首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
There is little known data characterizing the biomechanical responses of the human head and neck under direct head loading conditions. However, the evaluation of the appropriateness of current crash test dummy head-neck systems is easily accomplished. Such an effort, using experimental means, generates and provides characterizations of human head-neck response to several direct head loading conditions. Low-level impact loads were applied to the head and face of volunteers and dummies. The resultant forces and moments at the occipital condyle were calculated. For the volunteers, activation of the neck musculature was determined using electromyography (EMG). In addition, cervical vertebral motions of the volunteers have been taken by means of X-ray cineradiography. The Ethics Committee of Tsukuba University approved the protocol of the experiments in advance. External force of about 210 N was applied to the head and face of five volunteers with an average age of 25 for the duration of 100 msec or so, via a strap at one of four locations in various directions: (1) an upward load applied to the chin, (2) a rearward load applied to the chin without facial mask, (3) a rearward load applied to the chin with the facial mask, and (4) a rearward load applied to the forehead. The same impact force as those for the human volunteers was also applied to HY-III, THOR, and BioRID. We found that cervical vertebral motions differ markedly according to the difference in impact loading condition. Some particular characteristics are also found, such as the flexion or extension of the upper cervical vertebrae (C0, C1, and C2) or middle cervical vertebrae (C3-C4), showing that the modes of cervical vertebral motions are markedly different among the different loading conditions. We also found that the biofidelity of dummies to neck response characteristics of the volunteers at the low-level impact loads is in the order of BioRID, THOR, and HY-III. It is relevant in this regard that the BioRID dummy was designed for a low-severity impact environment, whereas THOR and HY-III were optimized for higher-severity impacts.  相似文献   

3.
Objective: Motor vehicle occupants aged 8 to 12 years are in transition, in terms of both restraint use (booster seat or vehicle belt) and anatomical development. Rear-seated occupants in this age group are more likely to be inappropriately restrained than other age groups, increasing their vulnerability to spinal injury. The skeletal anatomy of an 8- to 12-year-old child is also in developmental transition, resulting in spinal injury patterns that are unique to this age group. The objective of this study is to identify the upper spine injuries commonly experienced in the 8- to 12-year-old age group so that anthropomorphic test devices (ATDs) representing this size of occupant can be optimized to predict the risk of these injuries.

Methods: Motor vehicle crash cases from the National Trauma Data Bank (NTDB) were analyzed to characterize the location and nature of cervical and thoracic spine injuries in 8- to 12-year-old crash occupants compared to younger (age 0–7) and older age groups (age 13–19, 20–39).

Results: Spinal injuries in this trauma center data set tended to occur at more inferior vertebral levels with older age, with patients in the 8- to 12-year-old group diagnosed with thoracic injury more frequently than cervical injury, in contrast to younger occupants, for whom the proportion of cases with cervical injury outnumbered the proportion of cases with thoracic injury. With the cervical spine, a higher proportion of 8- to 12-year-olds had upper spine injury than adults, but a substantially lower proportion of 8- to 12-year-olds had upper spine injury than younger children. In terms of injury type, the 8- to 12-year-old group’s injury patterns were more similar to those of teens and adults, with a higher relative proportion of fracture than younger children, who were particularly vulnerable to dislocation and soft tissue injuries. However, unlike for adults and teens, catastrophic atlanto-occipital dislocations were still more common than any other type of dislocation for 8- to 12-year-olds and vertebral body fractures were particularly frequent in this age group.

