共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloride concentration affects soil microbial community 总被引:2,自引:0,他引:2
We studied the effect of increased inorganic chloride concentration on forest soil microflora in a laboratory experiment. Microbial DNA extracted from experimental soil samples was amplified with PCR using primer pairs specifically amplifying bacterial, eukaryotic and fungal DNA fragments. The resulting amplified DNA was further used for terminal restriction fragment length polymorphism (TRFLP) analysis. Our work revealed that chloride concentration affects the indigenous microbial community in experimental soil. This was documented on an unidentified microorganism whose DNA was detectable in soil high in chloride but was not found in soil with low chloride concentration. The presence of the organism responsive to increased chloride concentration was associated with the highest observed value of chlorination of humic acid, suggesting possible role of this organism in soil chlorine turnover. High chloride concentration in the soil tended to decrease the rate of degradation of trichloroacetic acid. The problems connected with measurement of chlorination rates in soil are discussed. 相似文献
2.
The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil 总被引:10,自引:0,他引:10
Kirk JL Klironomos JN Lee H Trevors JT 《Environmental pollution (Barking, Essex : 1987)》2005,133(3):455-465
Enhanced rhizosphere degradation uses plants to stimulate the rhizosphere microbial community to degrade organic contaminants. We measured changes in microbial communities caused by the addition of two species of plants in a soil contaminated with 31,000 ppm of total petroleum hydrocarbons. Perennial ryegrass and/or alfalfa increased the number of rhizosphere bacteria in the hydrocarbon-contaminated soil. These plants also increased the number of bacteria capable of petroleum degradation as estimated by the most probable number (MPN) method. Eco-Biolog plates did not detect changes in metabolic diversity between bulk and rhizosphere samples but denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified partial 16S rDNA sequences indicated a shift in the bacterial community in the rhizosphere samples. Dice coefficient matrices derived from DGGE profiles showed similarities between the rhizospheres of alfalfa and perennial ryegrass/alfalfa mixture in the contaminated soil at week seven. Perennial ryegrass and perennial ryegrass/alfalfa mixture caused the greatest change in the rhizosphere bacterial community as determined by DGGE analysis. We concluded that plants altered the microbial population; these changes were plant-specific and could contribute to degradation of petroleum hydrocarbons in contaminated soil. 相似文献
3.
A natural attenuation experiment was carried out using a lysimeter for 308 days after contaminating the subsoil with hydrocarbons (HCs) and the changes in the structures of microbial community in the hydrocarbon (HC) contaminated subsoil were monitored by quinone profile analysis. The residues of HCs remained for 217 days in the subsoil after the contamination. The amount of total quinones (TQ), an indicator of microbial biomass, significantly increased in the HC contaminated subsoil for 217 days, comparing with that of the background subsoil or the subsoil before the addition of HCs. The major quinone species and the quinone composition, indicators of community structure, were significantly different between the HC contaminated soil and the background soil for 217 days. The major increased quinine species in the HC contaminated soil were menaquinone-8(H4), menaquinone-9(H2) and ubiquinone-9, indicating the propagation of Gram-positive bacteria with high guanine and cytosine content and gamma-subclass of Proteobacteria and fungi. There was no significant difference in the diversity of the quinone species (DQ), an indicator of taxonomic diversity of microbial community, except for the decrease in DQ in the shallow subsoil after 35 days when a high concentration of HCs was detected. After 308 days when the HCs in the subsoil disappeared, TQ returned to the level of the background soil, and no significant difference in quinone composition were observed between the HC contaminated soil and the background soil. The results suggested that respiratory quinones are effective biomarkers for characterizing the temporal changes of microbial community in the HC contaminated subsoil. 相似文献
4.
