首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract: A practical methodology is proposed to estimate the three‐dimensional variability of soil moisture based on a stochastic transfer function model, which is an approximation of the Richard’s equation. Satellite, radar and in situ observations are the major sources of information to develop a model that represents the dynamic water content in the soil. The soil‐moisture observations were collected from 17 stations located in Puerto Rico (PR), and a sequential quadratic programming algorithm was used to estimate the parameters of the transfer function (TF) at each station. Soil texture information, terrain elevation, vegetation index, surface temperature, and accumulated rainfall for every grid cell were input into a self‐organized artificial neural network to identify similarities on terrain spatial variability and to determine the TF that best resembles the properties of a particular grid point. Soil moisture observed at 20 cm depth, soil texture, and cumulative rainfall were also used to train a feedforward artificial neural network to estimate soil moisture at 5, 10, 50, and 100 cm depth. A validation procedure was implemented to measure the horizontal and vertical estimation accuracy of soil moisture. Validation results from spatial and temporal variation of volumetric water content (vwc) showed that the proposed algorithm estimated soil moisture with a root mean squared error (RMSE) of 2.31% vwc, and the vertical profile shows a RMSE of 2.50% vwc. The algorithm estimates soil moisture in an hourly basis at 1 km spatial resolution, and up to 1 m depth, and was successfully applied under PR climate conditions.  相似文献   

2.
原油在土壤中迁移及降解的研究   总被引:1,自引:0,他引:1  
为了解原油在土壤中淋滤及降解的规律,剖析了大庆老油田开发区贮油池土壤含油状况,进行了自然植被不同类型土壤的浇油、室内原油淋滤模拟及栽培试验。结果表明:贮油池土壤原油淋滤深度绝大部分集中在0~30cm,以下原油明显减少(除沙化土壤外);盐碱土集中在0~10cm;草甸黑钙土集中在0~50cm;柱内油水混合渗透试验,80%集中在0~20cm;原油覆盖土壤表面时清水淋渗较弱,在0~20cm内残留94%;加原油的土壤降解试验,平均降解59.92%,范围为53.94%~62.25%,盆栽试验平均降解61.99%,范围为55.12%~70.68%。  相似文献   

3.
Land-applied domestic animal wastes contain appreciable amounts of 17beta-estradiol (henceforth, estradiol) and testosterone. These sex hormones may be transported through soil to groundwater and streams, where they may adversely affect the environment. Previous column transport studies with these hormones used repacked soil and did not consider preferential flow. We, therefore, determined the sorption and transport characteristics of estradiol and testosterone in undisturbed soil columns (15-cm i.d. by 32-cm height). In the sorption experiment, isotherms for estradiol and testosterone were nonlinear with Freundlich exponents (n) less than one. Sorption of both hormones decreased with soil depth, and estradiol sorbed more strongly than testosterone. Average estradiol Freundlich sorption coefficients (K(f)) values were 36.9 microg(1 - n) mL(n) g(-1) for the 0- to 10-cm soil depth and 25.7 microg(1 - n) mL(n) g(-1) for the 20- to 30-cm soil depth. Average testosterone K(f) values were 26.7 microg(1 - n) mL(n) g(-1) for the 0- to 10-cm soil depth and 14.0 microg(1 - n) mL(n) g(-1) for the 20- to 30-cm soil depth. In the transport experiment, 27% of the estradiol and 42% of the testosterone leached through the soil columns. Approximately 50% of the remaining soil-bound hormones were sorbed in the top 10 cm of soil. In almost all instances, breakthrough concentrations of estradiol, testosterone, and a chloride tracer peaked simultaneously. Simultaneous breakthrough and HYDRUS-1D transport parameters indicated both chemical and physical nonequilibrium processes affected hormone transport. This suggests hormones placed on soil surfaces may contaminate groundwater under conditions of preferential flow.  相似文献   

