首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hawksbill sea turtles (Eretmochelys imbricata) nesting in Barbados (Needham’s Point, 13° 04′ 41.33′′ N, 59° 36′ 32.69′′W) were outfitted with GPS dataloggers over three breeding seasons (2008–2010) to track movement during inter-nesting intervals. Most females established spatially restricted resident areas up current and within 7 km of the nesting beach where they spent the majority of the inter-nesting interval. Females nesting earlier in the season settled on shallower sites. Only experienced remigrant turtles occupied the most distant resident areas. Females tracked for multiple inter-nesting intervals exhibited site fidelity, but the area contracted and the activity of females decreased with each successive interval. Hawksbills may trade off site characteristics with distance from the nesting beach and reduce activity over the course of the breeding season to optimise energy reserves during inter-nesting intervals.  相似文献   

2.
To evaluate the effects of organized turtle watches on female sea turtles and their eggs, we quantified nesting behavior and hatchling production of loggerhead turtles ( Caretta caretta ) in south Brevard Country, Florida, U.S.A. We compared the duration of five phases of nesting behavior, the directness of the turtle's return path, rate of travel during return crawl, hatching success, and hatchling emergence success between experimental and control turtles. Experimental turtles nested while observed by an organized turtle watch group consisting of at least 15 people; control turtles were not observed by a turtle watch group. Experimental turtles spent significantly less time camouflaging nest sites than did control turtles. The duration of the other four phases of nesting behavior were not significantly different between the two groups. Experimental turtles also traveled less-direct paths during return crawls, although their rates of travel were not significantly different from those of control turtles. Hatching success and hatchling emergence success were not significantly different between experimental and control turtle nests in either year. Although turtle watch groups influenced nesting behavior, they were not found to be detrimental to hatchling production. Florida's turtle watch program is a means for garnering public support for sea turtle conservation through education, and it should continue.  相似文献   

3.
Loggerhead turtles (Caretta caretta) are known to migrate towards fixed, individually-specific residential feeding grounds. To study their spatial behaviour and their navigational ability, five loggerheads nesting in South Africa were captured when about to start their postnesting migration and tracked by satellite after having been displaced from their usual migratory route. The first turtle, released south of Madagascar about 1,148 km from the capture site, moved west up to mainland Africa and then reached her feeding grounds by following the coast. A second turtle, released farther away (2,140 km) close to La Réunion Island, stopped for some time on the Madagascar east coast, then turned southwards to round the island and regain the African mainland in the northwest, without however allowing us to establish the location of her residential grounds. Three other turtles were released off the Tanzanian coast, 2,193 km north of their nesting area, at the northern edge of the distribution of the feeding grounds along the African coast. All of them headed north, and one turtle found her residential grounds located north of the release site. The other two females started long-distance oceanic wanderings in which they crossed nearly the entire Indian Ocean, apparently being transported by the sea currents of the region. We conclude that adult loggerhead turtles are apparently unable to compensate for the displacement and can return to a pelagic life style characteristic of juvenile turtles. These findings suggest that South African loggerheads rely on simple orientation mechanisms, such as the use of the coastline, as a guide, and compass orientation, possibly integrated by spatiotemporal programmes and/or acquired maps of familiar sites.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

4.
We estimated for the first time the growth rates of loggerhead sea turtles of Mediterranean and of Atlantic origin found in the Mediterranean Sea, combining both skeletochronological and genetic analyses. Our growth models suggested that the growth rate of loggerhead sea turtles of Mediterranean origin was faster than that of their conspecifics with an Atlantic origin exploiting the feeding grounds in the Mediterranean Sea. The age at maturity for Mediterranean origin loggerhead sea turtles, estimated using our best fitting model, was 24 years, which suggests that loggerhead sea turtles nesting in the Mediterranean are not only smaller than those nesting in the western North Atlantic but also younger.  相似文献   

