首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcoleus chthonoplastes and Phormidium corium were isolated from microbial mats covering all sediments along the Arabian Gulf coasts. These isolates could consume and oxidise n-alkanes. The establishment of axenic cultures faced the problem that with progressive axenity the cyanobacterial growth seemed to cease. The associated organotrophic bacteria, Rhodococcus rhodochrous, Arthrobacter nicotianae, Pseudomonas sp. and Bacillus sp., could utilize n-alkanes. The total number of these organotrophs was about 2×106 cells g−1 fresh culture, and R. rhodochrous was the most dominant. In order to test the potential of cyanobacteria for n-alkane consumption, experiments were constructed to rule out the role of the associated organotrophic bacteria. Aliquots, 0.5 g fresh cyanobacterial samples, each containing about 1×106 organotrophic bacterial cells (≡0.001 mg fresh bacteria) were incubated in inorganic medium aliquots supplied with an n-alkane. The same was repeated using 1.0×106 cells each of the four organotrophic bacteria instead of the cyanobacterial samples. The nonaxenic cyanobacterial samples consumed up to 60% of the available alkane, whereas no detectable consumption was measured in any of the pure organotrophic bacterial cultures. For all organotrophic bacteria, the numbers had to be increased ten-thousand times in order that detectable alkane consumption might become measurable. The fatty acids resulting from the n-alkane oxidation were found incorporated in cell lipid classes characteristic of cyanobacteria, namely in galactolipids and sulfolipids. These results may imply that the two test cyanobacteria contribute directly to n- alkane uptake and oxidation. Received: 6 May 1997 / Accepted: 2 October 1997  相似文献   

2.
K. Ohki  Y. Fujita 《Marine Biology》1988,98(1):111-114
Aerobic nitrogenase activity in the marine non-heterocystous cyanobacterium Trichodesmium spp. NIBB 1067, isolated off the Izu Peninsula, Japan in 1983 and grown under artificial conditions, was assayed by the acetylene reduction method. This strain exhibited acetylene reduction activity under aerobic conditions when cells had been grown in the medium free of combined nitrogen. Activity was markedly enhanced by light, and dependent on the growth phase being higher during the exponential growth phase and lower during the late linear and stationary growth phases. Since typical colony formation occurred during the last growth phase, the present results contradict the idea that N2-fixation depends on colony formation. The photosynthesis inhibitor DCMU at 10-6 M inhibited light-dependent acetylene reduction completely. Acetylene reduction by Trichodesmium spp. was tolerant of O2 as strongly as that in the heterocystous cyanobacteria. Even at a partial pressure of oxygen (pO 2) of 3 atm, the activity still remained as high as half of the maximum. It was almost under anaerobic conditions. Maximum activity was obtained at pO2 of ca. 0.1 atm.  相似文献   

3.
Chlorophyll a fluorescence was used to look at the effect of desiccation on the photophysiology in two beachrock microbial biofilms from the intertidal rock platform of Heron Island, Australia. The photophysiological response to desiccation differed between the beachrock microbial communities. The black biofilm from the upper shoreline, dominated by Calothrix sp., showed a response typical of desiccation-tolerant cyanobacteria, where photosynthesis closed down during air exposure with a rapid and complete recovery upon rehydration. In contrast, the pink biofilm from the mid-intertidal zone, dominated by Blennothrix sp., showed no distinct response to desiccation stress and instead maintained reduced photosynthesis throughout drying and re-wetting cycles. Spatial differences in photosynthetic activity within the black biofilm were evident with a faster recovery rate of photosynthesis in the surface cyanobacteria than in the deeper layers of the biofilm. There was no variation with depth in the pink biofilm. The photophysiological differences in desiccation responses between the beachrock biofilms exemplify the ecological niche specialisation of these complex microbial communities, where the functional differences help to explain their vertical distribution on the intertidal shoreline.  相似文献   