4.
Knowledge of how polyacrylamide (PAM) penetrates and distributes in a soil profile after application in irrigation water is important for understanding PAM conditioning depth and evaluating its environmental effects. Little is known, however, about PAM distribution in soil because of the difficulty in quantifying PAM content in natural soils. By using a recently modified substrate-borne PAM quantification method, PAM distribution in columns of organic matter-removed soils was determined. Results showed that penetration of PAM into the soil was affected by salt level of irrigation water, soil texture, initial soil water content, water application method, and other factors. Polyacrylamide penetration depth was about one-eighth to one-half of the water penetration depth, with a particularly high PAM retention in the top few centimeters of the soil. Under different experimental conditions, the PAM retained in the top 0 to 2 cm of soil ranged from 16 to 95% of the total applied amount. More favorable solution-soil contact conditions, longer solution-soil contact time, and lower initial soil moisture caused much more PAM retention in the top few centimeters of the soil. High sorptive affinity of PAM on soil is the main reason for its low penetration into the soil. Although these results were not obtained from natural soils, they are still helpful in improving our understanding of PAM transport behavior in soils.  相似文献   

5.
Allophanic soils are widespread around the world, but little research has been done on their transport properties. This study reveals the effect of two soil water potential heads and two water-flow regimes of continuous and intermittent flow on solute transport through undisturbed soil columns of Horotiu silt loam (Typic Hapludand), an allophanic soil. Two different methods--breakthrough curves (BTCs) and time domain reflectometry (TDR)--were employed to determine the extent of preferential solute transport in the topsoil. The TDR data were also used to look at the depth dependence of the transport properties. The convection-dispersion equation (CDE) with the appropriate boundary conditions adequately described the movement of both Br and Cl under the various flow conditions. Although no preferential flow was found under the imposed unsaturated flow conditions, the flow of water and transport of solute became more uniform with depth. The results show that both Br and Cl are retarded in this allophanic soil. Retardation values range from 1.5 to 1.9, and, as the TDR data showed, increase from the depth of 5.0 to 10.0 cm. Intermittent leaching results showed that there was no effect on solute concentrations in the leachate following no-flow periods. This suggests that water and solute transport in this soil were either relatively uniform or that transverse mixing during flow was already fast enough to eliminate concentration gradients between regions of different "mobility."  相似文献   

6.
Understanding the control mechanisms of fumigant movement in soil is a fundamental step for developing management strategies to reduce atmospheric emissions. Most soil fumigants including chloropicrin (CP) are applied by shank injection, and the application process often leaves vertical soil fractures that would potentially cause preferential fumigant movement and increased emissions. This potential transport pathway was evaluated by comparing cumulative emissions and soil air concentrations of CP from direct field measurements with those predicted using analytical and numerical models after assuming either point or rectangle sources for the injected CP. Results clearly showed that shank-injected CP, when treated as vertical rectangle sources, produced cumulative emission losses similar to the field measurements. Treating the shanked CP as point sources caused approximately 50% underprediction than the field measurements. The study also demonstrated that fumigant cumulative emissions can be predicted, with reasonable accuracy, using either analytical or numerical simulations.  相似文献   

7.
Landfill sites are potential sources of hazardous emissions by degradation and transformation processes of waste organic matter. Its chemical composition and microbial degradability are key factors for risk management, after-care, and estimation of potential emissions. The aim of the study is to provide information about composition and extent of transformation of waste organic matter in four landfill sites in Bavaria, Southern Germany by means of (13)C NMR spectroscopy, acid-hydrolyzable carbohydrates, chloroform-methanol extractable lipids, acid-hydrolyzable proteins, and lignin compounds after CuO oxidation. Ten samples of about 20 to 25 yr, 15 to 20 yr, and 5 to 10 yr of deposition each were taken at 2 m depth intervals by grab drilling till 10-m depth. Increasing temperatures from about 15 degrees C at 2-m depth to >40 degrees C at 10-m depth are found at some of the sites, representing optimum conditions for mesophile methane bacteria. Moisture contents of 160 to 310 g kg(-1) (oven dry), however, provide limiting conditions for anaerobic biodecay. Spectroscopic and chemical variables generally indicate a low extent of biodegradation and transformation at all sites despite a considerable heterogeneity of the samples. Independent of the time and depth of deposition more than 50% of the carbohydrate fraction of the waste organic matter provide a high potential for methane emissions and on-site energy production. There was no significant accumulation of long-chain organic and aromatic compounds, and of lignin degradation products even after more than 25 yr of rotting indicating higher extent of decomposition or stabilization of the waste organic matter. Installation of seepage water cleaning and recirculation systems are recommended to increase suboptimal moisture contents with respect to microbial methanogenesis, energy production, and long-term stabilization of municipal solid waste.  相似文献   

