首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the effect of different application techniques on greenhouse gas emission from co-fermented slurry. Ammonia (NH3), nitrous oxide (N2O), and methane (CH4) emissions were measured in two field experiments with four different application techniques on arable and grassland sites. To gather information about fermentation effects, unfermented slurry was also tested, but with trail hose application only. Co-fermented slurry was applied in April at a rate of 30 m3 ha(-1). Measurements were made every 4 h on the first day after application and were continued for 6 wk with gradually decreasing sampling frequency. Methane emissions were <150 g C ha(-1) from co-fermentation products and seemed to result from dissolved CH4. Only in the grassland experiment were emissions from unfermented slurry significantly higher, with wetter weather conditions probably promoting CH4 production. Nitrous oxide emission was significantly increased by injection on arable and grassland sites two- and threefold, respectively. Ammonia emissions were smallest after injection or trail shoe application and are discussed in the preceding paper. We evaluated the climatic relevance of the measured gas emissions from the different application techniques based on the comparison of CO2 equivalents. It was evident that NH3 emission reduction, which can be achieved by injection, is at least compensated by increased N2O emissions. Our results indicate that on arable land, trail hose application with immediate shallow incorporation, and on grassland, trail shoe application, bear the smallest risks of high greenhouse gas emissions when fertilizing with co-fermented slurry.  相似文献   

2.
Low-disturbance manure application methods can provide the benefits of manure incorporation, including reducing ammonia (NH3) emissions, in production systems where tillage is not possible. However, incorporation can exacerbate nitrate (NO3?) leaching. We sought to assess the trade-offs in NH3 and NO3? losses caused by alternative manure application methods. Dairy slurry (2006-2007) and liquid swine manure (2008-2009) were applied to no-till corn by (i) shallow (<10 cm) disk injection, (ii) surface banding with soil aeration, (iii) broadcasting, and (iv) broadcasting with tillage incorporation. Ammonia emissions were monitored for 72 h after application using ventilated chambers and passive diffusion samplers, and NO3? leaching to 80 cm was monitored with buried column lysimeters. The greatest NH3 emissions occurred with broadcasting (35-63 kg NH3-N ha?), and the lowest emissions were from unamended soil (<1 kg NH-N ha?1). Injection decreased NH-N emissions by 91 to 99% compared with broadcasting and resulted in lower emissions than tillage incorporation 1 h after broadcasting. Ammonia-nitrogen emissions from banding manure with aeration were inconsistent between years, averaging 0 to 71% that of broadcasting. Annual NO3? leaching losses were small (<25 kg NO3-N ha?1) and similar between treatments, except for the first winter when NO3? leaching was fivefold greater with injection. Because NO3? leaching with injection was substantially lower over subsequent seasons, we hypothesize that the elevated losses during the first winter were through preferential flow paths inadvertently created during lysimeter installation. Overall, shallow disk injection yielded the lowest NH3 emissions without consistently increasing NO3? leaching, whereas manure banding with soil aeration conserved inconsistent amounts of N.  相似文献   

3.
Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH) emissions from dairy farms and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH emissions, and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate the impacts of CP and tannin feeding on slurry chemistry, NH emissions, and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels of dietary CP (low CP [LCP], 155 g kg; high CP [HCP], 168 g kg) each fed at four levels of dietary tannin extract, a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees (0 tannin [0T]; low tannin [LT], 4.5 g kg; medium tannin [MT], 9.0 g kg; and high tannin [HT], 18.0 g kg) were applied to soil-containing lab-scale chambers, and NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after slurry application. Emissions from the HCP slurry were 1.53 to 2.57 times greater ( < 0.05) than from the LCP slurry. At trial's end (48 h), concentrations of inorganic N in soils were greater ( < 0.05) in HCP slurry-amended soils than in LCP slurry-amended soils. Emissions from HT slurry were 28 to 49% lower ( < 0.05) than emissions from 0T slurry, yet these differences did not affect soil inorganic N levels. Emissions from the sandy loam soil were 1.07 to 1.15 times greater ( < 0.05) than from silt loam soil, a result that decreased soil inorganic N in the sandy loam compared with the silt loam soil. Larger-scale and longer-term field trails are needed to ascertain the effectiveness of feeding tannin extracts to dairy cows in abating NH loss from land-applied slurry and the impact of tannin-containing slurry on soil N cycles.  相似文献   