5.
Sea turtle populations worldwide suffer from reduced survival of immatures and adults due to fishery bycatch. Unfortunately, information about the whereabouts of turtles outside the breeding habitat is scarce in most areas, hampering the development of spatially explicit conservation plans. In the Mediterranean, recoveries of adult females flipper-tagged on nesting beaches suggest that the Adriatic Sea and Gulf of Gabès are important foraging areas for adults, but such information could be heavily biased (observing and reporting bias). In order to obtain unbiased data, we satellite-tracked seven loggerhead sea turtles after they completed nesting in the largest known Mediterranean rookery (Bay of Laganas, Zakynthos, Greece). Three females settled in the north Adriatic Sea, one in the south Adriatic Sea and two in the Gulf of Gabès area at the completion of their post-nesting migrations (one individual did not occupy a distinct foraging area). The concordance of tracking results with information from recoveries of flipper-tagged turtles suggests that the north Adriatic Sea and the Gulf of Gabès represent key areas for female adult Mediterranean loggerhead sea turtles.  相似文献   

6.
Variation in environmental conditions at a foraging area or at a nesting rookery has the potential to impact reproductive output of green sea turtles (Chelonia mydas) by affecting food resources or the nesting substrate. In this paper we test whether turtles‘ physiological characteristics reflect variation in relevant environmental conditions. We did this by profiling metabolic and hormonal markers among (1) non-vitellogenic females from three different foraging areas and (2) nesting females from different rookeries and breeding seasons. Among the non-vitellogenic females, the highest plasma triglyceride concentrations (4.29 mmol/l) and the lowest plasma cholesterol concentrations (1.27 mmol/l) were found in non-vitellogenic females residing in Moreton Bay during the El Niño year of 1997. Furthermore, during 1997, these Moreton Bay females had higher plasma triglyceride and lower cholesterol concentrations than those recorded in non-vitellogenic females foraging at Heron Reef (triglyceride 1.22 mmol/l and cholesterol 4.53 mmol/l) and Shoalwater Bay (triglyceride 1.69 mmol/l and cholesterol 3.50 mmol/l) in the same year. Among nesting turtles, those nesting at Raine Island had low mean plasma triglyceride concentrations during the high density 1996 nesting season. For those nesting at Heron Island, the mean triglyceride concentrations were the lowest during the 1997 nesting season. This is the first time that hormone and metabolic markers have been used in concert to compare the physiological condition of nesting and foraging sea turtles and its relationship with the environment. Collectively, our data indicate that variation in the environmental conditions at both foraging and nesting areas are reflected at a physiological level. Moreover, our study indicates that turtles feeding during El Niño years are able to attain higher levels of body condition, and that physiological data combined with morphometric data is a useful proxy for assessing the condition of turtles in foraging areas.  相似文献   

7.
Nest site selection of the green turtles on Wan-An Island in the summer of 1996 was determined. Turtles (Chelonia mydas) laid on average one clutch for every three emergences. Even though the total track length was 115 m on average, individual lengths varied considerably depending on the nesting beach where the turtles emerged. Limited accessibility, i.e. adequate distance from the nearest village and a well-protected environment, make beaches A and D suitable nesting beaches for green turtles on Wan-An Island. Both total track and nesting track apexes were found clustered in the interface zone, and turtles preferred to reach the vegetation zone once they emerged from the sea. It is suggested that the turtles on Wan-An Island exhibit nest site selection behavior. Based on these results and the high nest site fidelity to their first nesting beach, conservation recommendations are proposed to the county and central governments for the preservation of nesting beaches in their natural state, by prohibiting illegal sand mining and properly controlling turtle watch groups on Wan-An Island. Received: 21 November 1997 / Accepted: 24 December 1998  相似文献   

8.
Low level aerial observations were used to obtain synoptic records of the distribution of sea turtle nesting activity along both coasts of Costa Rica. Pertinent environmental information was simultaneously recorded including beach characteristics, river effluents, and evidence of coastal currents. Other correlative information was obtained from detailed maps, current charts, and climatological data. On the Caribbean coast, as expected, green turtle (Chelonia mydas) nesting was concentrated on the beaches between the Tortuguero and Parismina Rivers. On the Pacific coast, two major nesting beaches for the Pacific ridley Lepidochelys olivacea were found, each having over 100 thousand turtles aggregated offshore during the peak period between September and November. Aggregations were present at least from July through December. Massed nesting occurs each year on these same beaches and the event is known as the salida de flota by the natives of Guanacaste Province. Numerous less important nesting beaches were also found. Nesting density did not correlate well with beach quality but, instead, appeared to be related to the proximity of the beach to offshore currents. Oceanic current systems apparently facilitate the transport of sea turtles to the general vicinity of the important nesting beaches on both coasts of Coata Rica.Contribution No. 1557 from the Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA.  相似文献   