4.
Nitrogen fixation (acetylene reduction) at rates of up to 1.2 g N2 g dry wt-1 h-1 was measured for the siphonous green seaweed Codium decorticatum. No nitrogenase activity was detected in C. isthmocladum. The nitrogenase activity was light sensitive and was inhibited by the addition of DCMU and triphenyl tetrazolium chloride. Additions of glucose did not stimulate nitrogen fixation. Blue-green algae (Calothrix sp., Anabaena sp., and Phormidium sp.) were implicated as the organisms responsible for the nitrogenase activity. They occurred in a reduced microzone within the C. decorticatum thallus where nitrogen fixation was optimized. Nitrogen fixation did not affect the kinetic constants for ammonium uptake in C. decorticatum (Ks=12.0 M, Vmax=13.4 mol NH3 g dry wt-1 h-1) determined using the perturbation method. Nevertheless, C. decorticatum thalli which fixed nitrogen had internal dissolved nitrogen concentrations which were over 1.4 times higher than in non-fixing thalli. This suggests that if C. decorticatum does derive part of its nitrogen requirement from the blue-green algae which it harbors, the transfer does not involve competition between this process and the uptake of ambient ammonium.  相似文献   

5.
N2 fixation (C2H2 reduction) was associated with several species of macroalgae on a coral reef near Grand Bahama Island. The highest rates were associated with Microdictyon sp. (Chlorophyceae) and Dictyota sp. (Phaeophyceae). Extensive mats of filamentous blue-green algae, not heterotrophic bacteria, were the N2 fixing agents: in experiments with samples of Microdictyon sp., the activity was lightdependent and not stimulated by organic compounds under either aerobic or anaerobic conditions. Assays in situ, at 20 m depth, and on shipboard, gave similar rates of N2 fixation; the cyanophytes presumably have pigment adaptations to function in blue light. The maximum rate of N2 fixation, associated with Microdictyon sp., was 3.8 g N fixed g dry weight-1 h-1. Coral-reef communities flourish in nutrientimpoverished waters, and therefore any input of nitrogen is probably important in stabilizing such ecosystems.  相似文献   

6.
Metabolic relationships between symbiotic cyanobacteria and host sponge have been investigated in the marine species Chondrilla nucula and Petrosia ficiformis (collected in the Ligurian Sea in 1992). DNA, RNA, total protein, cytosolic protein, total sugar, cytosolic sugar, total lipid, nonprotein sulfhydryl groups, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were assayed in cortex-free sponge tissue, where cyanobacteria are all but absent. For both species, biochemical parameters were determined in specimens living in illuminated habitats and in dark caves, where sponges are virtually aposymbiotic for cyanobacteria. As C. nucula is unable to colonize dark sites, specimens of this species were artificially transferred to a cave and maintained in dark conditions for 6 mo. Results showed that in the absence of light (i.e., in the absence of cyanobacteria) C. nucula undergo metabolic collapse and thiol depletion. In contrast, P. ficiformis activates heterotrophic metabolism and mechanisms which balance the loss of cell reducing power. This suggests that cyanobacteria effectively participate in controlling the redox potential of the host cells by the transfer of reducing equivalents. Only P. ficiformis is capable of counteracting, by means of heterotrophic metabolism, the loss of the contribution from symbionts which is caused by dark conditions. This explains the differences in the ecological requirements of the two species. Because cyanobacterial symbionts release fixed carbon in the form of glycerol and other small organic phosphate (Wilkinson 1979), a model based on the glycerol 3-phosphate shuttle (typically occurring in chloroplasts and mitochondria) is suggested. The mechanism proposed appears to be an ancient biochemical adaptation which arose among ancestral symbiotic systems, and further developed in the relationships between endosymbiotic organelles and cytoplasm.  相似文献   

7.
Two picophytoplankters,Prochlorococcus marinus andSynechococcus sp., were isolated from the bottom of the euphotic zone (150 m depth) in the western Pacifie Ocean. The concentration ofP. marinus at this depth was more than 104 cells ml–1 while that ofSynechococcus sp. was less than 102 cells ml–1. TheP. marinus isolate has a high divinyl-chlorophylla:b ratio similar to that of the Mediterranean strain, while theSynechococcus sp. isolate is of the phycourobilinrich type. The growth rate ofP. marinus was higher thanSynechococcus sp. when both were cultured under weak blue-green to blue-violet light (ca. 2 E m–2 s–1). While the chlorophyll-specific absorption spectra showed higher values inSynechococcus sp., the photosynthetic action spectre revealed thatP. marinus was able to use blue-violet light, whereasSynechococcus sp. was able to use blue-green light, more efficiently for photosynthesis. The photosynthetic quantum yield ofP. marinus was higher than that ofSynechococcus sp. at any wavelength between 400 and 700 nm. The calculated in situ photosynthesis rates per Gell volume forP. marinus were estimated to be higher than forSynechococcus sp. at 50 and 150 m depth. These results indicate thatP. marinus photosynthetically surpassesSynechococcus sp. in the blue-light-rieh environment of the oceanic euphotic zone. This may be why the former predominates at depths in temperate to tropical open ocean waters.  相似文献   