4.
Ammonia (NH3) emission from livestock production causes undesirable environmental effects and a loss of plant-available nitrogen. Much atmospheric NH3 is lost from livestock manure applied in the field. The NH3 emission may be reduced by slurry injection, but slurry injection in general, and especially on grassland, increases the energy demand and places heavy demands on the slurry injection techniques used. The reduction in NH3 emission, injection efficiency, and energy demand of six different shallow slurry-injection techniques was examined. The NH3 emission from cattle slurry applied to grassland was reduced by all the injectors tested in the study, but there were major differences in the NH3 reduction potential of the different types of injectors. Compared with the trailing hose spreading technique, the NH3 loss was reduced by 75% when cattle slurry was injected using the most efficient slurry injection technique, and by 20% when incorporated by the least efficient injection technique. The reduction in NH3 emission was correlated with injection depth and the volume of the slot created. The additional energy demand for reducing ammonia emissions by slurry injection was approximately 13 000 kJ ha(-1) for a 20% reduction and 34 000 kJ ha(-1) for a 75% reduction. The additional energy demand corresponds to additional emissions of, respectively, 5.6 and 14.5 kg CO2 per ha injected.  相似文献   

5.
Much animal manure is being applied to small land areas close to animal confinements, resulting in environmental degradation. This paper reports a study on the emissions of ammonia (NH3), methane (CH4), and nitrous oxide (N2O) from a pasture during a 90-d period after pig slurry application (60 m3 ha-1) to the soil surface. The pig slurry contained 6.1 kg total N m-3, 4.2 kg of total ammoniacal nitrogen (TAN = NH3 + NH4) m-3, and 22.1 kg C m-3, and had a pH of 8.14. Ammonia was lost at a fast rate immediately after slurry application (4.7 kg N ha-1 h-1), when the pH and TAN concentration of the surface soil were high, but the loss rate declined quickly thereafter. Total NH3 losses from the treated pasture were 57 kg N ha-1 (22.5% of the TAN applied). Methane emission was highest (39.6 g C ha-1 h-1) immediately after application, as dissolved CH4 was released from the slurry. Emissions then continued at a low rate for approximately 7 d, presumably due to metabolism of volatile fatty acids in the anaerobic slurry-treated soil. The net CH4 emission was 1052 g C ha-1 (0.08% of the carbon applied). Nitrous oxide emission was low for the first 14 d after slurry application, then showed emission peaks of 7.5 g N ha-1 h-1 on Day 25 and 15.8 g N ha-1 h-1 on Day 67, and decline depending on rainfall and nitrate (NO3) concentrations. Emission finally reached background levels after approximately 90 d. Nitrous oxide emission was 7.6 kg N ha-1 (2.1% of the N applied). It is apparent that of the two major greenhouse gases measured in this study, N2O is by far the more important tropospheric pollutant.  相似文献   

6.
Reducing ammonia (NH3) emissions through slurry incorporation or other soil management techniques may increase nitrate (NO3) leaching, so quantifying potential losses from these alternative pathways is essential to improving slurry N management. Slurry N losses, as NH3 or NO3 were evaluated over 4 yr in south-central Wisconsin. Slurry (i.e., dairy cow [Bos taurus] manure from a storage pit) was applied each spring at a single rate (-75 m3 ha(-1)) in one of three ways: surface broadcast (SURF), surface broadcast followed by partial incorporation using an aerator implement (AER-INC), and injection (INJ). Ammonia emissions were measured during the 120 h following slurry application using chambers, and NO3 leaching was monitored in drainage lysimeters. Yield and N3 uptake of oat (Avena sativa L.), corn (Zea mays L.), and winter rye (Secale cereale L.) were measured each year, and at trial's end soils were sampled in 15- to 30-cm increments to 90-cm depth. There were significant tradeoffs in slurry N loss among pathways: annual mean NH3-N emission across all treatments was 5.3, 38.3, 12.4, and 21.8 kg ha(-1) and annual mean NO3-N leaching across all treatments was 24.1, 0.9, 16.9, and 7.3 kg ha' during Years 1, 2, 3, and 4, respectively. Slurry N loss amounted to 27.1% of applied N from the SURF treatment (20.5% as NH3-N and 6.6% as NO,-N), 23.3% from AER-INC (12.0% as NH3-N and 11.3% as NO3-N), and 9.19% from INJ (4.4% as NH3-N and 4.7% as NO3-N). Although slurry incorporation decreased slurry N loss, the conserved slurry N did not significantly impact crop yield, crop N uptake or soil properties at trial's end.  相似文献   