9.
Although green turtles (Chelonia mydas Linnaeus) do not nest in Barbados, the easternmost island in the Caribbean archipelago, juveniles are regularly seen foraging in nearshore waters. To examine the stock composition of this foraging population, mitochondrial (mt) DNA control region sequences were analysed from 60 juvenile (31–70 cm curved carapace length) green turtles and compared with data published for key nesting populations in the Atlantic, as well as other feeding grounds (FGs) in the Caribbean. Eight distinct haplotypes were recognised among the 60 individual green turtles sampled around Barbados. Three of the haplotypes found have only previously been reported from western Caribbean nesting beaches, and two only from South Atlantic beaches. The nesting beach origin of one of the Barbados FG haplotypes is as yet unidentified. Stock mixture analysis based on Bayesian methods showed that the Barbados FG population is a genetically mixed stock consisting of approximately equal contributions from nesting beaches in Ascension Island (25.0%), Aves Island/Surinam (23.0%), Costa Rica (19.0%), and Florida (18.5%), with a lesser but significant contribution from Mexico (10.3%). Linear regression analysis indicated no significant effects of rookery population size or distance of the rookery from the FG on estimated contributions from the source rookeries to the Barbados FG. Our data suggest that the similar-sized green turtles sampled on the Barbados FG are a mixed stock of more diverse origins than any previously sampled feeding aggregations in the Caribbean region. The relatively large contribution from the Ascension Island rookery to the Barbados FG indicates that hatchlings from distant rookeries outside the Caribbean basin enter the North Atlantic gyre and become a significant part of the pool from which eastern Caribbean foraging populations are derived. These data support a life cycle model that incorporates a tendency of immatures to migrate from their initial foraging grounds at settlement towards suitable foraging grounds closer to their natal rookeries as they mature.Communicated by P.W. Sammarco, Chauvin  相似文献   

10.
To determine the origin of juvenile loggerhead turtles (Caretta caretta) that occupy the Charleston Harbor Entrance Channel at Charleston, South Carolina, USA, mitochondrial DNA restriction-fragment length polymorphisms from this feeding population were compared to haplotypes from candidate nesting populations. Previous studies have defined two major nesting populations in the southeastern USA, one corresponding to Florida and the other to Georgia/South Carolina. These nesting populations are distinguished by both unique haplotypes and frequency distributions of common haplotypes. The frequency distribution of haplotypes in the juvenile feeding-ground population was significantly different from both nesting populations, implying that the feeding aggregate is drawn from two or more nesting populations. Assuming that these turtles are derived exclusively from rookeries in the southeastern USA, a maximum likelihood estimator indicates that approximately half are from the Florida rookery and half are from the northern (Georgia/South Carolina) rookery complex. Because 91% of nesting in the southeastern USA occurs in Florida rookeries and 8% in the northern complex, the 50:50 ratio indicates that juvenile turtles from Georgia and South Carolina tend to feed preferentially near their respective rookery locations. Human encroachment on this feeding habitat may pose an especially high risk to the smaller Georgia/South Carolina rookeries.  相似文献   

11.
Migratory marine turtles are extremely difficult to track between their feeding and nesting areas, and the link between juvenile and adult habitats is generally unknown. To assess the composition of a feeding ground (FG) population of juvenile green turtles (Cheloniamydas Linnaeus), mitochondrial DNA control region sequences were examined in 80 post-pelagic individuals (straight carapace length = 31 to 67 cm) sampled in September 1992 from Great Inagua, Bahamas, and compared to those of 194 individuals from nine Atlantic and Mediterranean nesting colonies. Evidence from genetic markers, haplotype frequencies, and maximum likelihood (ML) analyses are concordant in indicating that multiple colonies contribute to the Bahamian FG population. ML analyses suggested that most Bahamian FG juveniles originated in the western (79.5%) and eastern (12.9%) Caribbean regions, and these proportions are roughly comparable to the size of candidate rookeries. These data support a life-cycle model in which individuals become pooled in post-hatchling (pelagic) and juvenile (benthic) habitats as a consequence of ocean currents and movement among FGs. A substantial harvest of immature turtles on their feeding pastures will influence the reproductive success of contributing nesting populations over a wide geographic scale. Received: 1 April 1997 / Accepted: 14 October 1997  相似文献   

