首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Huuskonen J 《Chemosphere》2003,50(7):949-953
A quantitative structure-activity relationship model, based on the atom-type electrotopological state (E-state) indices, for the prediction of toxicity to fathead minnow for a diverse set of 140 organic chemicals is presented. Multiple linear regression and artificial neural network techniques were employed in the modeling of experimental toxicity (-logLC(50)) values ranging from 0.85 to 6.09. For the training set of 130 organic compounds a linear regression model with r(2)=0.84 and s=0.36 was obtained with 14 atom-type E-state indices. For the test set of 10 compounds, the corresponding statistics were r(2)=0.83 and s=0.47, respectively. Neural networks gave a significant improvement using the same set of parameters, and the standard deviations were s=0.31 for the training set and s=0.30 for the test set when an artificial neural network with five neurons in the hidden layer was used. The results clearly show that accurate models can be rapidly calculated for the prediction of toxicity for a diverse set of organic chemicals using easily calculated parameters.  相似文献   

3.
4.
5.
《Chemosphere》2009,74(11):1701-1707
The aim was to develop a reliable and practical quantitative structure–activity relationship (QSAR) model validated by strict conditions for predicting bioconcentration factors (BCF). We built up several QSAR models starting from a large data set of 473 heterogeneous chemicals, based on multiple linear regression (MLR), radial basis function neural network (RBFNN) and support vector machine (SVM) methods. To improve the results, we also applied a hybrid model, which gave better prediction than single models. All models were statistically analysed using strict criteria, including an external test set. The outliers were also examined to understand better in which cases large errors were to be expected and to improve the predictive models. The models offer more robust tools for regulatory purposes, on the basis of the statistical results and the quality check on the input data.  相似文献   

6.
The aim was to develop a reliable and practical quantitative structure-activity relationship (QSAR) model validated by strict conditions for predicting bioconcentration factors (BCF). We built up several QSAR models starting from a large data set of 473 heterogeneous chemicals, based on multiple linear regression (MLR), radial basis function neural network (RBFNN) and support vector machine (SVM) methods. To improve the results, we also applied a hybrid model, which gave better prediction than single models. All models were statistically analysed using strict criteria, including an external test set. The outliers were also examined to understand better in which cases large errors were to be expected and to improve the predictive models. The models offer more robust tools for regulatory purposes, on the basis of the statistical results and the quality check on the input data.  相似文献   

7.
Cheng F  Shen J  Yu Y  Li W  Liu G  Lee PW  Tang Y 《Chemosphere》2011,82(11):1636-1643
There is an increasing need for the rapid safety assessment of chemicals by both industries and regulatory agencies throughout the world. In silico techniques are practical alternatives in the environmental hazard assessment. It is especially true to address the persistence, bioaccumulative and toxicity potentials of organic chemicals. Tetrahymena pyriformis toxicity is often used as a toxic endpoint. In this study, 1571 diverse unique chemicals were collected from the literature and composed of the largest diverse data set for T. pyriformis toxicity. Classification predictive models of T. pyriformis toxicity were developed by substructure pattern recognition and different machine learning methods, including support vector machine (SVM), C4.5 decision tree, k-nearest neighbors and random forest. The results of a 5-fold cross-validation showed that the SVM method performed better than other algorithms. The overall predictive accuracies of the SVM classification model with radial basis functions kernel was 92.2% for the 5-fold cross-validation and 92.6% for the external validation set, respectively. Furthermore, several representative substructure patterns for characterizing T. pyriformis toxicity were also identified via the information gain analysis methods.  相似文献   

8.
9.
10.

The safety assessment process of chemicals requires information on their mutagenic potential. The experimental determination of mutagenicity of a large number of chemicals is tedious and time and cost intensive, thus compelling for alternative methods. We have established local and global QSAR models for discriminating low and high mutagenic compounds and predicting their mutagenic activity in a quantitative manner in Salmonella typhimurium (TA) bacterial strains (TA98 and TA100). The decision treeboost (DTB)-based classification QSAR models discriminated among two categories with accuracies of >96% and the regression QSAR models precisely predicted the mutagenic activity of diverse chemicals yielding high correlations (R 2) between the experimental and model-predicted values in the respective training (>0.96) and test (>0.94) sets. The test set root mean squared error (RMSE) and mean absolute error (MAE) values emphasized the usefulness of the developed models for predicting new compounds. Relevant structural features of diverse chemicals that were responsible and influence the mutagenic activity were identified. The applicability domains of the developed models were defined. The developed models can be used as tools for screening new chemicals for their mutagenicity assessment for regulatory purpose.

  相似文献   

11.
12.
13.
14.
15.
16.
17.
Empirical QSAR models are only valid in the domain they were trained and validated. Application of the model to substances outside the domain of the model can lead to grossly erroneous predictions. Partial least squares (PLS) regression provides tools for prediction diagnostics that can be used to decide whether or not a substance is within the model domain, i.e. if the model prediction can be trusted. QSAR models for four different environmental end-points are used to demonstrate the importance of appropriate training set selection and how the reliability of QSAR predictions can be increased by outlier diagnostics. All models showed consistent results; test set prediction errors were very similar in magnitude to training set estimation errors when prediction outlier diagnostics were used to detect and remove outliers in the prediction data. Test set prediction errors for substances classified as outliers were much larger. The difference in the number of outliers between models with a randomly and systematically selected training illustrates well the need of representative training data.  相似文献   

18.
19.
Accurate quantitative structure–property relationship (QSPR) models based on a large data set containing a total of 3483 organic compounds were developed to predict chemicals’ adsorption capability onto activated carbon in gas phrase. Both global multiple linear regression (MLR) method and local lazy regression (LLR) method were used to develop QSPR models. The results proved that LLR has prediction accuracy 10% higher than that of MLR model. By applying LLR method we can predict the test set (787 compounds) with Q2ext of 0.900 and root mean square error (RMSE) of 0.129. The accurate model based on this large data set could be useful to predict adsorption property of new compounds since such model covers a highly diverse structural space.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号