首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gaseous emissions from swine (Sus scrofa) manure storage systems represent a concern to air quality due to the potential effects of hydrogen sulfide, ammonia, methane, and volatile organic compounds on environmental quality and human health. The lack of knowledge concerning functional aspects of swine manure management systems has been a major obstacle in the development and optimization of emission abatement technologies for these point sources. In this study, a classification system based on gas emission characteristics and effluent concentrations of total phosphorus (P) and total sulfur (S) was devised and tested on 29 swine manure management systems in Iowa, Oklahoma, and North Carolina in an effort to elucidate functional characteristics of these systems. Four swine manure management system classes were identified that differed in effluent concentrations of P and S, methane (CH4) emission rate, odor intensity, and air concentration of volatile organic compounds (VOCs). Odor intensity and the concentration of VOCs in air emitted from swine manure management systems were strongly correlated (r2 = 0.88). The concentration of VOC in air samples was highest with outdoor swine manure management systems that received a high input of volatile solids (Type 2). These systems were also shown to have the highest odor intensity levels. The emission rate for VOCs and the odor intensity associated with swine manure management systems were inversely correlated with CH4 and ammonia (NH3) emission rates. The emission rates of CH4, NH3, and VOCs were found to be dependent upon manure loading rate and were indirectly influenced by animal numbers.  相似文献   

2.
Direct multicomponent analysis of malodorous volatile organic compounds (VOCs) present in ambient air samples from 29 swine (Sus scrofa) production facilities was used to develop a 19-component artificial swine odor solution that simulated olfactory properties of swine effluent. Analyses employing either a human panel consisting of 14 subjects or gas chromatography were performed on the air stream from an emission chamber to assess human olfactory responses or odorant concentration, respectively. Analysis of the olfactory responses using Fisher's LSD statistics showed that the subjects were sensitive to changes in air concentration of the VOC standard across dilutions differing by approximately 16%. The effect of chemical synergisms and antagonisms on human olfactory response magnitudes was assessed by altering the individual concentration of nine compounds in artificial swine odor over a twofold concentration range while maintaining the other 18 components at a constant concentration. A synergistic olfactory response was observed when the air concentration of acetic acid was increased relative to the concentration of other VOC odorants in the standard. An antagonistic olfactory response was observed when the air concentration of 4-ethyl phenol was increased relative to the other VOC odorants in the standard. The collective odorant responses for nine major VOCs associated with swine odor were used to develop an olfactory prediction model to estimate human odor response magnitudes to swine manure odorants through measured air concentrations of indicator VOCs. The results of this study show that direct multicomponent analysis of VOCs emitted from swine effluent can be applied toward estimating perceived odor intensity.  相似文献   

3.
The National Research Council identified odors as a significant animal emission and highlighted the need to develop standardized protocols for sampling and analysis. The purpose of our study was to compare different odor sampling techniques for monitoring odors emitted from stored swine manure. In our study, odorous headspace air from swine manure holding tanks were analyzed by human panels and analytical techniques. Odorous air was analyzed by human panels using dynamic dilution olfactometry (DDO). Chemical analysis used acid traps for ammonia (NH?), fluorescence for hydrogen sulfide (H?S), and thermal desorption gas chromatography-mass spectrometry for volatile organic compounds (VOCs). Chemical analysis included the use of gas chromatography-olfactometry (GC-O) for determining key odorants. Chemical odorant concentrations were converted to odor activity values (OAVs) based on literature odor thresholds. The GC-O technique used was GC-SNIF. Dilution thresholds measured by different odor panels were significantly different by almost an order of magnitude even though the main odorous compound concentrations had not changed significantly. Only 5% of the key odorous VOCs total OAVs was recovered from the Tedlar bags used in DDO analysis. Ammonia was the only chemical odorant significantly correlated with DDO analysis in the fresh (1 wk) and aged manure. Chemical analysis showed that odor concentration stabilized after 5 to 7 wk and that HS was the most dominant odorant. In aged manure, neither volatile fatty acids (VFAs) nor HS was correlated with any other chemical odorant, but NH, phenols, and indoles were correlated, and phenols and indoles were highly correlated. Correlation of odorant concentration was closely associated with the origin of the odorant in the diet. Key odorants determined by chemical and GC-O included indoles, phenols, NH?, and several VFAs (butanoic, 3-methylbutanoic, and pentanoic acids).  相似文献   

