共查询到20条相似文献,搜索用时 10 毫秒
1.
Loupe TM Miller WW Johnson DW Carroll EM Hanseder D Glass D Walker RF 《Journal of environmental quality》2007,36(2):498-507
High in situ concentrations of inorganic N and P have been reported in overland/litter interflow from Sierran forests, indicating that these nutrients are derived from the forest floor O horizons. To test this hypothesis, forest floor monoliths consisting of the combined O(e) and O(i) horizons were collected near the South Shore of Lake Tahoe, Nevada, for leaching experiments. Three monoliths were left intact, and three were hand-separated according to horizon for a total of three treatments (combined O(e)+O(i), O(e) only, and O(i) only) by three replications. Samples were randomized and placed into lined leaching bins. Initial leaching consisted of misting to simulate typical early fall precipitation. This was followed by daily snow applications and a final misting to simulate spring precipitation. Leachate was collected, analyzed for NH(4)(+)-N, NO(3)(-)-N, and PO(4)(3-)-P, and a nutrient balance was computed. There was a net retention of NH(4)(+)-N, but a net release of both NO(3)(-)-N and PO(4)(3-)-P, and a net release of inorganic N and P overall. Total contributions (mg) of N and P were highest from the O(e) and O(e)+O(i) combined treatments, but when expressed as per unit mass, significantly (p < 0.05) higher amounts of NO(3)(-)-N and PO(4)(3-)-P were derived from the O(i) materials. The nutrients in forest floor leachate are a potential source of biologically available N and P to adjacent surface waters. Transport of these nutrients from the terrestrial to the aquatic system in the Lake Tahoe basin may therefore play a part in the already deteriorating clarity of the lake. 相似文献
2.
In a field study, soils of four conventional free-range and organic broiler runs were analyzed for N and P concentrations in the years 2000 and 2001. Zones of different use intensity by broilers were identified on the free runs and mean zonal nutrient contents were compared with each other. Intensity of use by birds and spatial distribution of soil nutrient concentrations were found to be related to each other. Fecal N input by broilers resulted in accumulation of soil mineral nitrogen (N(min)) contents down to a 90-cm sampling depth. In highly frequented "hot spots," plant requirement as defined by the German "N-Basis-Sollwert" (110 kg/ha N(min)) for grassland was exceeded in all four cases. This implies an increased environmental risk of ammonia volatilization and nitrate leaching. Fecal P input by broilers resulted in accumulation of plant-available and thus mobile soil P (phosphorus extracted with calcium-acetate-lactate [P(CAL)] and phosphorus extracted with water [P(w)]) in the most intensely used zones. In these areas, soil P contents exceeded 90 mg/kg P(CAL) (upper limit of soil test P defined in Germany for optimum plant yield) by as much as 217 mg/kg, which indicates an enhanced risk of P loss from the soil via runoff or leaching. The conclusion might be drawn that, with regard to nutrient loss from free-run soils, intensive indoor production in a closed system may be more environmentally neutral than conventional free-range or organic production. However, to put this into perspective, the scope of the environmental risk connected with spatially limited point accumulation of nutrients should be considered. Furthermore, an environmental evaluation must also account for the fate and environmental effects of the broiler litter produced inside the broiler house. 相似文献
3.
The influence of increasing pig slurry applications on leaching and crop uptake of N and P by cereals was evaluated in a 3-yr study of lysimeters filled with a sandy soil. The slurry was applied at N rates of 50 (S50), 100 (S100), 150 (S150), and 200 (S200) kg ha(-1) during 2 of the 3 yr. The P rates applied with slurry were: 40 (S50), 80 (S100), 120 (S150), and 160 (S200) kg ha(-1) yr(-1). Simultaneously, NH4NO3 and Ca(H2PO4)2 were applied at rates of 100 kg N ha(-1) and 50 kg P ha(-1), respectively, to additional lysimeters (F100), while others were left unfertilized (F0). During the 3-yr period, the leaching load of total N tended to increase with increasing slurry application to, on average, 139 kg ha(-1) at the highest application rate (S200). The corresponding N leaching loads (kg ha(-1)) in the other treatments were: 75 (F0), 103 (F100), 93 (S50), 120 (S100), and 128 (S150). The loads of slurry-derived N in the S100, S150, and S200 treatments were significantly larger (P < 0.05) than those of fertilizer-derived N. In contrast, P leaching tended to decrease with increasing input of slurry, and it was lower in all treatments that received P at or above 50 kg P ha(-1) yr(-1) with slurry or fertilizer than in the unfertilized treatment. The crop use efficiency of added N and P was clearly higher when NH4NO3 and Ca(H2PO4)2 were used rather than slurry (60 vs. 35% for N, 38 vs. 6-9% for P), irrespective of slurry application rate. Therefore, from both a production and water quality point of view, inorganic fertilizers seem to have environmental benefits over pig slurry when used on sandy soils. 相似文献
4.