8.
G. Döhler 《Marine Biology》1992,112(3):485-489
Natural marine phytoplankton populations from the German Wadden Sea and unialgal cultures of the haptophycean Phaeocystis pouchetii were tested in 1989 under controlled UV-B stress conditions. Assimilation of 15N-nitrate in phytoplankton consisting mainly of P. pouchetii, or in pure cultures of this alga, was found to be very sensitive to enhanced UV-B dosage in comparison 15N-ammonia uptake. In contrast, in phytoplankton samples containing Ceratium spp., Coscinodiscus sp., Noctiluca sp. or others, rate of 15NO3 - uptake was higher and only slightly affected by UV-B irradiance compared to the P. pouchetii sample. UV-B inhibitory effect on uptake of inorganic nitrogen by P. pouchetii was more pronounced under strong white-light conditions and after a UV-B pre-illumination period of several hours than under low white light. Pools of glutamine and alanine decreased after UV-B exposure. Results are discussed with reference to the damaging effects of white light and UV-B on nitrogen metabolism.  相似文献   

9.
N2-fixation associated with the green macroalgaCodium fragile subsp.tomentosoides (van Goor) Silva from Long Island, New York, USA, was attributable to several species of endophytic cyanobacteria. Rates of N2-fixation ranged from 0.03 to 3.2µg N g–1 dry wt h–1 in freshly collected plants from several sites. Growth of the cyanobacteria appeared to be light-limited, due to the transmission of only 5 to 10% of incident light through the pigmented surface-layer of the macroalga. Daily irradiance was the most important factor determining both abundance of cyanobacterial cells and rate of N2-fixation. The rate was also affected by instantaneous irradiance, and increased twofold from dark to ambient surface irradiance. Rates were reduced at low temperature (8°C) but showed no temperature effect between 12° and 26°C. External concentrations of dissolved inorganic nitrogen (DIN) up to 20µM did not influence N2-fixation rate, but long-term exposure to 60µmol l–1 d–1 of NH 4 + caused a reduction in the rate. InC. fragile grown under high daily irradiance and low external DIN concentration, ~50% of the assimilated-N was attributable to N2-fixation. However, chlorophyllb extracted from plants grown with15N2 showed an atom % excess15N of less than 0.1, suggesting that only a small proportion of the bacterially fixed-N was transferred to the seaweed. The association betweenC. fragile and its endophytic cyanobacteria appears to be based primarily on microhabitat suitability, rather than mutual metabolic dependence. It is doubtful that N2-fixation by cyanobacteria is important to the ecological success of this seaweed species.  相似文献   

10.
Gametophytes of two species of Porphyra collected around San Juan Island, Washington in 1986 and acclimated to low light conditions in culture showed different resistances to photoinhibition of photosynthesis. The intertidal species P. perforata J. Agardh exhibited photoinhibition at one-third the rate exhibited by the subtidal species P. nereocystis Anderson following treatments at 2000 mol photons m-2 s-1 under conditions of full hydration and optimal temperature. The greater resistance of P. perforata to photoinhibition could not be attributed to reduced photosynthetic pigment concentration, higher photosynthetic capacity, avoidance of light by chloroplast movement or to enhanced rates of photorespiration. Total carotenoid concentrations were similar in the two species. It is probable that the mechanisms of this resistance are operating at the level of the thylakoid membranes. Resistance to photoinhibition represents an adaptation of photosynthesis in P. perforata which may contribute to its persistance in the extreme environment of its intertidal habitat.  相似文献   

11.
Marine sponges can host a variety of cyanobacterial and bacterial symbionts, but it is often unclear whether these symbionts are generalists that occur in many host species or specialists that occur only in certain species or populations of sponges. The filamentous cyanobacterium Oscillatoria spongeliae is found in the sponges Dysidea n. sp. aff. herbacea 1A and 1B, and similar cyanobacteria are found in D. n. sp. aff. granulosa. We amplified and sequenced sponge nuclear ribosomal DNA (rDNA) and cyanobacterial 16S rDNA from specimens of these three sponges. We then used these sequences to construct phylogenies for host sponges and their symbiotic cyanobacteria. Each of these three sponge species hosts a distinct cyanobacterial clade, suggesting a high degree of host specificity and potential coevolution between symbiotic cyanobacteria and their host sponges.  相似文献   