Conclusions: Spinal injury location in the cervical and thoracic spine moved downward with age in this trauma center data set. This shift in injury pattern supports the need for measurement of thoracic and lower cervical spine loading in ATDs representing the 8- to 12-year-old age group.  相似文献   


4.
OBJECTIVE: The objective of the study was to determine which vehicle factors are significantly related to pelvic injury in side impact collisions. Identification of relevant parameters could aid in the reduction of these injuries. METHOD: Side impact crashes from the CIREN database were separated into those in which the occupant sustained a pelvic fracture and those in which no pelvic fracture occurred, although all occupants had serious injuries. A multibody MADYMO model was created of a USDOT SINCAP (U.S. Department of Transportation Side Impact New Car Assessment Program) test of a vehicle with a large center console. RESULTS: From a study of 113 side impact crashes in the ciren database, nearside occupants with pelvic fractures (n = 78) had (i) more door intrusion (mean, 37 vs. 32 cm, p = 0.02) than those who had serious injuries, but not pelvic fractures (ii) a greater likelihood that the lower border of the door intruded more than the upper part (40% vs. 18%, p < 0.025); and (iii) a greater likelihood that their vehicle had a center console (47 vs. 17%, p < 0.005). Other parameters such as occupant age, weight, gender, vehicle weight, and struck vehicle speed change were not significantly different. MADYMO modeling showed that with a center console, an initial positive pelvic acceleration occurred at about 30 msec, followed at about 45 msec by a second acceleration peak in the opposite direction. Reducing console stiffness reduced the second acceleration but not the initial peak. Allowing the seat to translate laterally when contacted by the door reduced the initial pelvic acceleration by 50% and eliminated the second acceleration peak. CONCLUSIONS: Redesigning the center console using less stiff materials and allowing some lateral translation of the seat could aid in reducing pelvic injuries in side impact collisions.  相似文献   

5.
火灾荷载的选取是设计火灾的重要环节,同时也是保证火灾风险评估科学可靠的关键因素。火灾荷载的实地调查和统计分析是火灾荷载研究工作的重要手段。通过对全国各地23家KTV娱乐场所的349个包间进行调查,统计出KTV包间可燃物种类、质量情况以及不同可燃物所占质量比。并且,通过调查得出KTV包间的面积情况。对所调查的349个包间的火灾荷载分布情况进行研究,利用数理统计的方法得到了该类场所火灾荷载密度、均值、最大值、最小值等数据,为火灾风险评估中火灾场景的设计提供了数据基础。  相似文献   

6.
Petrochemical buildings are usually distributed near chemical installations and have a high risk of explosion because of the concentration of people. In order to effectively design and protect buildings against explosion, it is needed to determine the blast-resistant and defense loads reasonably. Based on the theory of risk, a triangular pyramid explosion risk model was established in this study, which combined the overpressure p, duration t, and frequency f of the explosion scene at the same time. The first principle of “acceptable cumulative frequency” and the key principle of “maximum explosion risk” were formulated. According to this method, the explosion risk of eight leakage units with 10 groups of leakage hole size and three dangerous wind directions were obtained. According to the cumulative explosion frequency curve and the explosion risk curve, blast-resistant and defense loads of the four walls were determined quantitatively. Among the four walls, the explosion overpressure were 44.0–74.5 kPa, and the corresponding duration were 34.1–39.1 ms. The cumulative explosion frequency were 2.11E−5 to 8.58E−5 times annually. The explosion risk value were 3.64E−3 to 5.35E−3 kPa·ms annually. The results indicated that it was of great importance for the calculation of the explosion risk to reasonably divide the leakage unit and determine the leakage frequency. The explosion scene and its frequency, the volume of the obstructed region, and the distance of the explosion source were the key variables that affected the explosive load. The final blast-resistant and defense load values were found in the case of the middle hole size leakage. Blast-resistant and defense loads not only met the risk acceptance standard but also considered the overpressure and the duration of explosion. At present, they have been extensively applied in the blast-resistant design and engineering transformation of buildings in SINOPEC.  相似文献   