Vietor DM Griffith EN White RH Provin TL Muir JP Read JC 《Journal of environmental quality》2002,31(5):1731-1738
Regulatory mandates have increased demand for best management practices (BMPs) that will reduce nutrient loading on watersheds impaired by excess manure P and N. Export of manure P and N in turfgrass sod harvests is one BMP under consideration. This study quantified amounts and percentages of P and N removed in a sod harvest for different rates of manure and inorganic P and N. Six treatments comprised an unfertilized control, two manure rates with and without supplemental inorganic N, and inorganic P and N only. The treatments were applied to 'Tifway' bermudagrass (Cynodon dactylon L. x C. transvaalensis Burtt-Davey), '609' buffalograss [Buchloe dactyloides (Nutt.) Engelm.], and 'Reveille' bluegrass (Poa arachnifera Torr. x P. pratensis L.) under field conditions. Comparisons among treatments revealed small variations of P and N content in clippings and the plant component of sod, but large variations in the soil component of sod for each turf species. In addition, 2 to 10 times more P and 1.3 to 5 times more N was removed in soil than in plant components of sod for the two manure rates with and without added inorganic N. Percentages of applied P and N in harvested sod were similar for the two manure rates with and without added N for each species, but differed among turf species for each P (46 to 77%) and N (36 to 47%). The large amounts and percentages of manure P and N removed by sod harvest support the feasibility of this BMP in efforts to reduce nutrient loads on watersheds. 相似文献
5.
Utilization of biosolids through land application is becoming increasingly popular among wastewater managers. To minimize the potential contamination of receiving waters from biosolids-derived nitrogen (N), it is important to understand the availability of N after land application of biosolids. In this study, four secondary biosolids (two municipal and two pulp and paper industrial biosolids) were used in a laboratory incubation experiment to simulate N mineralization and transformation after land application. Municipal biosolids were from either aerobically or anaerobically digested sources, while pulp and paper industrial biosolids were from aerated wastewater stabilization lagoons. These biosolids were mixed with two New Zealand forest soils (top 100 mm of a volcanic soil and a brown soil) and incubated at two temperatures (10 and 20 degrees C) for 26 wk. During incubation, mineralized N was periodically leached from the soil-biosolids mixture with 0.01 M CaCl2 solution and concentrations of NH4 and NO3 in leachate were determined. Mineralization of N from aerobically digested municipal biosolids (32.1%) was significantly more than that from anaerobically digested biosolids (15.2%). Among the two pulp and paper industrial biosolids, little N leached from one, while as much as 18.0% of total organic N was leached from the other. As expected, mineralization of N was significantly greater at 20 degrees C (average 22.8%) than at 10 degrees C (average 9.7%). It was observed that more N in municipal biosolids was mineralized in the brown soil, whereas more N in pulp and paper industrial biosolids mineralized in the volcanic soil. Transformation of NH4 to NO3 was affected by soil type and temperature. 相似文献
6.
