoring study was conducted on a Pennsylvania mine site reclaimed with biosolids applied at the maximum permitted and standard loading rate of 134 Mg ha(-1). Zero-tension lysimeters were installed at 1-m depth 1 yr before reclamation: three in the biosolids application area, one in a control area (no biosolids). Before reclamation, all water samples had pH in the range 4.7 to 6.2, acidity < 20 mg L(-1), and very low levels of all other measured parameters. Following reclamation, percolate water in the biosolids-treated area had lower pH and greater acidity than the control area. Acidity was greatest during the first winter following biosolids application, decreased during the spring, and showed a similar pattern but with much smaller concentrations the second year. Maximum first- year leachate NO3 concentrations were approximately 300 mg L(-1) and half as large the second year. Estimated inorganic N leaching loss during the first 2 yr after biosolids application was 2327 kg N ha(-1). Aluminum, Mn, Cu, Ni, Pb, and Zn followed similar leaching patterns as did acidity, and their mobilization appeared to be the result of the increased acidity. These results indicate that large applications of low-C/N-ratio biosolids could negatively impact area water quality and that biosolids reclamation practices should be modified to reduce this possibility. 相似文献
19.
The effects of changing precipitation on soil leaching in a deciduous forest were examined by experimentally manipulating throughfall fluxes in the field. In addition to an ambient treatment (AMB), throughfall fluxes were reduced by 33% (DRY treatment) and increased by 33% (WET treatment) using a system of rain gutters and sprinklers on Walker Branch Watershed, Tennessee. Soil leaching was measured with resin lysimeters in the O horizons and with ceramic cup lysimeters in the E (25 cm) and Bt (70 cm) horizons. Large and statistically significant treatment effects on N fluxes were found in the O horizons (lower N fluxes in the DRY and higher N fluxes in the WET treatment). Together with the greater O horizon N content observed in the DRY treatment, this suggested that N was being immobilized at a greater rate in the DRY treatment than in the AMB or WET treatments. No statistically significant treatment effects on soil solution were found in the E horizons with the exception of (Ca2+ + Mg2+) to K+ ratio. Statistically significant treatment effects on electrical conductivity (EC), pH, Ca2+, Mg2+, K+, Na+, SO4(2-), and Cl- were found in the Bt horizons due to differences between the DRY and other treatments. Despite this, calculated fluxes of Ca2+, Mg2+, K+, Na+, SO4(2-), and Cl- were lowest in the DRY treatment. These results suggest that lower precipitation will cause temporary N immobilization in litter and long-term enrichment in soil base cations whereas increased precipitation will cause long-term depletion of soil base cations. 相似文献
20.
Polubesova T Nir S Gerstl Z Borisover M Rubin B 《Journal of environmental quality》2002,31(5):1657-1664
Ground water pollution due to herbicide leaching has become a serious environmental problem. Imazaquin [2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)quinoline-3-carboxylic acid] is an herbicide used to control broadleaf weeds in legume crops. Imazaquin is negatively charged at the basic pH of calcareous soils and exhibits high leaching potential in soils. Our aim was to design formulation of imazaquin to reduce herbicide leaching. Imazaquin sorption on pillared clay (PC) and crystal violet (CV)-montmorillonite complexes was studied. The CV-montmorillonite complexes become positively charged with adsorption of CV above the cation exchange capacity (CEC) of montmorillonite, and thus can sorb imazaquin. The Langmuir equation provides a good fit to isotherms of imazaquin sorption on PC and CV-montmorillonite complexes, but for charged complexes an equation that combines electrostatics with specific binding was preferred. Maximal imazaquin sorption was 17.3 mmol kg-1 for PC and 22.2 mmol kg-1 for CV-montmorillonite complexes. The extents of imazaquin desorption into water were 21% for PC and 5% for CV-clay complexes. The presence of anions decreased imazaquin sorption on both sorbents in the sequence phosphate > acetate > sulfate. Reduction of imazaquin sorption by the anions and the extent of its desorption in electrolyte solutions were higher for PC than for CV-clay complexes. Leaching of imazaquin from CV-montmorillonite formulations through soil (Rhodoxeralf) columns was two times less than from PC formulations and four times less than that of technical imazaquin. The CV-montmorillonite complexes at a loading above the CEC appear to be suitable for preparation of organo-clay-imazaquin formulations that may reduce herbicide leaching significantly. 相似文献