4.
The influence of aerobic and anaerobic conditions on the survival of the enteropathogens Escherichia coli O157:H7 and Salmonella serovar Typhimurium was investigated in microcosms with broth, cattle manure or slurry. These substrates were inoculated with a green fluorescent protein transformed strain of the enteropathogens at 10(7) cells g(-1) dry weight. Survival data was fitted to the Weibull model. The survival curves in aerobic conditions generally showed a concave curvature, while the curvature was convex in anaerobic conditions. The estimated survival times showed that E. coli O157:H7 survived significantly longer under anaerobic than under aerobic conditions. Survival ranged from approximately. 2 weeks for aerobic manure and slurry to more than six months for anaerobic manure at 16 °C. On average, in 56.3% of the samplings, the number of recovered E. coli O157:H7 cells by anaerobic incubation of Petri plates was significantly (p < 0.05) higher in comparison with aerobic incubation. Survival of Salmonella serovar Typhimurium was not different between aerobic and anaerobic storage of LB broth or manure as well as between aerobic and anaerobic incubation of Petri dishes. The importance of changes in microbial community and chemical composition of manure and slurry was distinguished for the survival of E. coli O157:H7 in different oxygen conditions.  相似文献   

5.
Fate of arsenic in swine waste from concentrated animal feeding operations   总被引:2,自引:0,他引:2  
Swine diets are often supplemented by organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) to treat animal diseases and promote growth. Recent work reported roxarsone degradation under anaerobic conditions in poultry litter, but no such data exist for swine wastes typically stored in lagoons nearby concentrated animal feeding operations (CAFOs). The objectives of this study were to: (i) characterize a suite of swine wastes collected from 19 randomly selected CAFOs for soluble arsenate [As(V)], arsenite [As(III)], dimethylarsenic acid (DMA), monomethylarsonic acid (MMA), 3-amino-4-hydroxyphenylarsonic acid (3-HPPA), p-arsanilic acid, and roxarsone, and (ii) determine the geochemical fate of roxarsone in storage lagoons nearby CAFOs. Swine waste suspensions were spiked with roxarsone and incubated under dark/light and aerobic/anaerobic conditions to monitor roxarsone degradation kinetics. Arsenic speciation analysis using liquid chromatography and inductively coupled plasma mass spectrometry (LC-ICPMS) illustrated the prevalence of As(V) in swine waste suspensions. Roxarsone underwent degradation to either organoarsenicals (3-HPPA) or As(V) and a number of unidentified metabolites. Roxarsone degradation occurred under anaerobic conditions for suspensions low in solids content, but suspensions higher in solids content facilitated roxarsone degradation under both anaerobic and aerobic conditions. Increased solids content enhanced roxarsone degradation kinetics under aerobic conditions. According to current waste storage and sampling practices, arsenic in swine wastes stored in lagoons has been overlooked as a possible environmental health issue.  相似文献   

6.
Ten commercially available manure odor control agents were evaluated in bench-scale laboratory microcosms for their ability to inhibit or kill Escherichia coli, a commonly used indicator of fecal pollution and a potential pathogen. At manufacturer recommended rates, none of the agents reduced viable populations of E. coli in pure cultures or in swine manure slurry. However, at rates 10-fold higher than those recommended by the manufacturer, EnviroPur rapidly reduced viable populations of E. coli. Accelerated death of E. coli was observed at temperatures as low as 4 degrees C. Chemical analysis of EnviroPur indicated that it contains alkylphenol polyethoxylates, common industrial surfactants. These results suggest that at manufacturer-recommended rates, the odor-controlling agents would not be effective at suppressing E. coli in stored swine manure slurry.  相似文献   