Chambers PA McGoldrick DJ Brua RB Vis C Culp JM Benoy GA 《Journal of environmental quality》2012,41(1):7-20
Inputs of nutrients (P and N) to freshwaters can cause excessive aquatic plant growth, depletion of oxygen, and deleterious changes in diversity of aquatic fauna. As part of a "National Agri-Environmental Standards Initiative," the Government of Canada committed to developing environmental thresholds for nutrients to protect ecological condition of agricultural streams. Analysis of data from >200 long-term monitoring stations across Canada and detailed ecological study at ~70 sites showed that agricultural land cover was associated with increased nutrient concentrations in streams and this, in turn, was associated with increased sestonic and benthic algal abundance, loss of sensitive benthic macroinvertebrate taxa, and an increase in benthic diatom taxa indicative of eutrophication. Chemical thresholds for N and P were defined by applying five approaches, employing either a predetermined percentile to a water chemistry data set or a relationship between water chemistry and land cover, to identify boundaries between minimally disturbed and impaired conditions. Comparison of these chemical thresholds with biological thresholds (derived from stressor-response relationships) produced an approach for rationalizing these two types of thresholds and deriving nutrient criteria. The resulting criteria were 0.01 to 0.03 mg L(-1) total P and 0.87-1.2 mg L(-1) total N for the Atlantic Maritime, 0.02 mg L(-1) total P and 0.21 mg L(-1) total N for the Montane Cordillera, ~0.03 mg L(-1) total P and ~1.1 mg L(-1) total N for the Mixedwood Plains, and ~0.10 mg L(-1) total P and 0.39-0.98 mg L(-1) total N for the interior prairies of Canada. Adoption of these criteria should result in greater likelihood of good ecological condition with respect to benthic algal abundance, diatom composition, and macroinvertebrate composition. 相似文献
7.
Suspended sediment, nitrogen and phosphorus concentrations and exports during storm-events to the Tuross estuary, Australia 总被引:4,自引:0,他引:4
This paper presents a process for estimating pollutant loads from water quality data, to improve catchment-scale modelling in the region for resource management purposes. It describes a program to estimate suspended sediment, total and dissolved nitrogen and phosphorus loads to the Tuross estuary from the Tuross River catchment (1810 km(2)) of coastal southeast Australia. Event-based water quality sampling results obtained during storm events in 2005 are presented. Event 1, during July 2005 was the largest storm event in terms of peak flow for 3.5 years. Other events monitored were also in July, November and December 2005. The early July 2005 event had a flow-weighted mean suspended sediment (SS) concentration during the first 4 days of 63 mg L(-1). Of the events monitored, this was unusual as it was preceded by drought and had the largest SS concentrations (peaking at 180 mg L(-1)) during the rising-stage. In contrast, the November event had a much lower flow-weighted SS mean (28 mg L(-1)), even though peak flow magnitudes were similar. The July and November 2005 events had peak flows of 12,360 and 11,330 ML day(-1). Low-cost rising-stage siphon samplers were used to collect samples during the rapidly rising phase of these events. The use of such samplers and consideration of time-lead/lag flow adjustments, quantified using cross-correlation analysis to account for hysteresis effects, were incorporated into the load estimation techniques. The technique is a potentially useful approach for understanding relationships between water quality concentrations and flow for modelling catchment source strengths and transport processes. 相似文献
8.
We compared the efficacy of matrix based fertilizers (MBFs) formulated to reduce NO3-, NH4+, and total phosphorus (TP) leaching, with Osmocoate 14-14-14, a conventional commercial slow release fertilizer (SRF) and an unamended control in three different soil textures in a greenhouse column study. The MBFs covered a range of inorganic N and P in compounds that are relatively loosely bound (MBF 1) to more moderately bound (MBF 2) and more tightly bound compounds (MBF 3) mixed with Al(SO4)3H2O and/or Fe2(SO4)3 and with high ionic exchange compounds starch, chitosan and lignin. When N and P are released, the chemicals containing these nutrients in the MBF bind N and P to a Al(SO4)3H2O and/or Fe2(SO4)3 starch-chitosan-lignin matrix. One milligram (8000 spores) of Glomus intradices was added to all formulations to enhance nutrient uptake. In all three soil textures the SRF leachate contained a higher amount of NH4+, NO3- and TP than leachate from all other fertilizers. In all three soils there were no consistent differences in the amount of NH4+, NO3- and TP in the MBF leachates compared to the control leachate. Plants growing in soils receiving SRF had greater shoot, root and total biomass than all MBFs regardless of Al(SO4)3H2O or Fe2(SO4)3 additions. Arbuscular mycorrhizal infection in plant roots did not consistently differ among plants growing in soil receiving SRF, MBFs and control treatments. Although the MBFs resulted in less plant growth in this experiment they may be applied to soils growing plants in areas that are at high risk for nutrient leaching to surface waters. 相似文献
9.