Wenwen Zhang Jun Xu Fengshou Dong Xingang Liu Ying Zhang Xiaohu Wu Yongquan Zheng 《Environmental science and pollution research international》2014,21(13):8323-8332
Tetraconazole is one of the most commonly used triazole fungicides in agricultural practice, and its continuous application poses a potential risk for non-target soil microorganisms. Therefore, the objective of this study was to evaluate the effect of tetraconazole at the field rate (T1, 0.33 mgkg?1 of soil), three times the field rate (T3, 1.00 mgkg?1 of soil) and 10 times the field rate (T10, 3.33 mgkg?1 of soil) on the soil microorganisms. To ascertain this effect, the tetraconazole concentration and the microbial properties with potential as bioindicators of soil health (i.e. microbial biomass C, basal respiration, substrate-induced respiration, structure diversity and functional community profiling) were determined. The results showed that the degradation half-lives of tetraconazole varied from 69 to 87 days, depending on the three application concentrations. The microbial biomass C, basal respiration and substrate-induced respiration were inhibited, but they tended to recover at the end of the incubation when tetraconazole was applied at the recommended field rate. The ratios of the gram-negative to gram-positive (GN to GP) bacteria decreased, and the fungi to bacteria ratio increased after a temporal decrease on the seventh day. A principal component analysis of the PLFAs showed that tetraconazole application significantly shifted the microbial community structure on day 7. Different functional community profiles were observed, depending on the tetraconazole application rates. It was concluded that tetraconazole application decreases the soil microbial biomass and activity and changes the structures of the soil microbial community. 相似文献
5.
Sardar Khan Abd El-Latif Hesham Min Qiao Shafiqur Rehman Ji-Zheng He 《Environmental science and pollution research international》2010,17(2):288-296
Background, aim, and scope
Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied. 相似文献6.
7.
Svenningsen H Henriksen T Priemé A Johnsen AR 《Environmental pollution (Barking, Essex : 1987)》2011,159(6):1599-1605
Effects of the common antibacterial agent triclosan on microbial communities and degradation of domestic xenobiotics were studied in simulated sewage-drain-field soil. Cultivable microbial populations decreased 22-fold in the presence of 4 mg kg−1 of triclosan, and triclosan-resistant Pseudomonas strains were strongly enriched. Exposure to triclosan also changed the general metabolic profile (Ecoplate substrate profiling) and the general profile (T-RFLP) of the microbial community. Triclosan degradation was slow at all concentrations tested (0.33-81 mg kg−1) during 50-days of incubation. Mineralization experiments (14C-tracers) and chemical analyses (LC-MS/MS) showed that the persistence of a linear alkylbenzene sulfonate (LAS) and a common analgesic (ibuprofen) increased with increasing triclosan concentrations (0.16-100 mg kg−1). The largest effect was seen for LAS mineralization which was severely reduced by 0.16 mg kg−1 of triclosan. Our findings indicate that environmentally realistic concentrations of triclosan may affect the efficiency of biodegradation in percolation systems. 相似文献
8.
T.Z. Lerch M.-F. Dignac N. Nunan E. Barriuso A. Mariotti 《Environmental pollution (Barking, Essex : 1987)》2009,157(11):2985-2993
The biodegradation of nonextractable residues (NER) of pesticides in soil is still poorly understood. The aim of this study was to evaluate the influence of NER ageing and fresh soil addition on the microbial communities responsible for their mineralisation. Soil containing either 15 or 90-day-old NER of 13C-2,4-D (NER15 and NER90, respectively) was incubated for 90 days with or without fresh soil. The addition of fresh soil had no effect on the mineralisation of NER90 or of SOM, but increased the extent and rate of NER15 mineralisation. The analyses of 13C-enriched FAME (fatty acids methyl esters) profiles showed that the fresh soil amendment only influenced the amount and structure of microbial populations responsible for the biodegradation of NER15. By coupling biological and chemical analyses, we gained some insight into the nature and the biodegradability of pesticide NER. 相似文献
9.
Chun S Lee J Radosevich M White DC Geyer R 《Journal of environmental science and health. Part. B》2006,41(6):923-935
Agricultural pharmaceuticals are a major environmental concern because of their hazardous effects on human and wildlife. This study analyzed phospholipid ester-linked fatty acids (PLFAs) and quinones to investigate the effects of a steroid (17beta-estradiol) and agricultural antibiotics (chlortetracycline and tylosin) on soil microbes in the laboratory. Two different types of soil were used: Sequatchie loam (0.8% organic matter) and LaDelle silt loam (9.2% organic matter). The soils were spiked with 17beta-estradiol and antibiotics, alone or in combination. In Sequatchie loam, 17beta-estradiol significantly increased the microbial biomass, especially the biomarkers for beta proteobacteria (16:1omega7c, 18:1omega7c, Cy17:0, and UQ-8). The coexistence of antibiotics decreased the stimulatory effect of 17beta-estradiol on the microbial community. In LaDelle silt loam, there were no significant differences in total microbial biomass and their microbial community structure among the treatments. Overall, 17beta-estradiol changed the microbial community of soil and the presence of antibiotics nullified the effect of 17beta-estradiol. However, the effects of 17beta-estradiol and antibiotics on soil microbes were sensitive to the soil properties, as seen in the LaDelle silt loam. 相似文献
10.