7.
In animal production systems (poultry, beef, and swine), current production, storage, and disposal techniques present a challenge to manage wastes to minimize the emissions of trace gases within relatively small geographical areas. Physical and chemical parameters were measured on primary and secondary lagoons on three different swine farming systems, three replicates each, in the Central Great Basin of the United States to determine ammonia (NH3) emissions. Nutrient concentrations, lagoon water temperature, and micrometeorological data from these measurements were used with a published process model to calculate emissions. Annual cycling of emissions was determined in relation to climatic factors and wind speed was found the predominating factor when the lagoon temperatures were above about 3 degrees C. Total NH3 emissions increased in the order of smallest to largest: nursery, sow, and finisher farms. However, emissions on an animal basis increased from nursery animals being lowest to sow animals being highest. When emissions were compared to the amount of nitrogen (N) fed to the animals, NH3 emissions from sows were lowest with emissions from finisher animals highest. Ammonia emissions were compared to similar farm production systems in the humid East of the United States and found to be similar for finisher animals but had much lower emissions than comparable humid East sow production. Published estimates of NH3 emissions from lagoons ranged from 36 to 70% of feed input (no error range) compared to our emissions determined from a process model of 9.8% with an estimated range of +/-4%.  相似文献   

8.
In the United States, swine (Sus scrofa) operations produce more than 14 Tg of manure each year. About 30% of this manure is stored in anaerobic lagoons before application to land. While land application of manure supplies nutrients for crop production, it may lead to gaseous emissions of ammonia (NH3) and nitrous oxide (N2O). Our objectives were to quantify gaseous fluxes of NH3 and N2O from effluent applications under field conditions. Three applications of swine effluent were applied to soybean [Glycine max (L.) Merr. 'Brim'] and gaseous fluxes were determined from gas concentration profiles and the flux-gradient gas transport technique. About 12% of ammonium (NH4-N) in the effluent was lost through drift or secondary volatilization of NH3 during irrigation. An additional 23% was volatilized within 48 h of application. Under conditions of low windspeed and with the wind blowing from the lagoon to the field, atmospheric concentrations of NH3 increased and the crop absorbed NH3 at the rate of 1.2 kg NH3 ha(-1) d(-1), which was 22 to 33% of the NH3 emitted from the lagoon during these periods. Nitrous oxide emissions were low before effluent applications (0.016 g N2O-N ha(-1) d(-1)) and increased to 25 to 38 g N2O-N ha(-1) d(-1) after irrigation. Total N2O emissions during the measurement period were 4.1 kg N2O-N ha(-1), which was about 1.5% of total N applied. The large losses of NH3 and N2O illustrate the difficulty of basing effluent irrigation schedules on N concentrations and that NH3 emissions can significantly contribute to N enrichment of the environment.  相似文献   

9.
Poultry operations are associated with emissions of aerial ammonia (NH3), volatile organic compounds (VOCs), and odor, and the magnitude of emissions is influenced by manure management practices. As a manure treatment additive, zeolites have been shown to have the potential to control NH3. Because of their properties it is also expected that zeolites could effectively adsorb VOCs and odor. The effectiveness of zeolite in controlling odor and VOCs was qualitatively evaluated in this controlled laboratory study involving simulated poultry manure storage. In the first two trials, zeolite was topically applied on nearly fresh laying hen manure at the rates of 0, 2.5, 5, and 10% (by weight). In the third trial, zeolite was topically applied at 5% with each addition of fresh manure into the storage vessel. Headspace samples from the emission vessels were collected with solid phase microextraction (SPME) and analyzed on a multidimensional-gas chromatograph-mass spectrometry-olfactometry (MDGC-MS-O) system for identification and prioritization of poultry manure odorants. Acetic acid, butanoic acid, isovaleric acid, indole, and skatole were consistently controlled in the headspace, with the reduction rate being proportional to the zeolite application rate. Dimethyl trisulfide and phenol were consistently generated, and with a few exceptions, the rate of generation was proportional to the application rate. Average reduction of the odor caused by all odorants evaluated with SPME-GC-O was 67% (+/-12%) and 51% (+/-26%) for the two topical applications, respectively, while no significant reduction of VOCs and odor was detected for the layered application.  相似文献   