12.
The biology of the endangered leatherback turtle (Dermochelys coriacea) at sea is poorly understood. As research has been almost exclusively limited to studies of nesting females, the movements of male turtles and the timing and location of mating activity have remained unknown. We report on the first deployments of satellite tags on male leatherbacks. Male migration to and residency in waters adjacent low-latitude nesting beaches in the western Atlantic suggest that this is where mating occurs, and return migration to these areas reveals male fidelity for breeding sites. Rate of travel decreased markedly after arriving in coastal breeding areas, where males remained for up to 96 days before assuming northward migrations. The initiation of these northward migrations coincided with peak nesting activity in adjacent nesting colonies. Data from satellite-linked time-depth recorders attached to two males revealed diel dive patterns in breeding areas and marked differences in diving behaviour between migratory and breeding periods in one turtle. When male turtles were in waters adjacent nesting colonies, their movements differed from those reported for nesting females, with females ranging farther from shore. Our results suggest that male leatherbacks may be vulnerable to entanglement in coastal fishing gear in waters adjacent nesting beaches.Communicated by R.J. Thompson, St. Johns  相似文献   

13.
During 1955–2003, flipper tags were attached to 46,983 green turtles and ten turtles were fitted with satellite transmitters at Tortuguero, Costa Rica. Eight satellite-tracked turtles stayed within 135 km of the beach and probably returned to nest after release. The internesting area is more extensive than previously documented. Post-nesting migration routes of satellite-tracked turtles varied. Seven turtles swam close to the coast and three turtles swam through oceanic waters before moving toward nearshore areas. Sea surface height anomaly maps indicate that oceanic movements were consistent with the southwestern Caribbean gyre. Circling and semi-circling turtles could have been disoriented but submergence and surface times suggest they may have been feeding in Sargassum sp. concentrations. Rapid post-nesting migrations (mean 2.2 km hr−1) ended on benthic feeding grounds in shallow waters (<20 m) off Belize (n=1), Honduras (n=1) and Nicaragua (n=8). The spatial distribution of migration end points (n=10) and tag returns (n=4,669) are similar. Fishermen in Nicaragua target green turtles along migratory corridors and on foraging grounds. Management efforts are urgently needed in Nicaragua, particularly in the high-density feeding areas south and east of the Witties (N14°09 W82°45). The proximity of foraging grounds to the nesting beach (mean 512 km) may permit female turtles to invest more energy in reproduction and hence the Tortuguero population may have greater potential for recovery than other green turtle nesting populations. Recovery of the Tortuguero green turtle population will benefit countries and marine ecosystems throughout the Caribbean, especially Nicaragua.  相似文献   

14.
Scott A. Eckert 《Marine Biology》2006,149(5):1257-1267
The movements and behavior of nine female leatherback sea turtles, Dermochelys coriacea (L.) were monitored for up to 370 days from their nesting beaches on the Caribbean island of Trinidad between 1995 and 2004 using satellite-linked time and depth recorders. During the inter-nesting period (typically March–July) turtles ranged widely, but frequented the area around Galera Point on the NE corner of Trinidad. Diving depths were typically <51 m. Upon leaving Trinidad, the three longest tracked turtles moved to higher latitude foraging areas, NE of the Flemish Cap; along the continental shelf of the Iberian peninsula to the Bay of Biscay; and along the N. Atlantic subtropical front, where they remained until the end of November. Dives were initially deep (100–300 m) and long (>26 min) as the turtles left the Caribbean, but became very shallow (>50 m) and short at high latitudes. Between mid-October and mid-November, the turtles left high latitudes for a presumed foraging area in the Mauritania upwelling where they resided until their tracking records ended. Diving remained relatively shallow. It is proposed that movements of these turtles from one foraging area to another are driven by the opportunity to forage in areas of distinct oceanic structure which serve to concentrate their gelatinous prey (e.g., salps, Scyphomedusae, Siphonophora) either at or below the surface.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
The South Florida subpopulation of loggerhead sea turtles (Caretta caretta L.) nests with great fidelity on either the southeast or the southwest coast of Florida, USA. The hatchlings that emerge from those nests must swim in opposite directions and search for different surface currents to migrate away from continental shelf waters. In this laboratory study, we compared the pattern of swimming activity shown by the hatchlings from each coast over the first 6 days of migration. Turtles from both coasts were equally active during their “frenzy” period (the first 24 h of swimming) and during the daylight hours of the 5 days that followed (the “postfrenzy” period). However, the west coast turtles were significantly more active than the east coast turtles during the nocturnal portion of the postfrenzy period. This difference may be related to the greater distance southwest coast turtles must negotiate to locate surface currents for transport out of the Gulf of Mexico and into the Atlantic Ocean basin. These differing behavioral strategies may be genetically determined, as similar correspondence between activity and distance is well known among migratory populations of birds and fish and is often based upon inherited programs of endogenously driven activity. Alternatively, behavioral differences between the two nesting groups could be a manifestation of phenotypic plasticity that arises as the hatchlings respond to unique environmental cues on each coast.  相似文献   