7.
OBJECTIVE: Motor vehicle collision (MVC)-related spinal injury is a severe and often permanently disabling injury. In addition, strain injuries have been reported as a common outcome of MVCs. Although advances in automobile crashworthiness have reduced both fatalities and severe injuries, the impact of varying occupant restraint systems (seatbelts and airbags) on thoracolumbar spine injuries is unknown. This study examined the relationship between the occurrence of mild to severe cervical and thoracolumbar spine injury and occupant restraint systems among front seat occupants involved in frontal MVCs. METHODS: A retrospective cohort study was conducted among subjects obtained from the 1995-2004 National Automotive Sampling System. Cases were identified based on having sustained a spine injury of >/=1 on the Abbreviated Injury Scale (AIS), 1990 Revision. Risk risks (RRs) and 95% confidence intervals (CIs) were computed comparing occupant restraint systems with unrestrained occupants. RESULTS: We found an overall incidence of AIS1 cervical (11.8%) and thoracolumbar (3.7%) spinal injury. Seatbelt only restraints were associated with increased cervical AIS1 injury (RR = 1.40, 95% CI 1.04-1.88). However, seatbelt only restraints showed the greatest risk reduction for AIS2 spinal injuries. Airbag only restraints reduced thoracolumbar AIS1 injuries (RR = 0.29, 95% CI 0.08-1.04). Seatbelt combined with airbag use was protective for cervical AIS3+ injury overall (RR = 0.29, 95% CI 0.14-0.58), cervical neurological injury (RR = 0.19, 95% CI 0.05-0.81), and thoracolumbar AIS3+ injury overall (RR = 0.20, 95% CI 0.05-0.70). CONCLUSIONS: The results of this study suggest that seatbelts alone or in combination with an airbag increased the incidence of AIS1 spinal injuries, but provide protection against more severe injury to all regions of the spine. Airbag deployment without seatbelt use did not show increased protection relative to unrestrained occupants.  相似文献   

8.
Objective: This study analyzed thoracic and lumbar spine responses with in-position and out-of-position (OOP) seated dummies in 40.2 km/h (25 mph) rear sled tests with conventional and all-belts-to-seat (ABTS) seats. Occupant kinematics and spinal responses were determined with modern (≥2000 MY), older (<2000 MY), and ABTS seats.

Methods: The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap–shoulder belted in the FMVSS 208 design position or OOP, including leaning forward and leaning inboard and forward. There were 26 in-position tests with 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS and 14 OOP tests with 6 conventional and 8 ABTS seats. The dummy was fully instrumented. This study addressed the thoracic and lumbar spine responses. Injury assessment reference values are not approved for the thoracic and lumbar spine. Conservative thresholds exist. The peak responses were normalized by a threshold to compare responses. High-speed video documented occupant kinematics.

Results: The extension moments were higher in the thoracic than lumbar spine in the in-position tests. For <2000 MY seats, the thoracic extension moment was 76.8 ± 14.6% of threshold and the lumbar extension moment was 50.5 ± 17.9%. For the ≥2000 MY seats, the thoracic extension moment was 54.2 ± 26.6% of threshold and the lumbar extension moment was 49.8 ± 27.7%. ABTS seats provided similar thoracic and lumbar responses. Modern seat designs lowered thoracic and lumbar responses. For example, the 1996 Taurus had ?1,696 N anterior lumbar shear force and ?205.2 Nm extension moment. There was ?1,184 N lumbar compression force and 1,512 N tension. In contrast, the 2015 F-150 had ?500 N shear force and ?49.7 Nm extension moment. There was ?839 N lumbar compression force and 535 N tension. On average, the 2015 F-150 had 40% lower lumbar spine responses than the 1996 Taurus. The OOP tests had similar peak lumbar responses; however, they occurred later due to the forward lean of the dummy.