10.
Swine manure is associated with emissions of odor, volatile organic compounds (VOCs) and other gases that can affect air quality on local and regional scales. In this research, a solid phase microextraction (SPME) and novel multidimensional gas chromatography-mass spectrometry-olfactometry (MDGC-MS-O) system were used to simultaneously identify VOCs and related odors emitted from swine manure. Gas samples were extracted from manure headspace using Carboxen/polydimethylsiloxane (PDMS) 85-microm SPME fibers. The MDGC-MS-O system was equipped with two columns in series with a system of valves allowing transfer of samples between columns (heartcutting). The heartcuts were used to maximize the isolation, separation, and identification of compounds. The odor impact of separated compounds was evaluated by a trained panelist for character and intensity. A total of 295 compounds with molecular weights ranging from 34 to 260 were identified. Seventy one compounds had a distinct odor. Nearly 68% of the compounds for which reaction rates with OH* radicals are known had an estimated atmospheric lifetime <24 h.  相似文献   

11.
Methane (CH) and ammonia (NH3) are emitted to the atmosphere during anaerobic processing of organic matter, and both gases have detrimental environmental effects. Methane conversion to biofuel production has been suggested to reduce CH4 emissions from animal manure processing systems. The purpose of this research is to evaluate the change in CH4 and NH3 emissions in an animal feeding operation due to biofuel production from the animal manure. Gas emissions were measured from swine farms differing only in their manure-management treatment systems (conventional vs. biofuel). By removing organic matter (i.e., carbon) from the biofuel farms' manure-processing lagoons, average annual CH4 emissions were decreased by 47% compared with the conventional farm. This represents a net 44% decrease in global warming potential (CO2 equivalent) by gases emitted from the biofuel farms compared with conventional farms. However, because of the reduction of methanogenesis and its reduced effect on the chemical conversion of ammonium (NH4+) to dinitrogen (N2) gas, NH3 emissions in the biofuel farms increased by 46% over the conventional farms. These studies show that what is considered an environmentally friendly technology had mixed results and that all components of a system should be studied when making changes to existing systems.  相似文献   

12.
Anaerobic lagoons are commonly used for the treatment of swine wastewater. Although these lagoons were once thought to be relatively simple, their physical, chemical, and biological processes are very complex. This study of anaerobic lagoons had two objectives: (i) to quantify denitrification enzyme activity (DEA) and (ii) to evaluate the influence of lagoon characteristics on the DEA. The DEA was measured by the acetylene inhibition method. Wastewater samples and physical and chemical measurements were taken from the wastewater column of nine anaerobic swine lagoons from May 2006 to May 2009. These lagoons were typical for anaerobic swine lagoons in the Carolinas relative to their size, operation, and chemical and physical characteristics. Their mean value for DEA was 87 mg N2O-N m(-3) d(-1). In a lagoon with 2-m depth, this rate of DEA would be compatible with 1.74 kg N ha(-1) d(-1) When nonlimiting nitrate was added, the highest DEA was compatible with 4.38 kg N ha(-1) d(-1) loss. Using stepwise regression for this treatment, the lagoon characteristics (i.e., soluble organic carbon, total nitrogen, temperature, and NO3-N) provided a final step model R2 of 0.69. Nitrous oxide from incomplete denitrification was not a significant part of the system nitrogen balance. Although alternate pathways of denitrification may exist within or beneath the wastewater column, this paper documents the lack of sufficient denitrification enzyme activity within the wastewater column of these anaerobic lagoons to support large N2 gas losses via classical nitrification and denitrification.  相似文献   