12.
Five field surveys were conducted in an estuarine intertidal sandflat of the Seto Inland Sea (Japan) between April 1994 and April 1995. Chlorophyll a, pheopigments, total organic carbon and acid-volatile sulphides (AVS) of surface and subsurface sediments, and macrofaunal assemblages were investigated in parallel at 15 stations. Monthly hydrological data of low-tide creek water adjacent to the flat were used as a complementary environmental characterisation of the study area. Strong temporal changes were found among sampling dates, most remarkably in autumn with a major increase of algal detritus and AVS, a sharp reduction in macrofaunal abundances and species richness, and a massive mortality of the clam Ruditapes philippinarum. This dystrophic event was preceded by a photoautotrophic and hypertrophic spring–summer characterized by abundant fresh (i.e., living) algal material, including microphytobenthos and macroalgae (Ulva sp.). In summer, abundant macrofaunal assemblages reached the highest biomass values (455 g wet weight m−2 or 60.6 g ash free dry weight m−2), with a major contribution of filter-feeding bivalves Musculista senhousia and R. philippinarum. These are among the highest values reported in the literature for sedimentary shores. From autumn, there was a progressive recolonisation of macrofauna, initiated by few opportunistic polychaetes (e.g., Cirriformia tentaculata and Polydora sp.), apparently promoting a fast sediment recovery in winter, and followed by new bivalve recruits in the next spring. This study provides the first evidence of significant and interlinked within-year changes in chemical characteristics of sediments and macrofaunal assemblages in an estuarine intertidal flat at a small spatial scale (i.e., tens of meters). This demonstrates the high temporal variability of species–environment relations in these systems and a close relationship in seasonally driven trophodynamic processes among primary producers and benthic consumers. We conclude that a thorough parallel evaluation of the temporal changes in chemical characteristics of sediments should be taken into account in assessing the year-round distribution and changes of intertidal macrofauna, particularly in eutrophic, estuarine intertidal flats.An erratum to this article can be found at  相似文献   

13.
The prokaryotic green alga Prochloron sp. (Prochlorophyta) is found in symbiotic association with colonial didemnid ascidians that inhabit warm tropical waters in a broad range of light environments. We sought to determine the light-adaptation features of this alga in relation to the natural light environments in which the symbioses are found, and to characterize the temperature sensitivity of photosynthesis and respiration of Prochloron sp. in order to assess its physiological role in the productivity and distribution of the symbiosis. Colonies of the host ascidian Lissoclinum patella were collected from exposed and shaded habitats in a shallow lagoon in Palau, West Caroline Islands, during February and March, 1983. Some colonies from the two light habitats were maintained under conditions of high light (2 200 E m–2 s–1) and low light (400 E m–2 s–1) in running seawater tanks. The environments were characterized in terms of daily light quantum fluxes, daily periods of light-saturated photosynthesis (Hsat), and photon flux density levels. Prochloron sp. cells were isolated from the hosts and examined for their photosynthesis vs irradiance relationships, respiration, pigment content and photosynthetic unit features. In addition, daily P:R ratios, photosynthetic quotients, carbon balances and photosynthetic carbon release were also characterized. It was found that Prochloron sp. cells from low-light colonies possessed lower chlorophyll a/b ratios, larger photosynthetic units sizes based on both reaction I and reaction II, similar numbers of reaction center I and reaction center II per cell, lower respiration levels, and lower Pmax values than cells from high-light colonies. Cells isolated from low-light colonies showed photoinhibition of Pmax at photon flux densities above 800 E m–2 s–1. However, because the host tissue attenuates about 60 to 80% of the incident irradiance, it is unlikely that these cells are normally photoinhibited in hospite. Collectively, the light-adaptation features of Prochloron sp. were more similar to those of eukaryotic algae and vascular plant chloroplasts than to those of cyanobacteria, and the responses were more sensitive to the daily flux of photosynthetic quantum than to photon flux density per se. Calculation of daily minimum carbon balances indicated that, though high-light cells had daily P:R ratios of 1.0 compared to 4.6 for low-light cells, the cells from the two different light environments showed nearly identical daily carbon gains. Cells isolated from high-light colonies released between 15 and 20% of their photosynthetically-fixed carbon, levels sufficient to be important in the nutrition of the host. Q10 responses of photosynthesis and respiration in Prochloron sp. cells exposed briefly (15–45 min) to temperatures between 15° and 45°C revealed a discontinuity in the photosynthetic response at the ambient growth temperatures. The photosynthetic rates were found to be more than twice as sensitive to temperatures below ambient (Q10=3.47) than to temperatures above ambient (Q10=1.47). The Q10 for respiration was constant (Q10=1.66) over the temperature range examined. It appears that the photosynthetic temperature sensitivity of Prochloron sp. may restrict its distribution to warmer tropical waters. The ecological implications of these findings are discussed in relation to published data on other symbiotic systems and free-living algae.  相似文献   