7.
Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.  相似文献   

8.
Manipulation of the diets of pigs may alter the composition of the manure and thereby the environmental and agricultural qualities of the manure. Laboratory studies were performed to quantify the effect of manipulation of pig diets on the chemical composition of the derived manure (slurry), the potential emission of methane (CH4) and ammonia (NH3) during anaerobic storage of the manure, and the potential nitrous oxide (N2O) and carbon dioxide (CO2) emission after application of the manure to soil. The diets differed in contents of crude protein and salt (CaSO4), and the type and contents of nonstarch polysaccharides (NSP). Emissions of NH3 and CH4 during storage were smaller at a low than at a high dietary protein content. The emission of NH3 was significantly related to the contents of ammonium (NH4), total N, and pH. The emission of CH4 was significantly related to contents of dry matter, total C, and volatile fatty acids in the manure. The effect of manure composition on N2O emission markedly differed between the two tested soils, which points at interactions with soil properties such as the organic matter content. These types of interactions require soil-specific recommendations for mitigation of N2O emission from soil-applied pig manure by manipulation of the diet. From the tested diets, decreasing the protein content has the largest potential to simultaneously decrease NH3 and CH4 emissions during manure storage and N2O emission from soil. An integral assessment of the environmental and agricultural impact of handling and application of pig manure as a result of diet manipulation provides opportunities for farmers to maximize the value of manures as fertilizer and soil conditioner and to minimize N and C emissions to the environment.  相似文献   

9.
Intensively managed grasslands are potentially a large source of NH3, N2O, and NO emissions because of the large input of nitrogen (N) in fertilizers. Addition of nitrification inhibitors (NI) to fertilizers maintains soil N in ammonium form. Consequently, N2O and NO losses are less likely to occur and the potential for N utilization is increased, and NH3 volatilization may be increased. In the present study, we evaluated the effectiveness of the nitrification inhibitor 3,4-dimethylpyrazol phosphate (DMPP) on NH3, N2O, NO, and CO2 emissions following the application of 97 kg N ha(-1) as ammonium sulfate nitrate (ASN) and 97 kg NH4+ -N ha(-1) as cattle slurry to a mixed clover-ryegrass sward in the Basque Country (northern Spain). After slurry application, 16.0 and 0.7% of the NH4+ -N applied was lost in the form of N2O and NO, respectively. The application of DMPP induced a decrease of 29 and 25% in N2O and NO emissions, respectively. After ASN application 4.6 and 2.8% of the N applied was lost as N2O and NO, respectively. The application of DMPP with ASN (as ENTEC 26; COMPO, Münster, Germany) unexpectedly did not significantly reduce N2O emissions, but induced a decrease of 44% in NO emissions. The amount of NH4+ -N lost in the form of NH3 following slurry and slurry + DMPP applications was 7.8 and 11.0%, respectively, the increase induced by DMPP not being statistically significant. Levels of CO2 emissions were unaffected in all cases by the use of DMPP. We conclude that DMPP is an efficient nitrification inhibitor to be used to reduce N2O and NO emissions from grasslands.  相似文献   

10.
Managing manure in reduced tillage and forage systems presents challenges, as incorporation by tillage is not compatible. Surface-applied manure that is not quickly incorporated into soil provides inefficient delivery of manure nutrients to crops due to environmental losses through ammonia (NH3) volatilization and nutrient losses in runoff, and serves as a major source of nuisance odors. An array of technologies now exist to facilitate the incorporation of liquid manures into soil with restricted or minor soil disturbance, some of which are new: shallow disk injection; chisel injection; aeration infiltration; pressure injection. Surface banding of manure inforages decreases NH3 emissions relative to surface broadcasting, as the canopy can decrease wind speed over the manure, but greater reductions can be achieved with manure injection. Soilaeration is intended to hasten manure infiltration, but its benefits are not consistent and may be related to factors such as soildrainage characteristics. Work remains to be done on refining its method of use and timing relative to manure application, which may improve its effectiveness. Placing manure under the soil surface efficiency by injection offers much promise to improve N use efficiency through less NH3 volatilization, reduced odors and decreased nutrient losses in runoff, relative to surface application. We identified significant gaps in our knowledge as manyof these technologies are relatively new, and this should help target future research efforts including environmental, agronomic, and economic assessments.  相似文献   