13.
Although anaerobic lagoons are used globally for livestock waste treatment, their detailed microbial cycling ofN is only beginning to become understood. Within this cycling, nitrification can be performed by organisms that produce the enzyme ammonia monooxygenase. For denitrification, the reduction of nitrite to nitric oxide can be catalyzed by two forms of nitrite reductases, and N,O can be reduced by nitrous oxide reductase encoded by the gene nosZ The objectives of this investigation were to (i) quantify the abundance of the amoA, nirK, nirS, and nosZ genes; (ii) evaluate the influence of environmental conditions on their abundances; and (iii) evaluate their abundance relative to denitrification enzyme activity (DEA). Samples were analyzed via real-time quantitative polymerase chain reaction and collected from eight typical, commercial anaerobic, swine wastewater lagoons located in the Carolinas. The four genes assayed in this study were present in all eight lagoons. Their abundances relative to total bacterial populations were 0.04% (amoA), 1.33% (nirS), 5.29% (nirK), and 0.27% (nosZ). When compared with lagoon chemical characteristics, amoA and nirK correlated with several measured variables. Neither nirS nor nosZ correlated with any measured environmental variables. Although no gene measured in this study correlated with actual or potential DEA, nosZ copy numbers did correlate with the disparity between actual and potential DEA. Phylogenetic analysis ofnosZdid not reveal any correlations to DEA rates. As with other investigations, analyses of these genes provide useful insight while revealing the underlying greater complexity of N cycling within swine waste lagoons.  相似文献   

14.
Heavy metal pollution of soil is of concern for human health and ecosystem function. The soil microbial community should be a sensitive indicator of metal contamination effects on bioavailability and biogeochemical processes. Simple methods are needed to determine the degree of in situ pollution and effectiveness of remediating metal-contaminated soils. Currently, phospholipid-linked fatty acids (PLFAs) are preferred for microbial profiling but this method is time consuming, whereas direct soil extraction and transesterification of total ester-linked fatty acids (ELFAs) is attractive because of its simplicity. The 1998 mining acid-metal spill of >4000 ha in the Guadiamar watershed (southwestern Spain) provided a unique opportunity to study these two microbial lipid profiling methods. Replicated treatments were set up as nonpolluted, heavy metal polluted and reclaimed, and polluted soils. Inferences from whole community-diversity analysis and correlations of individual fatty acids with metals suggested Cu, Cd, and Zn were the most important in affecting microbial community structure, along with pH. The microbial stress marker, monounsaturated fatty acids, was significantly lower for reclaimed and polluted soil over nonpolluted soils for both PLFA and ELFA extraction. Another stress marker, the monounsaturated to saturated fatty acids ratio, only showed this for the PLFA. The general fungal marker (18:2omega6c), the arbuscule mycorrhizae marker (16:1omega5c), and iso- and anteiso-branched PLFAs (gram positive bacteria) were suppressed with increasing pollution whereas 17:0cy (gram negative bacteria) increased with metal pollution. For both extraction methods, richness and diversity were greater in nonpolluted soils and lowest in polluted soils. The ELFA method was sensitive for reflecting metal pollution on microbial communities and could be suitable for routine use in ecological monitoring and risk assessment programs because of its simplicity and reproducibility.  相似文献   

15.
Ammonia (NH(3)) emissions from animal systems have become a primary concern for all of livestock production. The purpose of this research was to establish the relationship of nitrogen (N) emissions to specific components of swine production systems and to determine accurate NH(3) emission factors appropriate for the regional climate, geography, and production systems. Micrometeorological instrumentation and gas sensors were placed over two lagoons in North Carolina during 1997-1999 to obtain information for determining ammonia emissions over extended periods and without interfering with the surrounding climate. Ammonia emissions varied diurnally and seasonally and were related to lagoon ammonium concentration, acidity, temperature, and wind turbulence. Conversion of significant quantities of ammonium NH(4)(+) to dinitrogen gas (N(2)) were measured in all lagoons with the emission rate largely dependent on NH(4)(+) concentration. Lagoon NH(4)(+) conversion to N(2) accounted for the largest loss component of the N entering the farm (43% as N(2)); however, small amounts of N(2)O were emitted from the lagoon (0.1%) and from field applications (0.05%) when effluent was applied nearby. In disagreement with previous and current estimates of NH(3) emissions from confined animal feeding operation (CAFO) systems, and invalidating current assumptions that most or all emissions are in the form of NH(3), we found much smaller NH(3) emissions from animal housing (7%), lagoons (8%), and fields (2%) using independent measurements of N transformation and transport. Nitrogen input and output in the production system were evaluated, and 95% of input N was accounted for as output N from the system.  相似文献   