14.
Treatments of the cyanobacteria Nostoc muscorum and Nostoc calcicola with the insecticide endosulfan (5, 10, and 20?µg?mL?1) inhibited growth, photosynthetic pigments, photosynthetic, and nitrogenase activities. The sensitivity of N. muscorum to endosulfan was higher than that of N. calcicola. The toxic effect of endosulfan was more pronounced on phycocyanin; however, a considerable reduction in chlorophyll a and carotenoids was also noticed. 14C-fixation appeared to be more sensitive to the insecticide than photosynthetic oxygen evolution. Endosulfan caused strong inhibition of photosystem (PS) II activity whereas PS I was least affected. The inhibition of PS II activity was partially restored by electron donors (DPC, NH2OH, and MnCl2) at low dose of endosulfan. Nitrogenase activity was significantly suppressed in both species by the endosulfan at high dose (20?µg?mL?1). On the basis of our comparative analysis, N. calcicola was found to be endosulfan resistant and can be used in paddy fields for better productivity under pesticide stress.  相似文献   

15.
Phytoplankton function and acclimation are driven by catalytic protein complexes that mediate key physiological transformations, including generation of photosynthetic ATP and reductant, and carbon and nitrogen fixation. Quantitation of capacities for these processes allows estimation of rates for key ecosystem processes, and identification of factors limiting primary productivity. We herein present molar quantitations of PSI, PSII, ATP synthase, RuBisCO and the Fe protein of nitrogenase of Trichodesmium collected from the Gulf of Mexico, in comparison to determinations for a range of cyanobacteria growing in culture. Using these measurements, estimates were generated for Trichodesmium capacities for carbon fixation of 1–3.4 g C g chl a −1 h−1 and nitrogen fixation of 0.06–0.17 g N g chl a −1 h−1, with diel variations in capacities. ATP synthase levels show that ATP synthesis capacity is sufficient to support these levels of carbon and nitrogen fixation, and that ATP synthase levels change over the day in accordance with the ATP demands of nitrogenase and RuBisCO activity. Levels of measured complexes indicate that Trichodesmium manifests n-type diel light acclimation through rapid changes in RuBisCO:PSII, supported by significant investment of cellular nitrogen. The plasticity in the levels and stoichiometry of these core complexes show that changes in the abundance of core protein complexes are an important component of acclimation and regulation of metabolic function by Trichodesmium populations. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Littoral materials collected from the intertidal zone along the coast of Kuwait City were associated with much higher numbers of oil-utilizing microorganisms than inshore and offshore water samples. Animate materials viz. epilithic biomass, cyanobacterial mats and roots of higher plants were richer in such microorganisms than inanimate materials, e.g. littoral sand, rock pieces, shells and others. Those numbers remained highest during the autumn, winter and spring and decreased dramatically during the hot summer. By far, the predominant indigenous oil-utilizing bacterium in the marine environment of Kuwait was Acinetobacter calcoaceticus. Less dominant organisms included Micrococcus sp., nocardioforms and others. Coast-immobilized strains of A. calcoaceticus and Micrococcus sp. had a higher hydrocarbon degradation potential than planktonic strains of the same organisms. It was concluded that marine coasts have a much higher potential for oil biodegradation than the water body. Received: 28 April 1999 / Accepted: 23 September 1999  相似文献   