Leaching and crop uptake of nitrogen from nitrogen-15-labeled green manures and ammonium nitrate 总被引:1,自引:0,他引:1
Green manures can be used as an N source for agricultural crops as a substitute for inorganic N fertilizers. The effects of using green manures on leaching and uptake of N by spring barley (Hordeum vulgare L.) were evaluated in a 2-yr lysimeter study. Ryegrass (Lolium perenne L.) and red clover (Trifolium pratense L.) labeled with (15)N were applied in May of the first year at 160 kg total N ha(-1). Simultaneously, (15)NH(4)(15)NO(3) was applied at 80 kg N ha(-1) to additional lysimeters and others were left without N additions (control). During the second year, all lysimeters, except the control, received 80 kg N ha(-1) as unlabeled NH(4)NO(3). The cumulative, average loads of total N leached during the two years were: 37 (control), 62 (NH(4)NO(3)), 50 (ryegrass manure), and 73 (red clover manure) kg ha(-1). The differences among the treatments were not significant (P > 0.05), but the control had significantly smaller (P < 0.05) leaching loads than the treatments. About 24% of ryegrass- and red clover-derived N and 43% of NH(4)NO(3) were removed through spring barley grain and stover during the two growing seasons. Thus, the N use efficiency in barley was substantially larger when grown with inorganic N fertilizer than when grown with green manure. Viewed in combination with the tendency for larger N leaching loads under red clover manure, claims about water quality benefits of legume-based green manures should be evaluated with regard to the timing of N release and demand for N by the plant. 相似文献
10.
Morier I Guenat C Siegwolf R Védy JC Schleppi P 《Journal of environmental quality》2008,37(6):2012-2021
In temperate forest ecosystems, soil acts as a major sink for atmospheric N deposition. A (15)N labeling experiment in a hardwood forest on calcareous fluvisol was performed to study the processes involved. Low amounts of ammonium ((15)NH(4)(+)) or nitrate ((15)NO(3)(-)) were added to small plots. Soil samples were taken after periods ranging from 1 h to 1 yr. After 1 d, the litter layer retained approximately 28% of the (15)NH(4)(+) tracer and 19% of (15)NO(3)(-). The major fraction of deposited N went through the litter layer to reach the soil within the first hours following the tracer application. During the first day, a decrease in extractable (15)N in the soil was observed ((15)NH(4)(+): 50 to 5%; (15)NO(3)(-): 60 to 12%). During the same time, the amount of microbial (15)N remained almost constant and the (15)N immobilized in the soil (i.e., total (15)N recovered in the bulk soil minus extractable (15)N minus microbial (15)N) also decreased. Such results can therefore be understood as a net loss of (15)N from the soil. Such N loss is probably explained by NO(3)(-) leaching, which is enhanced by the well-developed soil structure. We presume that the N immobilization mainly occurs as an incorporation of deposited N into the soil organic matter. One year after the (15)N addition, recovery rates were similar and approximately three-quarters of the deposited N was recovered in the soil. We conclude that the processes relevant for the fate of atmospherically deposited N take place rapidly and that N recycling within the microbes-plants-soil organic matter (SOM) system prevents further losses in the long term. 相似文献
11.