Stone JJ Dreis EK Lupo CD Clay SA 《Journal of environmental science and health. Part. B》2011,46(8):752-762
The land application of aged chortetracycle (CTC) and tylosin-containing swine manure was investigated to determine associated impacts to soil microbial respiration, nutrient (phosphorus, ammonium, nitrate) cycling, and soil microbial community structure under laboratory conditions. Two silty clay loam soils common to southeastern South Dakota were used. Aerobic soil respiration results using batch reactors containing a soil-manure mixture showed that interactions between soil, native soil microbial populations, and antimicrobials influenced CO(2) generation. The aged tylosin treatment resulted in the greatest degree of CO(2) inhibition, while the aged CTC treatment was similar to the no-antimicrobial treatment. For soil columns in which manure was applied at a one-time agronomic loading rate, there was no significant difference in soil-P behavior between either aged CTC or tylosin and the no-antimicrobial treatment. For soil-nitrogen (ammonium and nitrate), the aged CTC treatment resulted in rapid ammonium accumulation at the deeper 40cm soil column depth, while nitrate production was minimal. The aged CTC treatment microbial community structure was different than the no-antimicrobial treatment, where amines/amide and carbohydrate chemical guilds utilization profile were low. The aged tylosin treatment also resulted in ammonium accumulation at 40 cm column depth, however nitrate accumulation also occurred concurrently at 10 cm. The microbial community structure for the aged tylosin was also significantly different than the no-antimicrobial treatment, with a higher degree of amines/amides and carbohydrate chemical guild utilization compared to the no-antimicrobial treatment. Study results suggest that land application of CTC and tylosin-containing manure appears to fundamentally change microbial-mediated nitrogen behavior within soil A horizons. 相似文献
11.
James J. Stone Erin K. Dreis Christopher D. Lupo Sharon A. Clay 《Journal of environmental science and health. Part. B》2013,48(8):752-762
The land application of aged chortetracycle (CTC) and tylosin-containing swine manure was investigated to determine associated impacts to soil microbial respiration, nutrient (phosphorus, ammonium, nitrate) cycling, and soil microbial community structure under laboratory conditions. Two silty clay loam soils common to southeastern South Dakota were used. Aerobic soil respiration results using batch reactors containing a soil-manure mixture showed that interactions between soil, native soil microbial populations, and antimicrobials influenced CO2 generation. The aged tylosin treatment resulted in the greatest degree of CO2 inhibition, while the aged CTC treatment was similar to the no-antimicrobial treatment. For soil columns in which manure was applied at a one-time agronomic loading rate, there was no significant difference in soil-P behavior between either aged CTC or tylosin and the no-antimicrobial treatment. For soil-nitrogen (ammonium and nitrate), the aged CTC treatment resulted in rapid ammonium accumulation at the deeper 40cm soil column depth, while nitrate production was minimal. The aged CTC treatment microbial community structure was different than the no-antimicrobial treatment, where amines/amide and carbohydrate chemical guilds utilization profile were low. The aged tylosin treatment also resulted in ammonium accumulation at 40 cm column depth, however nitrate accumulation also occurred concurrently at 10 cm. The microbial community structure for the aged tylosin was also significantly different than the no-antimicrobial treatment, with a higher degree of amines/amides and carbohydrate chemical guild utilization compared to the no-antimicrobial treatment. Study results suggest that land application of CTC and tylosin-containing manure appears to fundamentally change microbial-mediated nitrogen behavior within soil A horizons. 相似文献
12.