8.
Computer models help identify agricultural areas where P transport potential is high, but commonly used models do not simulate surface application of manures and P transport from manures to runoff. As part of an effort to model such P transport, we conducted manure slurry separation and soil infiltration experiments to determine how much slurry P infiltrates into soil after application but before rain, thus becoming less available to runoff. We applied dairy and swine slurry to soil columns and after both 24 and 96 h analyzed solids remaining on the soil surface for dry matter, total phosphorus (TP), and water-extractable inorganic (WEIP) and organic (WEOP) phosphorus. We analyzed underlying soils for Mehlich-3 and water-extractable P. We also conducted slurry separation experiments by sieving, centrifuging, and suction-filtering to determine which method could easily estimate slurry P infiltration into soils. About 20% of slurry solids and 40 to 65% of slurry TP and WEIP infiltrated into soil after application, rendering this P less available to transport in runoff. Slurry separation by suction-filtering through a screen with 0.75-mm-diameter openings was the best method to estimate this slurry P infiltration. Measured quantities of manure WEOP changed too much during experiments to estimate WEOP infiltration into soil or what separation method can approximate infiltration. Applying slurries to soils always increased soil P in the top 0 to 1 cm of soil, frequently in the 1- to 2-cm depth of soil, but rarely below 2 cm. Future research should use soils with coarser texture or large macropores, and slurry with low dry matter content (1-2%).  相似文献   

9.
During recent decades, a change in land use in the mountainous regions of Northern Thailand has been accompanied by an increased input of agrochemicals. We identified lateral water flow and pesticide transport pathways and mechanisms in a Hapludult on a sloped litchi orchard in Northern Thailand. During two rainy seasons, two micro-trench experiments were performed at the plot scale (2 by 3 m). The first experiment was performed at the footslope of the orchard; the second was performed at a midslope position. Two salt tracers (bromide and chloride) and two pesticides {methomyl [S-methyl-N-(methylcarbamoyloxy)thioacetimidate] and chlorothalonil (2,4,5,6-Tetrachlor-1,3-benzdicarbonitril)} were applied in stripes parallel to the slope 150 and 300 cm away from the trench. At the trench, soil water was collected by wick samplers. Tensiometers and time-domain reflectometry probes were installed. At the end of the experiment, soil samples were taken and analyzed for residual concentrations of tracers and pesticides. Lateral subsurface flow of water occurred exclusively along preferential flow paths and was mainly observed at 0- to 30- and 60- to 90-cm depth. Lateral transport of pesticides was negligible, but both pesticides were found beneath the application area at 90 cm depth. Therefore, they may pose a groundwater contamination risk. The amount of wick flow and the location of interflow were mainly a function of rain amount and antecedent soil water suction. During dry periods, water flow was restricted to the topsoil. After heavy rain events and wet periods, interflow was mainly observed in the subsoil. The cumulative rain amount between samplings necessary to induce interflow was 20 mm. At the footslope, the interflow was seven times higher, and the network of water-bearing pores increased compared with the midslope position.  相似文献   

10.
Large area soil moisture estimations are required to describe input to cloud prediction models, rainfall distribution models, and global crop yield models. Satellite mounted microwave sensor systems that as yet can only detect moisture at the surface have been suggested as a means of acquiring large area estimates. Relations previously discovered between microwave emission at the 1.55 cm wavelength and surface moisture as represented by an antecedent precipitation index were used to provide a pseudo infiltration estimation. Infiltration estimates based on surface wetness on a daily basis were then used to calculate the soil moisture in the surface 0–23 cm of the soil by use of a modified antecedent precipitation index. Reasonably good results were obtained (R2= 0.7162) when predicted soil moisture for the surface 23 cm was compared to measured moisture. Where the technique was modified to use only an estimate of surface moisture each three days an R2 value of 0.7116 resulted for the same data set. Correlations between predicted and actual soil moisture fall off rapidly for repeat observations more than three days apart. The algorithms developed in this study may be used over relatively flat agricultural lands to provide improved estimates of soil moisture to a depth greater than the depth of penetration for the sensor.  相似文献   