Conclusions: The design and performance of seats have significantly changed over the past 20 years. Modern seats use a perimeter frame allowing the occupant to pocket into the seatback. Higher and more forward head restraints allow a stronger frame because the head, neck, and torso are more uniformly supported with the seat more upright in severe rear impacts. The overall effect has been a reduction in thoracic and lumbar loads and risks for injury.  相似文献   

9.
The catastrophic consequences of recent NaTech events triggered by earthquakes highlighted the inadequacy of standard approaches to seismic risk assessment of chemical process plants. To date, the risk assessment of such facilities mainly relies on historical data and focuses on uncoupled process components. As a consequence, the dynamic interaction between process equipment is neglected. In response to this gap, researchers started a progressive integration of the Pacific Earthquake Engineering Research Center (PEER) Performance-Based Earthquake Engineering (PBEE) risk assessment framework. However, a few limitations still prevent a systematic implementation of this framework to chemical process plants. The most significant are: (i) the computational cost of system-level simulations accounting for coupling between process equipment; (ii) the experimental cost for component-level model validation; (iii) a reduced number of hazard-consistent site-specific ground motion records for time history analyses.In response to these challenges, this paper proposes a recently developed uncertainty quantification-based framework to perform seismic fragility assessments of chemical process plants. The framework employs three key elements: (i) a stochastic ground-motion model to supplement scarcity of real records; (ii) surrogate modeling to reduce the computational cost of system-level simulations; (iii) a component-level model validation based on cost-effective hybrid simulation tests. In order to demonstrate the potential of the framework, two fragility functions are computed for a pipe elbow of a coupled tank-piping system.  相似文献   

10.
为预防在极端冰灾环境下大规模停电事故的发生,提出1种考虑冰风载荷的输电线路运行风险评估方法.在极端冰风环境下,计算输电线路与杆塔所承受的总载荷,利用强度与应力干涉模型确定输电线路与杆塔的故障率,同时结合串联可靠性原理确定线路故障综合概率;利用非贯序蒙特卡洛法与线路故障综合概率设置预想故障集,结合直流潮流优化模型计算每条...  相似文献   

11.
Abstract

Objective: This study aimed to reconstruct 11 motor vehicle crashes (6 with thoracolumbar fractures and 5 without thoracolumbar fractures) and analyze the fracture mechanism, fracture predictors, and associated parameters affecting thoracolumbar spine response.

Methods: Eleven frontal crashes were reconstructed with a finite element simplified vehicle model (SVM). The SVM was tuned to each case vehicle and the Total HUman Model for Safety (THUMS) Ver. 4.01 was scaled and positioned in a baseline configuration to mimic the documented precrash driver posture. The event data recorder crash pulse was applied as a boundary condition. For the 6 thoracolumbar fracture cases, 120 simulations to quantify uncertainty and response variation were performed using a Latin hypercube design of experiments (DOE) to vary seat track position, seatback angle, steering column angle, steering column position, and D-ring height. Vertebral loads and bending moments were analyzed, and lumbar spine indices (unadjusted and age-adjusted) were developed to quantify the combined loading effect. Maximum principal strain and stress data were collected in the vertebral cortical and trabecular bone. DOE data were fit to regression models to examine occupant positioning and thoracolumbar response correlations.

Results: Of the 11 cases, both the vertebral compression force and bending moment progressively increased from superior to inferior vertebrae. Two thoracic spine fracture cases had higher average compression force and bending moment across all thoracic vertebral levels, compared to 9 cases without thoracic spine fractures (force: 1,200.6 vs. 640.8 N; moment: 13.7 vs. 9.2?Nm). Though there was no apparent difference in bending moment at the L1–L2 vertebrae, lumbar fracture cases exhibited higher vertebral bending moments in L3–L4 (fracture/nonfracture: 45.7 vs. 33.8?Nm). The unadjusted lumbar spine index correctly predicted thoracolumbar fracture occurrence for 9 of the 11 cases (sensitivity?=?1.0; specificity?=?0.6). The age-adjusted lumbar spine index correctly predicted thoracolumbar fracture occurrence for 10 of the 11 cases (sensitivity?=?1.0; specificity?=?0.8). The age-adjusted principal stress in the trabecular bone was an excellent indicator of fracture occurrence (sensitivity?=?1.0; specificity?=?1.0). A rearward seat track position and reclined seatback increased the thoracic spine bending moment by 111–329%. A more reclined seatback increased the lumbar force and bending moment by 16–165% and 67–172%, respectively.