16.
不同菌剂处理下猪粪和牛粪堆肥前期性质变化   总被引:1,自引:0,他引:1  
以猪粪和牛粪为堆肥原料,设计了人工接种MixF-3菌剂堆肥、添加灭活菌剂堆肥和自然堆肥3个处理进行堆肥前期实验,探讨堆肥9d过程中温度、水分、有机碳、全氮和微生物量碳等参数的变化。结果表明,按1L/t接种MixF-3混合菌剂堆肥温度升温快,猪粪堆肥第48h和第84h时温度分别达到66℃和71.5℃,牛粪堆肥第48h时温度达69℃,明显高于灭活菌剂处理组和CK对照组。随着堆肥的进行,各处理组水分含量缓慢下降,牛粪比猪粪含水量略高。人工接种菌剂的猪粪和牛粪堆肥处理组中pH变化幅度小,有机碳碳含量的下降幅度比灭活组和自然堆肥组大,分别下降15.64%和11.25%,全氮含量缓慢升高但变化不大,人工接种牛粪比猪粪处理组中堆肥全氮含量升幅高;在猪粪和牛粪堆肥中人工接种菌剂微生物量碳降幅最小,分别为9537μg/g和3212μg/g,表明在猪粪和牛粪堆肥原料中添加MixF-3复合菌剂有利于微生物繁殖生长,同时拓宽了菌剂使用的单一性,更具有普遍性意义。  相似文献   

17.
This study evaluated the impact of storing chicken manure on the degradation of enrofloxacin (ENR) and ciprofloxacin (CIP), and on the survival of CIP-resistant Enterobacteriaceae. At 24 d of age, half of 8900 chickens received ENR for 5 d. After the animals departed, their manure was stored in two heaps for 63 d. Enterobacteriaceae were cultured on media containing 0 to 32 mg L?1 of CIP. A total of 320 isolates were fingerprinted using enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) to evaluate community structure. Initial concentrations of ENR and CIP in the heap were 22 and 1.8 mg kg?1, respectively. Seventy-three percent of the two fluoroquinolones were eliminated during storage. The administration of ENR led to a 5.1 log??? decrease in Enterobacteriaceae concentrations and emergence of CIP-resistant bacteria, which became dominant in the feces. concentrations decreased 1.2 to 2.3 log??? 2 d after the heaps were made and continued to decline during storage. No resistant were found by Day 63. The highest CIP minimum inhibitory concentration (MIC) values observed among isolates of and of both and sp. were 128 and 4 mg L?1, respectively. The dominant ERIC-PCR profiles changed over time. There was no relationship between genotype and resistance-isolated strains to CIP. Storing chicken manure in heaps appeared to be an effective way of limiting the entrance of CIP-resistant E. coli into the environment but did not prevent the dissemination of fluoroquinolones after land spreading.  相似文献   