Some imidazolinone herbicides have been shown to be mobile in soil, raising concern about their possible movement to ground water. Three imidazolinone herbicides (imazamethabenz-methyl, 497 g ha(-1); imazethapyr, 14.7 g ha(-1); and imazamox, 14.7 g ha(-1)) commonly used in crop production on the Canadian prairies were applied to a tile-drained field to assess their susceptibility to leach when subjected to sprinkler irrigation using a center pivot. Tile-drain flow began when the water table rose above tile-drain depth, and peak flow rates corresponded to the greatest depths of ground water above the tile drains. Interception of irrigation water by the tile drains in each quadrant of the field varied from ~11 to 20% of the water applied. Under a worst-case scenario in which irrigation began the day after herbicide application and irrigation water was applied at 25 mm d(-1) for 12 d, there was evidence of preferential flow of all three herbicides and hydrolysis of imazamethabenz-methyl to imazamethabenz in the initial samples of tile-drain effluent. In subsequent samples, concentrations (analysis by LC-MS-MS) of the summation of imazamethabenz-methyl (25-24,000 ng L(-1)) plus its hydrolysis product imazamethabenz (63-26,500 ng L(-1)) greatly exceeded those of imazethapyr (<13-1260 ng L) and imazamox (19-599 ng L(-1)), thus reflecting relative application rates. In contrast, estimates of total transport of each herbicide from the root zone, which varied in each quadrant and ranged from 0.06 to 2.3% for imazamethabenz-methyl plus imazamethabenz, 0.71 to 3.1% for imazethapyr, and 0.61 to 2.8% for imazamox, did not reflect application rates. In shallow ground water (piezometer samples), there was inconsistent and infrequent detection all four compounds. With the frequency and amount of rainfall typically encountered in the prairie region of Canada, contamination of shallow ground water with detectable concentrations of the three imidazolinone herbicides would be unlikely. 相似文献
12.
Interactions between soil texture and placement of dairy slurry application: II. Leaching of phosphorus forms 总被引:1,自引:0,他引:1
Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application. 相似文献
13.
Innate distributions or variability of nutrient concentrations within the fluvial system must be better understood to establish nutrient guidelines that are applicable and to discern which areas or landscape positions within the watershed are more vulnerable to nutrient losses. This work was conducted to (1) determine the system-wide spatial distribution of N and P concentrations in biweekly stream samples from two Southern Piedmont watersheds, and (2) determine the relationship between N and P concentrations in biweekly samples and watershed morphological features. From December 1998 through December 2000 samples were collected biweekly from 17 sampling sites located on Rose Creek and from 18 sampling sites located on Greenbrier Creek. The samples were analyzed for ammonium (NH4), nitrate (NO3), and dissolved reactive phosphorus (DRP) concentrations. We found that spatial autocorrelation of nitrate concentrations was evident and that some spatial autocorrelation of DRP concentrations was also present. We further found that the fluvial network morphological feature, drainage density, explained part of the spatial autocorrelation found for nitrate but did not for DRP. These results indicate that innate variability of nutrient concentrations within streams exists and suggest that decision makers should begin to consider location within the watershed when making nutrient management guidelines and decisions. 相似文献
14.
Nutrient loading on impaired watersheds can be reduced through export of sod grown with manure and export of composted manure for turf production on other watersheds. Effects of the sod and manure exports on receiving watersheds were evaluated through monitoring of total dissolved phosphorus (TDP) and N concentrations and losses in runoff from establishing turf. Three replications of seven treatments were established on an 8.5% slope of a Booneville soil (loamy-skeletal, mixed, superactive Pachic Argicryolls). Three treatments comprised imported 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) sod grown with composted dairy manure (382 or 191 kg P ha(-1)) or fertilizer (50 kg P ha(-1)). Three treatments were sprigged with Tifway and top-dressed with either composted manure (92 or 184 kg P ha(-1)) or fertilizer (100 kg P ha(-1)). The control was established bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon]. During eight fall rain events, mean TDP concentration in runoff (7.8 mg L(-1)) from sprigged Tifway top-dressed with manure (84 kg P ha(-1)) was 1.6 times greater than sod imported with 129 kg manure P ha(-1). During the first fall event, mass losses of TDP (232 mg m(-2)) and total Kjeldahl nitrogen (TKN) (317 mg m(-2)) from sprigged treatments top-dressed with manure or fertilizer were nearly three times greater than manure-grown sod. Percentages of manure P lost as TDP in runoff from imported sod were 33% of percentages lost from sprigged treatments top-dressed with manure. Sod grown with manure P rates of 190 kg P ha(-1) can be imported without increasing runoff losses of TDP compared with conventional fertilization of establishing turfgrass. 相似文献
15.