Conclusions: This study provided a computational framework for assessing thoracolumbar fractures and also quantified the effect of precrash driver posture on thoracolumbar response. Results aid in the evaluation of motor vehicle crash–induced vertebral fractures and the understanding of factors contributing to fracture risk.  相似文献   

12.
哈尔滨地区农业面源污染负荷估算与分析   总被引:2,自引:0,他引:2  
为分析哈尔滨地区农业面源污染的形势和特征,根据哈尔滨市2002 2012年的农业统计资料,利用输出系数模型估算了该地区农业面源污染总氮(TN)、总磷(TP)年输出负荷.对估算结果分不同污染源、种植类型、畜禽种类进行了分析.结果表明:TN和TP的年输出总负荷基本呈逐年增加的趋势;影响该地区农业面源污染的主要因素为土地利用,其中,农业种植用地是TN、TP负荷的最大贡献者;畜禽养殖的污染贡献仅次于农业土地利用;由农村居民生活带来的面源污染也不容忽视.因此,哈尔滨地区农业面源污染形势不容乐观,必须大力开展防控工作,以改善该地区农业面源污染日益严重的趋势.  相似文献   

13.
The objective of the present study was to develop three separate age-specific one, three, and six year old pediatric human cervical spine (C4-CS-C6) three-dimensional nonlinear finite element models and to quantify the biomechanical responses. The adult model was modified to create one, three, and six year old pediatric spines by incorporating the local geometrical and material characteristics of the developmental anatomy. The adult human cervical spine model was constructed from close-up computed tomography sections and sequential anatomic cryomicrotome sections, and validated with experimental data. The biomechanical responses were compared with the adult human cervical spine behavior under different loading modes using three approaches. Approach 1: using pure overall structural scaling (reduce size) of the adult model. Approach 2: using three separate age-specific pediatric models incorporating local component geometrical and material property changes. Approach 3: applying the overall structural scaling to the above three pediatric models. All pediatric structures were consistently more flexible than the adult spine under all loading modes. However, responses obtained using the pure overall structural scaling (Approach 1) increased the flexibilities slightly. In contrast, the inclusion of local component geometrical and material property changes to create the three individual pediatric cervical spine models (Approach 2) produced significantly higher changes in the flexibilities under all loading modes. When overall structural scaling effects were added to the three pediatric models (Approach 3), the increase was not considerably higher. White the one year old pediatric model was the most flexible followed by the three and six year old models in flexion and extension, the three year old pediatric model was the most flexible under compression followed by the six and one year old models. The differing biomechanical responses among different pediatric groups were ascribed to the individual developmental anatomical features. The present findings of significant increase in biomechanical response due to local geometry and material property changes emphasize the need to consider the developmental anatomical features in the pediatric structures to better predict their biomechanical behavior.  相似文献   

14.
A biotrickling filter packed with coal slag as packing medium was continuously used for more than 9 months under high ammonia loading rates of up to 140 g/m3/h. Nitrogen mass balance and microbial community analysis were conducted to evaluate the inhibitory effects of high ammonia concentration and metabolic by-products on the rates of nitrification. Ammonia removal efficiency reached above 99% at an empty bed retention time of as low as 8 s when inlet concentrations were below 350 ppm. The maximum and critical elimination capacities of the biotrickling filter were 118 g/m3/h and 108.1 g/m3/h, respectively. Kinetics analysis results showed that less than 2.5 s was required for the biotrickling filter with pH control to treat ammonia at concentrations of up to 500 ppm in compliance with the Taiwan EPA standard (outlet NH3 < 1 ppm). Results of mass balance and microbial community analysis indicated that complete removal was mainly contributed by the activities of autotrophic ammonia oxidizing bacteria and not by physical absorption or adsorption at low loading rates. However, at high inlet loadings, ammonium became the dominant by-product due to inhibitory effects of high ammonia concentration on the bacterial community.  相似文献   