17.
Dinitrogen fixation associated with bacteria in the gastrointestinal tract of sea urchins appears to be a widespread phenomenon: sea urchins from the tropics (Diadema antillarum, Echinometra lacunter, Tripneustes ventricosus), the temperature zone (Strongylocentrotus droebachiensis) and the arctic (S. droebachiensis) exhibited nitrogenase activity (C2H2 reduction). Pronounced seasonal variation was found in nitrogenase activity of temperate sea urchins feeding on kelp (Laminaria spp.) and eelgrass (Zostera marina). The mean monthly nitrogenase activity was inversely correlated with the nitrogen content of the sea urchin's food, which varied up to fivefold over the course of a year. The highest rate of nitrogenase activity recorded for a temperate sea urchin during the 14 month sampling period was 11.6g N fixed g wet wt-1 d-1, with a yearly mean activity of 1.36 g N fixed g wet wt-1 d-1. Studies with 15N confirmed the C2H2 reduction results and showed incorporation of microbially-fixed nitrogen into S. droebachiensis demonstrating that N2 fixation can be a source of N for the sea urchin. Laboratory experiments indicated that part of the sea urchin's (S. droebachiensis) normal gastrointestinal microflora is responsible for the observed nitrogenase activity.  相似文献   

18.
A series of experiments investigated the potential role of microbial mats in nutrition of the early settlement stages of Penaeus semisulcatus. From 3 days post-metamorphosis, the microbial mat supported high growth and survival rates in postlarvae, equivalent to that supported by a control diet of Artemia nauplii and mussel. Examination of gut contents indicated that benthic postlarvae feed indiscriminately on the microbial mat. However, when postlarvae were fed separated size-fractions of the microbial mat, only the fraction containing a high concentration of infauna (mainly nematodes) was able to support the same growth as intact microbial mat. This appears to be due to the low nitrogen content (0.4–0.9 mmol g−1) of the various size-fractions, compared to that of infauna (4.0 mmol g−1). The stable isotope composition of the dietary size-fractions and postlarval shrimp tissue supports the hypothesis that the shrimp assimilated C and N primarily from the associated infauna. This may be due to selective feeding that is not apparent from stomach contents, due to rapid digestion of fauna soft tissues, or to differential assimilation of infaunal prey relative to other microbial mat components. The results demonstrate that microbial mats may support survival and growth in early-stage penaeid shrimp postlarvae on intertidal mud flats.  相似文献   

19.
Nitrogen fixation (acetylene reduction) by the marine non-heterocystous cyanobacteria, Trichodesmium thiebautii and T. erythraeum, is sensitive to oxygen. Its sensitivity to oxygen was intensified when the colonies of T. thiebautii were disintegrated, but the separate trichomes yielded still retained the capacity for light dependent acetylene reduction. Trichodesmium colonies evolved hydrogen under argon in the light. The addition of carbon monoxide with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] enhanced the rate of hydrogen evolution to approximately the same level as that of the maximum acetylene reduction on an electron basis. This probably results from the inhibition of the uptake hydrogenase. We propose that the uptake hydrogenase functions to protect nitrogenase from damage by oxygen.  相似文献   

20.
We monitored the photosynthetic response of an estuarine epilithic microflora exposed to natural variations in water level and light intensity. The experimental community developed on an artificial substrate in the intertidal zone of the St. Lawrence estuary. Fragilaria striatula dominated the assemblage. Samples for the determination of the Photosynthesis-Irradiance curve were collected at intervals of 2 h over a period of 11 d. The initial slope of the curve (B) and the maximum photosynthetic rate (P m B ) per unit Chl a were estimated. During spring tide, wave-induced turbulence reaching the experimental substrate at low tide eroded the arborescent stratum of the cell mat. The physiological condition of the remaining prostrate stratum was poor (low Chl a/ phaeopigment ratio). The photosynthetic response of the community was weak and showed little variability. During neap tide, the arborescent stratum of the permanently inundated community persisted. The community showed a stronger and more variable photosythetic response. During this period fluctuations in the magnitude of B and P m B were dominated by a 24-h periodicity, but also presented a secondary semidiurnal rhythm. The ciradian periodicity in the photosynthetic response was best explained by postulating an endogenous control. Circatidal variations in P m B were perhaps related to tidal fluctuations in nutrient availability. The fortnightly renewal of space by the auxiliary energies of wind and tides apparently controlled the dynamics of the community.Contribution to the program of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号