Carbon, nitrogen, and phosphorus distribution in particle size-fractionated separated pig and cattle slurry 总被引:1,自引:0,他引:1
Solid liquid separation of animal slurry is a method to reduce the excess nutrient loads from intensive livestock production. Five different separation technologies (sedimentation, centrifugation, pressurized filtration, polymer flocculation and drainage, and iron chloride addition + polymer flocculation and drainage) were applied to pig and cattle slurry in a laboratory study. Separation efficiencies of mass, dry matter (DM), N, and P were measured. Particle size fractionation of the solid fractions was performed by subjecting them to wet fractionation and C, organic N (N(org)), and P contents were subsequently measured. Chemical pretreatment with polymer before gravity drainage separated DM, total N, and P from raw pig and cattle slurry with the highest efficiencies. Sedimentation and centrifugation separated P from pig and cattle slurries with higher simple separation efficiencies (0.77 and 0.70, respectively) compared with pressurized filtration (0.15 and 0.37). Pressurized filtration transferred the lowest masses (14 and 18%) to the solid fractions. Solid fractions from pig slurry generally contained higher concentrations of P and C compared with cattle slurry solid fractions. The majority of C in solid fractions was present in particles > 25 microm, whereas N and P were present in larger proportions in particles < 25 microm. Chemical pretreatment increased the capture of smaller N(org)- and P-rich particles into larger particles between 25 and 1000 microm. 相似文献
16.
Relationships between phosphorus levels in soil and in runoff from corn production systems 总被引:1,自引:0,他引:1
Phosphorus-enriched runoff from cropland can hasten eutrophication of surface waters. A soil P level exceeding crop needs due to long-term fertilizer and/or manure applications is one of several potential sources of increased P losses in runoff from agricultural systems. Field experiments were conducted at locations representative of three major soil regions in Wisconsin in corn (Zea mays L.) production systems to determine the effect of tillage, recent manure additions, soil P extraction method, and soil sampling depth (0-2, 0-5, and 0-15 cm) on the relationship between soil test P level and P concentrations in runoff. Runoff from simulated rainfall (75 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved phosphorus (DP), total phosphorus (TP), and sediment. The DP fraction of the TP concentration in runoff ranged from 5 to 17% among sites with most of the variation in TP due to varying sediment concentration on the well-drained silt loam soils and to soil test P level on the poorly drained silty clay loam soil. In 213 observations across a range of soils and managements, good relationships occurred between soil test P level and DP concentration in runoff for most of the tests and sampling depths used. Recent manure additions and high levels of surface cover from corn residue sometimes masked this relationship. The slope of DP relative to soil test P level was markedly higher on the silty clay loam soil than on the silt loam soils possibly due to soil permeability-infiltration rate differences. Agronomic soil P tests were as effective as environmentally oriented soil P tests for predicting DP concentrations in runoff. 相似文献
17.
Maximizing utilization of effluent nutrients by forage grasses requires a better understanding of irrigation rate and timing effects. This study was conducted in 1998 and 1999 on a Vaiden silty clay (very-fine, smectitic, thermic Aquic Dystrudert) soil to determine the effects of swine lagoon effluent irrigation rate and timing on bermudagrass [Cynodon dactylon (L.) Pers.] growth, nitrogen (N) and phosphorus (P) recovery, and postseason soil profile NO3(-)-N. Treatments consisted of swine effluent irrigation at the rates of 0, 5, 10, 15, and 20 ha-cm. Two additional treatments included 2.5 ha-cm applied on 1 September and 1 October in addition to a base summer rate of 10 ha-cm. In both years for early to mid-season irrigation, bermudagrass dry matter yield quadratically increased with increasing swine effluent irrigation rates. Averaged across years, effluent irrigation in October resulted in 30% less dry matter than in September. For late-season irrigation, apparent N recovery averaged 59% less and P recovery averaged 46% less with a delay in irrigation from 1 September to 1 October. The greatest quantity of soil NO3(-)-N was associated with both the greatest effluent rate and October irrigation treatments. Minimal yield benefit was obtained when effluent was applied at rates greater than 10 ha-cm during the summer months. Late-season irrigation, especially after 1 October for areas with similar climatic conditions, should be avoided to maximize synchronization of nutrient availability with maximum growth rates to minimize potential offsite movement of residual soil N and P. 相似文献
18.