11.
Hydrogen sulfide (H(2)S) generated from C&D debris landfills has emerged as a major environmental concern due to odor problems and possible health impacts to landfill employees and surrounding residents. Research was performed to evaluate the performance of various cover materials as control measures for H(2)S emissions from C&D debris landfills. Twelve laboratory-scale simulated landfill columns containing gypsum drywall were operated under anaerobic conditions to promote H(2)S production. Five different cover materials were placed on top of the waste inside duplicate columns: (1) sandy soil, (2) sandy soil amended with lime, (3) clayey soil, (4) fine concrete (particle size less than 2.5 cm), and (5) coarse concrete (particle size greater than 2.5 cm). No cover was placed on two of the columns, which were used as controls. H(2)S concentrations measured from the middle of the waste layer ranged from 50,000 to 150,000 ppm. The different cover materials demonstrated varying H(2)S removal efficiencies. The sandy soil amended with lime and the fine concrete were the most effective for the control of H(2)S emissions. Both materials exhibited reduction efficiencies greater than 99%. The clayey and sandy soils exhibited lower reduction efficiencies, with average removal efficiencies of 65% and 30%, respectively. The coarse concrete was found to be the least efficient material as a result of its large particle size.  相似文献   

12.
Tillage and field scale controls on greenhouse gas emissions   总被引:3,自引:0,他引:3  
There is a lack of understanding of how associations among soil properties and management-induced changes control the variability of greenhouse gas (GHG) emissions from soil. We performed a laboratory investigation to quantify relationships between GHG emissions and soil indicators in an irrigated agricultural field under standard tillage (ST) and a field recently converted (2 yr) to no-tillage (NT). Soil cores (15-cm depth) were incubated at 25 degrees C at field moisture content and 75% water holding capacity. Principal component analysis (PCA) identified that most of the variation of the measured soil properties was related to differences in soil C and N and soil water conditions under ST, but soil texture and bulk density under NT. This trend became more apparent after irrigation. However, principal component regression (PCR) suggested that soil physical properties or total C and N were less important in controlling GHG emissions across tillage systems. The CO2 flux was more strongly determined by microbial biomass under ST and inorganic N content under NT than soil physical properties. Similarly, N2O and CH4 fluxes were predominantly controlled by NO3- content and labile C and N availability in both ST and NT soils at field moisture content, and NH4+ content after irrigation. Our study indicates that the field-scale variability of GHG emissions is controlled primarily by biochemical parameters rather than physical parameters. Differences in the availability and type of C and N sources for microbial activity as affected by tillage and irrigation develop different levels and combinations of field-scale controls on GHG emissions.  相似文献   

13.
Process-based models are frequently used to assess the water quality impacts of turfgrass management emanating from proposed or existing golf courses. Thatch complicates the prediction of pesticide transport because surface-applied pesticides must pass through an organic-rich layer before entering the soil. This study was conducted to (i) compare the use of a linear equilibrium model (LEM) and two-site nonequilibrium (2SNE) model to predict pesticide transport through soil and thatch + soil columns, and (ii) evaluate thatch effects on pesticide transport through soil columns with a volume-averaging approach. Pesticide breakthrough curves were obtained for soil and thatch + soil columns from a 1 cm h(-1) flux applied one day after applying triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) and carbaryl (1-napthyl-methyl carbamate). Pesticide and bromide transport parameters indicated that nonequilibrium processes were affecting pesticide transport. Columns containing zoysiagrass (Zoysia japonica Steud.) thatch had lower triclopyr and carbaryl leaching losses than did soil-only columns, although total reductions attributable to thatch did not exceed 15% of the applied pesticide. When laboratory-based retardation factors were used, the 2SNE model explained 88 to 93% of the variability for triclopyr and 70 to 94% of the variability for carbaryl. Laboratory-based retardation factors performed well in a 2SNE model to predict the peak concentration and tailing behavior of triclopyr and carbaryl with a volume-averaging approach. These results suggest that separate representation of the thatch layer in process-based models is not a prerequisite to obtain reasonable estimates of pesticide transport under steady state flow conditions.  相似文献   