16.
Neonate sea turtles disperse from nesting beaches into the open ocean and develop during a multi-year growth period at sea, but data that characterize their behavior, feeding, and habitat during this developmental period have been few. Limited information has suggested that neonate sea turtles associate with lines of floating debris and biota at areas of surface downwelling. Data from the present study come from measurements of habitat, turtle behavior, and apparent foraging preferences in areas where neonate (post-hatchling) loggerhead turtles (Caretta caretta) were observed and captured. Turtles were observed (n=293) and captured (n=241 of the 293 observed) in downwelling lines that had formed in the slope water near the Gulf Stream front off east-central Florida, USA. Catch-per-unit-effort averaged 12.4 turtles/h from a vessel moving at 2.5 knots. Turtles were largely inactive and were closely associated with floating material, especially pelagic species of Sargassum. Turtles captured along with samples of floating material and given a gastric-esophageal lavage showed a preference for animal material (35.5% of volume in habitat, 70.9% in lavage) over plant material (60.3% of volume in habitat, 22.5% in lavage). Ingested anthropogenic debris included tar (20% of turtles) and plastics (15% of turtles). Ingested animals were principally small (most <1 mm) and were typically slow-moving or non-motile species or stages. Ingested plants were most commonly Sargassum fragments or seagrasses that bore epiphytic animals. Preferred or commonly ingested animals were hydroids, copepods, and pleuston such as Janthina, Creseis, Porpita, and Halobates. Data support a hypothesis describing post-hatchling loggerheads as facultatively active but principally low-energy float-and-wait foragers both within and outside of downwelling lines. Pelagic dispersal of turtles may be best predicted by a "smart" drifter analogy wherein turtle buoyancy, surface advection, and minimal oriented movement determine their distribution at sea. Conservation implications of plastic and tar ingestion are discussed.  相似文献   

17.
Few data are available on the movements and behavior of immature Atlantic loggerhead sea turtles (Caretta caretta) from their seasonal neritic foraging grounds within the western north Atlantic. These waters provide developmental habitat for loggerheads originating from several western Atlantic nesting stocks. We examined the long-term movements of 23 immature loggerheads (16 wild-caught and seven headstart turtles) characterizing their seasonal distribution, habitat use, site fidelity, and the oceanographic conditions encountered during their migrations. We identified two movement strategies: (1) a seasonal shelf-constrained north–south migratory pattern; and (2) a year-round oceanic dispersal strategy where turtles travel in the Gulf Stream to the North Atlantic and their northern dispersal is limited by the 10–15°C isotherm. When sea surface temperatures dropped below 20°C, neritic turtles began a migration south of Cape Hatteras, North Carolina (USA) where they established fidelity to the waters between North Carolina’s Outer Banks and the western edge of the Gulf Stream along outer continental shelf. Two turtles traveled as far south as Florida. Several turtles returned to their seasonal foraging grounds during subsequent summers. Northern movements were associated with both increased sea surface temperature (>21°C) and increased primary productivity. Our results indicate strong seasonal and interannual philopatry to the waters of Virginia (summer foraging habitat) and North Carolina (winter habitat). We suggest that the waters of Virginia and North Carolina provide important seasonal habitat and serve as a seasonal migratory pathway for immature loggerhead sea turtles. North Carolina’s Cape Hatteras acts as a seasonal “migratory bottleneck” for this species; special management consideration should be given to this region. Six turtles spent time farther from the continental shelf. Three entered the Gulf Stream near Cape Hatteras, traveling in the current to the northwest Atlantic. Two of these turtles remained within an oceanic habitat from 1 to 3 years and were associated with mesoscale features and frontal systems. The ability of large benthic subadults to resume an oceanic lifestyle for extended periods indicates plasticity in habitat use and migratory strategies. Therefore, traditional life history models for loggerhead sea turtles should be reevaluated.  相似文献   