15.
16.
Because of their high organic and nitrogen loads and the presence of toxic and phytotoxic compounds, methanogenic landfill leachates are not easily biodegradable; therefore, direct biological treatment of these wastewaters in conventional treatment plants is not recommended.In the present paper, we report the results of an experimental investigation conducted with the aim of defining an innovative integrated process that is low in cost and easily manageable and that is able to substantially improve the characteristics of methanogenic leachates.Thus, an initial oxidation process was developed using hydrogen peroxide without a catalyst, which, operating under ambient conditions, reduces the phytotoxic compound content to 10% of the initial level, reduces the COD (chemical oxygen demand) content by 50% and increases the rapidly biodegradable substrate content by 50%. Next, nitrogen removal is accomplished by means of struvite precipitation using seawater bittern and bone meal as sources of magnesium and phosphorus, respectively, with this process, abatements were reached of approximately 90% of the ammonia nitrogen, which was recovered as struvite powder.  相似文献   

17.
IntroductionElectronics assembly workers are reported to have a high prevalence of musculoskeletal disorders (MSDs). This study investigated the prevalence of cervical MSDs and the complex relationships between cervical MSDs and individual, physical, psychosocial factors among electronics assembly workers. Methods: In this cross-sectional survey, self-administered questionnaires from 700 workers in electronics manufacturing workshops were analysed. Information concerning musculoskeletal symptoms, personal and work-related factors was collected. Finally, the prevalence of cervical MSDs was computed for different subgroups, and the relationships with different factors were analyzed using logistic regression and structural equation modeling (SEM). Results: The total 12 month prevalence of cervical MSDs among the survey population was 29.4%. Variables of gender, job tenure, twisting head frequently, neck flexion/extension for long time and work required to be done quickly showed significant associations with MSDs in a multivariate logistic regression (P < 0.05). The SEM analysis showed moderate and significant correlations between postural load (γ = 0.279), gender (γ = 0.233) and cervical MSDs, while there were weak but significant correlations between vibration (γ = 0.024), work stress (γ = 0.126), job tenure (γ = 0.024) and cervical MSDs. Both work stress and vibration affected the MSDs indirectly through postural load. Conclusions: The logistic regression results support previous general epidemiological MSD studies, and indicates that individual, physical, and psychosocial factors are related to cervical MSDs. The SEM provides a better approximation of the complexity of the relationship between risk factors and cervical MSDs. Improving awkward postures may be effective ways to control the influence of occupational stressors or vibration on MSDs. Practical Applications: The study is to improve prevention of MSDs among electronics assembly workers and promote their occupational health.  相似文献   

18.
Objective: The objective of this study was to determine the influence of age and injury mechanism on cervical spine tolerance to injury from head contact loading using survival analysis.

Methods: This study analyzed data from previously conducted experiments using post mortem human subjects (PMHS). Group A tests used the upright intact head–cervical column experimental model. The inferior end of the specimen was fixed, the head was balanced by a mechanical system, and natural lordosis was removed. Specimens were placed on a testing device via a load cell. The piston applied loading at the vertex region. Spinal injuries were identified using medical images. Group B tests used the inverted head–cervical column experimental model. In one study, head–T1 specimens were fixed distally, and C7–T1 joints were oriented anteriorly, preserving lordosis. Torso mass of 16 kg was added to the specimen. In another inverted head–cervical column study, occiput–T2 columns were obtained, an artificial head was attached, T1–T2 was fixed, C4–C5 disc was maintained horizontal in the lordosis posture, and C7–T1 was unconstrained. The specimens were attached to the drop test carriage carrying a torso mass of 15 kg. A load cell at the inferior end measured neck loads in both studies. Axial neck force and age were used as the primary response variable and covariate to derive injury probability curves using survival analysis.

Results: Group A tests showed that age is a significant (P < .05) and negative covariate; that is, increasing age resulted in decreasing force for the same risk. Injuries were mainly vertebral body fractures and concentrated at one level, mid-to-lower cervical spine, and were attributed to compression-related mechanisms. However, age was not a significant covariate for the combined data from group B tests. Both group B tests produced many soft tissue injuries, at all levels, from C1 to T1. The injury mechanism was attributed to mainly extension. Multiple and noncontiguous injuries occurred. Injury probability curves, ±95% confidence intervals, and normalized confidence interval sizes representing the quality of the mean curve are given for different data sets.