The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community 总被引:23,自引:0,他引:23
Kong WD Zhu YG Fu BJ Marschner P He JZ 《Environmental pollution (Barking, Essex : 1987)》2006,143(1):129-137
There are increasing concerns over the effects of veterinary antibiotics and heavy metals in agricultural soils. The widely used veterinary antibiotic oxytetracycline (OTC), Cu and their combination on soil microbial community function were assessed with the Biolog method. The microbial community was extracted from the soil and exposed to a 0.85% sodium chloride solution containing OTC (0, 1, 5, 11, 43, 109 and 217 microM), or Cu (0, 10, 20, 100 and 300 microM), or combination of the two pollutants (OTC 0, 5, 11 microM and Cu 0, 20 microM). Functional diversity, evenness, average well color development (AWCD) and substrate utilization decreased significantly with increasing concentrations of OTC or Cu (p < 0.005). The critical concentrations were 11 microM for OTC and 20 microM for Cu. The combination of OTC and Cu significantly decreased Shannon's diversity, evenness and utilization of carbohydrates and carboxylic acids compared to individual one of the contaminants. The antibiotic OTC and Cu had significant negative effects on soil microbial community function, particularly when both pollutants were present. 相似文献
13.
Jüttner F 《Environmental pollution (Barking, Essex : 1987)》1990,68(3-4):377-382
Volatile microbial metabolites were analysed in the soil beneath 15 H year-old Picea abies which had been fumigated for 5 consecutive years with charcoal-filtered air enriched with ozone and sulphur dioxide. Major compounds which could be attributed to the metabolism of basidiomycete fungi were oct-1-en-3-ol, oct-1-en-3-one and 1,3-octadiene. They were accompanied by other C(8)-compounds. The lower amounts of C(8)-compounds observed in the soil of the sulphur dioxide and ozone treatment chambers indicate a reduced development of basidiomycetes. The higher amounts of geosmin and 2-methylisoborneol found in the soil of the ozone treatment chamber indicate an increase in actinomycete populations. The differences of the monoterpene patterns in the particular soils were not large enough to recognize trends unequivocally. 相似文献
14.
Sonbrevea Javoreková Ivana Svrcbreveeková Jana Maková 《Journal of environmental science and health. Part. B》2013,48(7):702-709
The effects of pesticides (a herbicide and a fungicide) on the microbial community structure and their activity were analyzed in soil from four alpine pasture grasslands in Slovakia. Specifically, the effects of the herbicide, Gesagard (prometryn active ingredient), and fungicide, Fundazol 50 WP (benomyl active ingredient), on the microbial respiration activity (CO2 production), the numbers of selective microbial physiological groups (CFU.g?1) and the structure (relative abundance) of soil microbial communities [(phospholipid fatty acid (PLFA)] were analyzed under controlled laboratory conditions. All treatments including the treatments with pesticides increased (statistically significantly) the production of CO2 in all fields during 21 days of incubation and posed a statistically insignificant negative influence on the numbers of the observed physiological groups of microorganisms. The significantly negative influence was evaluated only in the numbers of two physiological groups; spores of bacteria utilizing organic nitrogen and bacteria, and their spores utilizing inorganic nitrogen. A shift in the microbial composition was evident when the PLFA patterns of samples from different sites and treatments were compared by the Principal Component Analysis (PCA). According to the second component PCA 2 (15.95 %) the locations were grouped into two clusters. The first one involved the Donovaly and Dubakovo sites and the second one contained the Velka Fatra and Mala Fatra locations. The PLFA composition of the soils showed important changes after the treatment with pesticides according to PCA 1 (66.06 %). Other treatments had not had a significant effect on the soil microbial community with the exception of the population of fungi. The lower relative abundance (significant effect) of Gram-positive bacteria, actinomycetes and general group of bacteria were determined in samples treated by the herbicide Gesagard. The application of fungicide Fundazol decreased (statistically significantly) the relative abundance of actinomycetes and general group of bacteria and paradoxically increased the population of fungi. 相似文献
15.
Lur Epelde Oihana Barrutia Carlos Garbisu 《Environmental pollution (Barking, Essex : 1987)》2010,158(5):1576-270
In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems. 相似文献
16.
P. C. Abhilash Nandita Singh 《Environmental science and pollution research international》2009,16(6):727-740
Background, aim, and scope
Lindane, technically 1, 2, 3, 4, 5, 6-hexachlorocyclohexane (γ- HCH), is the most commonly detected organochlorine pesticide from diverse environmental compartments. Currently, India is the largest consumer and producer of lindane in the world. The production of lindane results in the generation of large quantities of waste HCH isomers (mainly α-, β- and δ-). All these isomers are toxic and have a long-range environmental transport potential. The aim of this study was to monitor the seasonal variation of HCH isomers in an open soil–plant–rhizospheric soil system of a contaminated industrial area. For this, selected plant species and their rhizospheric soil (soil samples collected at a depth range of 0–45 cm near to the root system) and open soil samples (soil samples collected (0–30 cm depth) from 1–1.5 m away from the plant root system) were collected for 2 years (two summer seasons and two winter seasons). 相似文献17.