18.
On an 85 km stretch of coastline along the western and northwestern edge of North West Cape Peninsula, Western Australia, are numerous beaches used for nesting by the green turtle Chelonia mydas. Many other beaches in the area are not so used. Nesting beaches displayed three characteristics that distinguished them from non-nesting beaches: the salinity of the sand moisture at nesting depth was lower, the salt content of surface sand was lower, and the beaches were sheltered from prevailing winds. Several beaches on which turtles did not nest exhibited these characteristics, but possessed sand platforms of reduced elevation above sea level. These observations are discussed in relation to the question of what cues green turtles use in selecting nesting beaches.  相似文献   

19.
To investigate site fidelity and homing behavior in juvenile loggerheads ( Caretta caretta, L.), a mark-recapture study spanning four years (1998–2001) was conducted in Core Sound, N.C., USA. Each year of the study, approximately half of the turtles captured were tagged and released near the capture sites ( n=207), while the remaining turtles were displaced 15–20 km and released ( n=198). Loggerheads in both groups were recaptured in equal proportions near the original capture sites and many individuals were also recaptured in subsequent years. These data imply that juvenile loggerheads often returned to their capture sites following displacement, because if turtles dispersed randomly or remained near their release sites, then fewer displaced turtles should have been caught again. Moreover, because turtles migrate out of North Carolina sounds each winter, turtles recaptured at the same locations in different years evidently returned to specific sites following long migrations. To further investigate homing behavior, a small number of displaced turtles ( n=28) were tracked using radio telemetry following their release. Although transmitters detached from most turtles within a few days, analyses of initial headings showed strong orientation in the direction of the capture site. In addition, four turtles successfully tracked for longer periods of time all returned rapidly to the vicinity of the capture location and remained in the area. Taken together, the results of this study indicate that juvenile loggerheads exhibit fidelity to specific areas during summer months and possess the navigational abilities to home to these areas following forced displacements and long-distance migrations.  相似文献   

20.
Mitochondrial (mt) DNA control region sequences were analyzed for 249 Atlantic and Mediterranean loggerhead turtles (Carettacaretta Linnaeus, 1758) to elucidate nesting population structure and phylogeographic patterns. Ten haplotypes were resolved among individuals sampled between 1987 and 1993, from ten major loggerhead nesting areas in the region. Two distinct phylogenetic lineages were distinguished, separated by an average of 5.1% sequence divergence. Haplotype frequency comparisons between pairs of populations showed significant differentiation between most regional nesting aggregates and revealed six demographically independent groups, corresponding to nesting beaches from: (1) North Carolina, South Carolina, Georgia and northeast Florida, USA; (2) southern Florida, USA; (3) northwest Florida, USA; (4) Quintana Roo, Mexico; (5) Bahia, Brazil; and (6) Peloponnesus Island, Greece. The distribution of mtDNA haplotypes is consistent with a natal homing scenario, in which nesting colonies separated by a few hundred kilometers represent isolated reproductive aggregates. However, a strong exception to this pattern was observed in the first group defined by mtDNA data (North Carolina to northeast Florida), which included samples from four nesting locations spread across thousands of kilometers of coastline. These locations were characterized by a single haplotype in 104 out of 105 samples, providing inadequate resolution of population divisions. In view of the subdivisions observed elsewhere, we attribute the lack of differentiation between North Carolina and northeast Florida to recent colonization of these warm temperate coastlines (after the Wisconsin glaciation) not to ongoing gene flow among spatially distinct nesting locations. The relationships among observed haplotypes suggest a biogeographic scenario defined by climate, natal homing, and rare dispersal events. The redefined relationships among nesting aggregations in the western Atlantic region (southeastern USA and adjacent Mexico) prompt a reconsideration of management strategies for nesting populations and corresponding habitats in this region. Received: 28 October 1996 / Accepted: 24 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号