11.
Injection of cattle and swine slurries can provide soil incorporation in no-till and perennial forage production. Injection is expected to substantially reduce N loss due to ammonia (NH3) volatilization, but a portion of that N conservation may be offset by greater denitrification and leaching losses. This paper reviews our current knowledge of the impacts of subsurface application of cattle and swine slurries on the N balance and outlines areas where a greater understanding is needed. Several publications have shown that liquid manure injection using disk openers, chisels, or tines can be expected to Sreduce NH, emissions by at least 40%, and often by 90% or more, relative to broadcast application. However, the limited number of studies that have also measured denitrification losses have shown that increased denitrification with subsurface application can offset as much as half of the N conserved by reducing NH3 emissions. Because the greenhouse gas nitrous oxide (N2O) is one product of denitrification, the possible increases in N2O emission with injection require further consideration. Subsurface manure application generally does not appear to increase leaching potential when manure is applied at recommended rates. Plant utilization of conserved N was shown in only a portion of the published studies, indicating that further work is needed to better synchronize manure N availability and crop uptake. At this time in the United States, the economic and environmental benefits from reducing losses of N as NH3 are expected to outweigh potential liability from increases in denitrification with subsurface manure application. To fully evaluate the trade-offs among manure application methods, a detailed environmental and agricultural economic assessment is needed to estimate the true costs of potential increases in NO2O emissions with manure injection.  相似文献   

12.
Slurry application with methods such as trailing shoe (TS) results in reduced emissions of ammonia (NH3) compared with broadcast application using splashplate (SP). Timing the application during cool and wet weather conditions also contributes to low NH3 emissions. From this perspective, we investigated whether reduced NH3 emissions due to improved slurry application method and timing results in an increase in the nitrogen (N) fertilizer replacement value (NFRV). The effects of application timing (June vs. April) and application method (TS vs. SP) on the apparent N recovery (ANR) and NFRV from cattle slurry applied to grassland were examined on three sites over 3 yr in randomized block experiments. The NFRV was calculated using two methods: (i) NFRV(N) based on the ANR of slurry N relative to mineral N fertilizer; and (ii) NFRV(DM) based on DM yield. The TS method increased the ANR, NFRV(N), and NFRV(DM) compared with SP in the 40- to 50-d period following slurry application by 0.09, 0.10, and 0.10 kg kg(-1), respectively. These values were reduced to 0.07, 0.06, and 0.05 kg kg(-1), respectively, when residual harvests during the rest of the year were included. The highest NFRV(DM) for the first harvest period was with application in April using STS (0.30 kg kg(-1)), while application in June with SP had the Slowest (0.12 kg kg(-1)). The highest NFRV(DM) for the cumulative harvest period was with application in April using TS (0.38 kg kg(-1)), while application in June with SP had the lowest (0.17 kg kg(-1)). Improved management of application method, by using TS instead of SP, and timing, by applying slurry in April rather than June, offer potential to increase the NFRV(DM) of cattle slurry applied to grassland.  相似文献   

13.
Treatments to reduce solids content in liquid manure have been developed, but little information is available on gaseous N emissions and plant N uptake after application of treated liquid swine manure (LSM). We measured crop yield, N uptake, and NH3 and N2O losses after the application of mineral fertilizer (NH4 NO3), raw LSM, and LSM that was decanted, filtered, anaerobically digested, or chemically flocculated. The experiment was conducted from 2001 to 2003 on a loam and a sandy loam cropped to timothy (Phleum pratense L.) with annual applications equivalent to 80 kg N ha(-1) in spring and 60 kg N ha(-1) after the first harvest. Raw LSM resulted in NH3 emissions three to six times larger (P < 0.05) than mineral fertilizer. The LSM treatments reduced NH3 emissions by an average of 25% compared with raw LSM (P < 0.05). The N2O emissions tended to be higher with raw LSM than with mineral fertilizer. The LSM treatments had little effect on N2O emissions, except for anaerobic digestion, which reduced emissions by >50% compared with raw LSM (P < 0.05). Forage yield with raw LSM was >90% of that with mineral fertilizer. The LSM treatments tended to increase forage yield and N uptake relative to raw LSM. We conclude that treated or untreated LSM offers an alternative to mineral fertilizers for forage grass production but care must be taken to minimize NH3 volatilization. Removing solids from LSM by mechanical, chemical, and biological means reduced NH3 losses from LSM applied to perennial grass.  相似文献   