Conclusions: For compression-related injuries, specimen age should be used as a covariate or individual specimen data may be prescaled to derive risk curves. For distraction- or extension-related injuries, however, specimen age need not be used as a covariate in the statistical analysis. The findings from these tests and survival analysis indicate that the age factor modulates human cervical spine tolerance to impact injury.  相似文献   


19.
Objective: Serious head and cervical spine injuries have been shown to occur mostly independent of one another in pure rollover crashes. In an attempt to define a dynamic rollover crash test protocol that can replicate serious injuries to the head and cervical spine, it is important to understand the conditions that are likely to produce serious injuries to these 2 body regions. The objective of this research is to analyze the effect that impact factors relevant to a rollover crash have on the injury metrics of the head and cervical spine, with a specific interest in the differentiation between independent injuries and those that are predicted to occur concomitantly.

Methods: A series of head impacts was simulated using a detailed finite element model of the human body, the Total HUman Model for Safety (THUMS), in which the impactor velocity, displacement, and direction were varied. The performance of the model was assessed against available experimental tests performed under comparable conditions. Indirect, kinematic-based, and direct, tissue-level, injury metrics were used to assess the likelihood of serious injuries to the head and cervical spine.

Results: The performance of the THUMS head and spine in reconstructed experimental impacts compared well to reported values. All impact factors were significantly associated with injury measures for both the head and cervical spine. Increases in impact velocity and displacement resulted in increases in nearly all injury measures, whereas impactor orientation had opposite effects on brain and cervical spine injury metrics. The greatest cervical spine injury measures were recorded in an impact with a 15° anterior orientation. The greatest brain injury measures occurred when the impactor was at its maximum (45°) angle.

Conclusions: The overall kinetic and kinematic response of the THUMS head and cervical spine in reconstructed experiment conditions compare well with reported values, although the occurrence of fractures was overpredicted. The trends in predicted head and cervical spine injury measures were analyzed for 90 simulated impact conditions. Impactor orientation was the only factor that could potentially explain the isolated nature of serious head and spine injuries under rollover crash conditions. The opposing trends of injury measures for the brain and cervical spine indicate that it is unlikely to reproduce the injuries simultaneously in a dynamic rollover test.  相似文献   

20.
There is little data available on the responses of the human cervical spine to tensile loading. Such tests are mechanistically and technically challenging due to the variety of end conditions that need to be imposed and the difficulty of strong specimen fixation. As a result, spine specimens need to be tested using fairly complex, and potentially compliant, apparati in order to fully characterize the mechanical responses of each specimen. This, combined with the relatively high stiffness of human spine specimens, can result in errors in stiffness calculations. In this study, 18 specimen preparations were tested in tension. Tests were performed on whole cervical spines and on spine segments. On average, the linear stiffness of the segment preparations was 257 N/mm, and the stiffness of the whole cervical spine was 48 N/mm. The test frame was found to have a stiffness of 933 N/mm. Assembling a whole spine from a series combination of eight segments with a stiffness of 257 N/mm results in an estimated whole spine stiffness of 32.1 N/mm (32% error). The segment stiffnesses were corrected by assuming that the segment preparation stiffness is a series combination of the stiffnesses of the segment and the frame. This resulted in an average corrected segment stiffness of 356 N/mm. Taking the frame compliance into account, the whole spine stiffness is 51 N/mm. A series combination of eight segments using the corrected stiffnesses results in an estimated whole spine stiffness of 45.0 N/mm (12% error). We report both linear and nonlinear stiffness models for male spines and conclude that the compliance of the frame and the fixation must be quantified in all tension studies of spinal segments. Further, reported stiffness should be adjusted to account for frame and fixation compliance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号