The objective of this study was to assess the effect of compost application on soil respiration and dissolved organic carbon (DOC) output of nutrient-depleted forest soils. An amount of 6.3 kg m(-2) mature compost was applied to the forest floor of European beech (Fagus sylvatica L.), Norway spruce (Picea abies Karst.), and Scots pine (Pinus sylvestris L.) stands at Soiling and Unterlüss, Germany. Cumulative soil respiration significantly increased by 499 g C m(-2) in the spruce stand at Unterlüss and by 274 g C m(-2) in the beech stand at Soiling following compost application whereas soil respiration of the other four stands was not affected. The increases in soil respiration of the two stands were explained by improved microbial decomposition of soil organic matter. The DOC concentrations and fluxes in throughfall and seepage water at 10- and 100-cm depths were determined from August 1997 to March 2000. In the control plots, cumulative DOC outputs at 10 cm ranged between 57 and 95 g C m(-2), with the highest rates in the pine stands. Compost treatment significantly increased cumulative DOC outputs by 31 to 69 g C m(-2) at 10 cm and by 0.3 to 6.6 g C m(-2) at 100 cm. The mineral soils between the 10- and 100-cm depths acted as significant sinks for DOC, as shown by much lower cumulative outputs at 100 cm of 3 to 11 g C m(-2) in the control and 6 to 16 g C m(-2) in the compost plots. Our results suggest that a single, moderate application of mature compost to nutrient-depleted forest soils has little effect on C losses to the atmosphere and ground water. 相似文献
19.
Watershed scale assessment of nitrogen and phosphorus loadings in the Indian River Lagoon basin,Florida 总被引:3,自引:0,他引:3
There is a growing evidence that the ecological and biological integrity of the lagoon has declined during the last 50 years, probably due to the decline in water quality. Establishment of a watershed scale seagrass-based nutrient load assessment is the major aim of water quality management in the Indian River Lagoon (IRL). Best estimate loadings incorporate wet and dry deposition, surface water, groundwater, sediment nutrient flux, and point source effluent discharge data. On the average, the IRL is receiving annual external loadings of 832, 645 and 94,476kg of total nitrogen (TN) and total phosphorus (TP), respectively, from stormwater discharges and agricultural runoff. The average internal cycling of TN and TP from sediment deposits in the IRL was about 42,640kg TN and 1050kg TPyr(-1). Indirect evidence suggests that atmospheric deposition has played a role in the ongoing nutrient enrichment in the IRL. The estimated total atmospheric deposition of TN and TP was about 32,940 and 824kgyr(-1), while groundwater contribution was about 84,920 and 24,275kgyr(-1), respectively, to the surface waters of the IRL. The estimated annual contribution of point effluent discharge was about 60,408kg TN and 7248kg TP. In total, the IRL basin is receiving an annual loading of about 1,053,553kg TN and 127,873kg TP. With these results, it is clear that the current rate of nutrient loadings is causing a shift in the primary producers of the IRL from macrophyte to phytoplankton- or algal-based system. The goal is to reverse that shift, to attain and maintain a macrophyte-based estuarine system in the IRL. 相似文献
20.
Gan J Bondarenko S Ernst F Yang W Ries SB Sedlak DL 《Journal of environmental quality》2006,35(1):277-284
N-nitrosodimethylamine (NDMA) is a carcinogenic by-product of chlorination that is frequently found in municipal wastewater effluent. NDMA is miscible in water and negligibly adsorbed to soil, and therefore may pose a threat to ground water when treated wastewater is used for landscape irrigation. A field study was performed in the summer months under arid Southern California weather conditions to evaluate the leaching potential of NDMA in turfgrass soils during wastewater irrigation. Wastewater was used to irrigate multiple turfgrass plots at 110 to 160% evapotranspiration rate for about 4 mo, and leachate was continuously collected and analyzed for NDMA. The treated wastewater contained relatively high levels of NDMA (114-1820 ng L(-1); mean 930 ng L(-1)). NDMA was detected infrequently in the leachate regardless of the soil type or irrigation schedule. At a method detection limit of 2 ng L(-1), NDMA was only detected in 9 out of 400 leachate samples and when it was detected, the NDMA concentration was less than 5 ng L(-1). NDMA was relatively persistent in the turfgrass soils during laboratory incubation, indicating that mechanisms other than biotransformation, likely volatilization and/or plant uptake, contributed to the rapid dissipation. Under conditions typical of turfgrass irrigation with wastewater effluent it is unlikely that NDMA will contaminate ground water. 相似文献