14.
Manure can provide valuable nutrients, especially N, for grass forage, but high NH, volatilization losses from standard surface-broadcast application limits N availability and raises environmental concerns. Eight field trials were conducted to evaluate the emission of NH, from liquid dairy manure, either surface broadcast or applied in narrow surface bands with a trailing-foot implement. Manure was applied using both techniques at rates of approximately 25 and 50 m3 ha(-1) on either orchardgrass (Dactylis glomerata L.) on a well-drained silt loam or reed canarygrass (Phalaris arundinacea L.) on a somewhat poorly drained clay soil. Ammonia emission was measured with a dynamic chamber/equilibrium concentration technique. High NH3 emission rates in broadcast treatments, especially at the high rate (2 to 13 kg ha(-1) h(-1)), occurred during the first few hours after spreading, followed by a rapid reduction to low levels (<0.5 kg ha(-1) h(-1) in most cases) by 24 h after spreading and in subsequent days. Band treatments often followed the same pattern but with initial rates substantially lower and with a less dramatic decrease over time. Total estimated NH3 losses from broadcast application, as a percent of total ammoniacal N (TAN) applied, averaged 39% (range of 20 to 59%) from the high manure rate and 25% (range of 9 to 52%) from the low rate. Band spreading reduced total NH3 losses by an average of 52 and 29% for the high and low manure rates, respectively. Results show that the trailing-foot band application method can reduce NH3 losses and conserve N for perennial forage production.  相似文献   

15.
The climatic conditions of the Basque Country (northern Spain) provide the favorable conditions for the growth of grasslands and the development of livestock enterprises. The intensification of the farms is leading to serious environmental risks due to the great generation of manures and slurries and their subsequent inefficient management. Their application involves N losses that can be pollutant. The environmental company ADE BIOTEC S.L. is developing the process called "electroflotation" with the aim of reducing the volume of slurries from intensive livestock farms. The process consists basically of an electrolysis of the slurry catalyzed by iron which leads to the flocculation of the solid particles, giving as a final result a solid and a liquid fraction. The objective of this work was to assess the usefulness of these two fractions as fertilizers. With this aim, the environmental risk of their application was determined regarding gaseous emissions to the atmosphere (i.e., of NO, NH(3), N(2)O, and CO(2)) and their fertilizer capacity was investigated by determining their effects on grassland yield and N uptake in comparison to the untreated slurry. The untreated slurry and the solid and the liquid fractions were all applied at a rate of 70 kg NH(4)(+)-N ha(-1). The application of the products of electroflotation did not affect N(2)O and CO(2) losses, being of the same magnitude as those caused by the application of the original slurry. However, after their application, a reduction in NH(3) volatilization losses was induced in the short term and a reduction in NO losses was caused in the long term. The solid and liquid fractions both increased biomass yield with respect to the untreated slurry. The solid fraction even induced a higher N uptake than the liquid fraction and the untreated slurry.  相似文献   

16.
Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.  相似文献   

17.
In the United States, swine (Sus scrofa) operations produce more than 14 Tg of manure each year. About 30% of this manure is stored in anaerobic lagoons before application to land. While land application of manure supplies nutrients for crop production, it may lead to gaseous emissions of ammonia (NH3) and nitrous oxide (N2O). Our objectives were to quantify gaseous fluxes of NH3 and N2O from effluent applications under field conditions. Three applications of swine effluent were applied to soybean [Glycine max (L.) Merr. 'Brim'] and gaseous fluxes were determined from gas concentration profiles and the flux-gradient gas transport technique. About 12% of ammonium (NH4-N) in the effluent was lost through drift or secondary volatilization of NH3 during irrigation. An additional 23% was volatilized within 48 h of application. Under conditions of low windspeed and with the wind blowing from the lagoon to the field, atmospheric concentrations of NH3 increased and the crop absorbed NH3 at the rate of 1.2 kg NH3 ha(-1) d(-1), which was 22 to 33% of the NH3 emitted from the lagoon during these periods. Nitrous oxide emissions were low before effluent applications (0.016 g N2O-N ha(-1) d(-1)) and increased to 25 to 38 g N2O-N ha(-1) d(-1) after irrigation. Total N2O emissions during the measurement period were 4.1 kg N2O-N ha(-1), which was about 1.5% of total N applied. The large losses of NH3 and N2O illustrate the difficulty of basing effluent irrigation schedules on N concentrations and that NH3 emissions can significantly contribute to N enrichment of the environment.  相似文献   