18.
Bacteriophages (phages) associated with Salmonella were collected from nine swine manure lagoons in Mississippi. Phages were isolated by an enrichment protocol or directly from effluent. For enrichment, chloroform-treated samples were filtered (0.22 mum) and selectively enriched by adding a cocktail of Salmonella strains in trypticase soy broth. After overnight incubation at 35 degrees C, chloroform was added and samples stored at 5 degrees C. Enriched samples were tested by double agar layer (DAL) plaque assay against individual Salmonella isolates. Phage titers of 2.9 x 10(8) to 2.1 x 10(9) plaque forming units (pfu) per mL were produced, but estimation of phage titers in lagoons was not possible. For direct isolation, effluent was clarified by centrifugation, filtered (0.22 microm), and used in DAL plaque assays to select single-plaque isolates for 15 Salmonella strains. Plaque counts varied among Salmonella strains and lagoons. The most sensitive strain for direct phage recovery was ATCC 13311. Phage titers estimated by direct isolation with ATCC 13311 ranged among lagoons from 12 to 148 pfu per mL. In limited host range tests, 66 isolates recovered by the enrichment protocol produced plaques only on Enteritidis and Typhimurium strains of Salmonella and none produced plaques on lagoon isolates of Citrobacter, Escherichia, Proteus, Providencia, or Serratia. Electron microscopy (EM) showed purified enrichment isolates had Podoviridae morphology (tailless 50-nm icosahedral heads with tail spikes). Electron microscopy of clarified concentrated effluent showed 5.5:1 tailless to tailed phages. The isolated phages have potential as typing reagents, specific indicators, and biocontrol agents of Salmonella.  相似文献   

19.
Odor and gas release from anaerobic lagoons for treating swine waste affect air quality in neighboring communities but rates of release are not well documented. A buoyant convective flux chamber (BCFC) was used to determine the effect of lagoon loading rate on measured odor and gas releases from two primary lagoons at a simulated wind speed of 1.0 m s(-1). Concentrations of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), sulfur dioxide (SO2), and nitric oxide (NO) in 50-L air samples were measured. A panel of human subjects, whose sensitivity was verified with a certified reference odorant, evaluated odor concentration, intensity, and hedonic tone. Geometric mean odor concentrations of BCFC inlet and outlet samples and of downwind berm samples were 168 +/- 44 (mean +/- 95% confidence interval), 262 +/- 60, and 114 +/- 38 OU(E) m(-3) (OU(E), European odor unit, equivalent to 123 microg n-butanol), respectively. The overall geometric mean odor release was 2.3 +/- 1.5 OU(E) s(-1) m(-2) (1.5 +/- 0.9 OU s(-1) m(-2)). The live mass specific geometric mean odor release was 13.5 OU(E) s(-1) AU(-1) (animal unit = 500 kg live body mass). Overall mean NH3, H2S, CO2 and SO2 releases were 101 +/- 24, 5.7 +/- 2.0, 852 +/- 307, and 0.5 +/- 0.4 microg s(-1) m(-2), respectively. Nitric oxide was not detected. Odor concentrations were directly proportional to H2S and CO2 concentrations and odor intensity, and inversely proportional to hedonic tone and SO2 concentration (P < 0.05). Releases of NH3, H2S, and CO2 were directly proportional (P < 0.05) to volatile solids loading rate (VSLR).  相似文献   

20.
Understanding P sorption from animal manures is essential to formulate best management practices with regard to land application of manure from the standpoint of crop production and environmental quality. Little research has focused on the construction of P sorption isotherms where the P source is manure. The objectives of this study were to: (i) develop a procedure to characterize how inorganic P (P(i)) and total P (P(t)) from dairy slurry and swine slurry sorbs to soil; and (ii) compare the sorption characteristics of P(i) and P(t) where the P source was dairy slurry, swine slurry, or potassium phosphate (KH2PO4). Sorption solutions were prepared in 0.1 M KCl at pH 6 and equilibrated with soils at a 1:25 (w/v) soil/solution ratio for 24 h. Inorganic P, P(t), Al, and Fe in the equilibrated solutions were measured. For all soils, P(i) and P(t) sorption capacity of dairy slurry was greater than KH2PO4. Total P sorption capacity of swine slurry was greater than KH2PO4, while P(i) sorption capacity was less than KH2PO4. Overall, P(i) and P(t) sorption strengths of the manure slurries were less than or equal to KH2PO4. Increased P(i) sorption from dairy slurry was correlated with Fe and Al desorption. Reduction of P(i) sorption capacity from swine slurry was related to preferential sorption of organic P. Additional studies need to be conducted to determine how differences in P sorption between manures and fertilizer impact in-field P availability to a crop and potential for losses in runoff water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号