The combined effects of urea application and simulated acid rain on soil acidification and microbial community structure 总被引:2,自引:0,他引:2
Xingmei Liu Jian Zhou Wanlu Li Jianming Xu Philip C. Brookes 《Environmental science and pollution research international》2014,21(10):6623-6631
Our aim was to test the effects of simulated acid rain (SAR) at different pHs, when applied to fertilized and unfertilized soils, on the leaching of soil cations (K, Ca, Mg, Na) and Al. Their effects on soil pH, exchangeable H+ and Al3+ and microbial community structure were also determined. A Paleudalfs soil was incubated for 30 days, with and without an initial application of urea (200 mg N kg?1soil) as nitrogen (N) fertilizer. The soil was held in columns and leached with SAR at three pH levels. Six treatments were tested: SAR of pH 2.5, 4.0 and 5.6 leaching on unfertilized soil (T1, T2 and T3), and on soils fertilized with urea (T4, T5 and T6). Increasing acid inputs proportionally increased cation leaching in both unfertilized and fertilized soils. Urea application increased the initial Ca and Mg leaching, but had no effect on the total concentrations of Ca, Mg and K leached. There was no significant difference for the amount of Na leached between the different treatments. The SAR pH and urea application had significant effects on soil pH, exchangeable H+ and Al3+. Urea application, SAR treated with various pH, and the interactions between them all had significant impacts on total phospholipid fatty acids (PLFAs). The highest concentration of total PLFAs occurred in fertilized soils with SAR pH5.6 and the lowest in soils leached with the lowest SAR pH. Soils pretreated with urea then leached with SARs of pH 4.0 and 5.6 had larger total PLFA concentrations than soil without urea. Bacterial, fungal, actinomycete, Gram-negative and Gram-positive bacterial PLFAs had generally similar trends to total PLFAs. 相似文献
18.
Ecotypes of Sorghastrum nutans from a naturally metalliferous serpentine grassland and the tallgrass prairie were assessed for Ni tolerance and their utility in remediation of Ni-polluted soils. Plants were inoculated with serpentine arbuscular mycorrhizal (AM) root inoculum or whole soil microbial communities, originating from either prairie or serpentine, to test their effects on plant performance in the presence of Ni. Serpentine plants had marginally higher Ni tolerance as indicated by higher survival. Ni reduced plant biomass and AM root colonization for both ecotypes. The serpentine AM fungi and whole microbial community treatments decreased plant biomass relative to uninoculated plants, while the prairie microbial community had no effect. Differences in how the soil communities affect plant performance were not reflected in patterns of root colonization by AM fungi. Thus, serpentine plants may be suited for reclamation of Ni-polluted soils, but AM fungi that occur on serpentine do not improve Ni tolerance. 相似文献
19.
Yang Wenhao Zhang Taoxiang Lin Sen Ni Wuzhong 《Environmental science and pollution research international》2017,24(16):14234-14248
Environmental Science and Pollution Research - The recovery of microbial community and activities is crucial to the remediation of contaminated soils. Distance-dependent variations of microbial... 相似文献
20.
Principles of microbial PAH-degradation in soil 总被引:44,自引:0,他引:44
Interest in the biodegradation mechanisms and environmental fate of polycyclic aromatic hydrocarbons (PAHs) is motivated by their ubiquitous distribution, their low bioavailability and high persistence in soil, and their potentially deleterious effect on human health. Due to high hydrophobicity and solid-water distribution ratios, PAHs tend to interact with non-aqueous phases and soil organic matter and, as a consequence, become potentially unavailable for microbial degradation since bacteria are known to degrade chemicals only when they are dissolved in water. As the aqueous solubility of PAHs decreases almost logarithmically with increasing molecular mass, high-molecular weight PAHs ranging in size from five to seven rings are of special environmental concern. Whereas several reviews have focussed on metabolic and ecological aspects of PAH degradation, this review discusses the microbial PAH-degradation with special emphasis on both biological and physico-chemical factors influencing the biodegradation of poorly available PAHs. 相似文献