18.
Co-digestion changes slurry characteristics and is supposed to increase short-term nitrogen (N) uptake by crops after application. A higher N uptake from slurry reduces the need for additional mineral N fertilizer. If farmers apply co-digested slurry (CS), a higher N recovery has to be taken into account to prevent losses to the environment. Since data on the effects of co-digestion on N recovery by crops are scarce, a pot experiment was performed. The apparent N recovery (ANR) of five different co-digested pig slurries was compared with their raw source slurries (RS) during 105 d after a single fertilization of ryegrass (Lolium perenne L.), grown under controlled conditions. Slurry was mixed with sandy soil and grass was cut every 35 d. The results show that co-digestion increased (p < 0.05) the ANR at first cut on average from 39 to 50%, at second cut from 7 to 9% (p < 0.05), and had no effect on ANR at third cut (3%). The ANR increase at first cut was likely due to an increase of the NH(4)-N/total N ratio along with a decrease of the organic C/total N ratio of slurry during co-digestion. Field application may under certain circumstances decrease N fertilizer value of CS, due to a higher NH(3) emission compared to RS. A potential ANR increase may then be reduced, absent, or even become a decrease. Under comparable NH(3) emissions, however, CS can in the short term be more valuable as an N fertilizer than RS, and fertilizer savings can likely be realized.  相似文献   

19.
The recent growth in the size of dairy cattle farms and the concentration of farms into smaller areas in Finland may increase local water pollution due to increased manure production and slurry application to grass. Therefore, a field study was conducted to monitor losses of total phosphorus (TP), dissolved reactive phosphorus (DRP), and fecal microorganisms in surface runoff from a perennial ley. Cattle slurry was added once a year in June 1996-1997 (Study I) and biannually in June and October 1998-2000 (Study II). The slurry was surface broadcast or injected into the clay soil. The field had a slope of 0.9 to 1.7%. Mineral fertilizer was applied on control plots. Biannual slurry broadcasting increased DRP (p < 0.001) and TP losses (p < 0.001) and numbers of fecal microorganisms in surface runoff waters. The highest losses of TP (2.7 kg ha(-1) yr(-1)) and DRP (2.2 kg ha(-1) yr(-1)) and the highest numbers of fecal coliforms (880 colony-forming units [CFU] per 100 mL) and somatic coliphages (2700 plaque-forming units [PFU] per 100 mL) were measured after broadcasting slurry to wet soil followed by rainfall in fall 1998. Injection reduced the TP and DRP losses in surface runoff by 79 and 86%, respectively, compared with broadcasting (17 Oct. 1998-27 Oct. 1999). Corresponding numbers for fecal coliforms were 350 CFU (100 mL)(-1) and for somatic coliphages were 110 PFU (100 mL)(-1) in surface runoff after injection in October 1998. Slurry injection should be favored when spreading slurry amendments to grassland to avoid losses of P and fecal microorganisms in runoff to surface waters.  相似文献   

20.
Livestock slurry storages are sources of methane (CH?), nitrous oxide (NO?), and ammonia (NH?) emissions. Total solids (TS) content is an indicator of substrate availability for CH? and N?O production and NH? emissions and is related to crust formation, which can affect these gas emissions. The effect of TS on these emissions from pilot-scale slurry storages was quantified from 20 May through 16 Nov. 2010 in Nova Scotia, Canada. Emissions from six dairy slurries with TS ranging from 0.3 to 9.5% were continuously measured using flow-through steady-state chambers. Methane emissions modeled using the USEPA methodology were compared with measured data focusing on emissions when empty storages were filled, and retention times were >30 d with undegraded volatile solids (VS) remaining in the system considered available for CH? production (VS carry-over). Surface crusts formed on all the slurries. Only the slurries with TS of 3.2 and 5.8% were covered completely for ~3 mo. Nitrous oxide contributed <5% of total greenhouse gas emissions for all TS levels. Ammonia and CH? emissions increased linearly with TS despite variable crusting, suggesting substrate availability for gas production was more important than crust formation in regulating emissions over long-term storage. Modeled CH? emissions were substantially higher than measured data in the first month, and accounting for this could improve overall model performance. Carried-over VS were a CH? source in months 2 through 6. The results of this study suggest that substrate availability regulates emissions over long-term storage and that modifying the USEPA model to better describe carbon cycling is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号