14.
Transport models in which the liquid phase is partitioned between conducting and nonconducting regions allow the possibility that degradation and sorption are different in these regions. However, there is little information on biological or chemical differences between conducting and nonconducting regions of the soil matrix. Previous work by the authors on Br transport through unsaturated, intact soil cores of Dundee silty clay loam (fine-silty, mixed, active, thermic Typic Endoaqualf) indicated non-equilibrium conditions that could be well-described by a two-region model. Fitted parameters indicated little solute transfer between flow regions, suggesting that dye movement in unsaturated soil might delineate conducting and nonconducting regions of this soil. Steady-state, unsaturated flow was established in intact cores (10 by 30 cm) of the Dundee soil, then Br and erioglaucine dye were displaced through these cores. The soil cores were then sectioned into 5-cm segments and stained soil was separated from unstained soil. Microbial biomass C, organic C, and dye sorption K(D) (= g(sorbed) kg(-1)soil/g L(-1)) values for stained and unstained soil were determined. Stained soil had higher microbial biomass C but generally lower organic C and lower affinity for dye sorption than unstained soil from the same depth increment. Fraction of immobile water, dispersion, and mass transfer between conducting and nonconducting regions were consistent with previous results.  相似文献   

15.
Volatilization of dimethyldiselenide (DMDSe) is one of the most important processes for removing selenium (Se) from Se-contaminated environments. However, the fate of DMDSe in soil is not known. In this study, we monitored the changes of DMDSe in the head space of soil samples spiked with known amounts of DMDSe gas, and fractionated and speciated the resulting Se forms in soil. Dimethyldiselenide was highly dissolved in water in a closed air-water system and was highly sorbed onto soil in a closed air-soil system. Chemical and biological transformations of DMDSe in soil converted a large amount of DMDSe to nonvolatile Se compounds. Elemental Se [Se(0)] and nonvolatile organic Se were the major forms of Se transformed from spiked DMDSe. Microbial conversion of DMDSe to dimethylselenide (DMSe) in soil increased the production of DMSe. Calculation of the mass recovery showed that about 85 to 93% of the added DMDSe was recovered as Se(0), organic Se, organic material Se (OM-Se), Se(IV), and volatile organic Se in the head space in the non-autoclaved soils and 50 to 70% of the added DMDSe was recovered in the autoclaved soils. These results indicate that DMDSe is not a stable form of Se, and it may be one of the important precursors of DMSe in the soil environment.  相似文献   

16.
Effect of formulation on the behavior of 1,3-dichloropropene in soil   总被引:1,自引:0,他引:1  
The fumigant 1,3-dichloropropene (1,3-D) has been identified as a partial replacement for methyl bromide (CH3Br) in soil fumigation. 1,3-Dichloropropene is formulated for soil fumigation as Telone II (Dow AgroSciences, Indianapolis, IN) for shank application and as an emulsifiable concentrate (EC) (Telone EC or InLine; Dow AgroSciences) for drip application. This study investigated the effect of formulation on the phase partitioning, transformation rate, and volatilization of 1,3-D isomers. Air-water partitioning coefficients (K(H)) were slightly higher for Telone II than for Telone EC, presumably due to the higher apparent water solubility of the EC formulation. Sorption of 1,3-D isomers in two soils was not affected by formulation. Formulation had no significant effect on the rate of 1,3-D transformation in water or soil. In general, differences in the rate of 1,3-D transformation and phase partitioning due to formulation as Telone II or Telone EC were very small. Thus, the effect of formulation on 1,3-D fate may be ignored in transformation and phase partition of 1,3-D in water and soil. Packed soil columns without plastic tarp indicated that with relatively shallow subsurface (10 cm) drip application of Telone EC, emission of 1,3-D isomers was more rapid and produced greater maximum instantaneous flux than deeper (30 cm) shank injection of Telone II. Both application methods resulted in the same cumulative emissions for both isomers, 45% for (E)-1,3-D and approximately 50% for (Z)-1,3-D. These results suggest that for drip application of fumigants to be effective in reducing emissions, the fumigant must be applied at sufficient depths to prevent rapid volatilization from the soil surface if the water application rate does not sufficiently restrict vapor diffusion.  相似文献   

17.
The flux of dissolved organic carbon (DOC) in soil facilitates transport of nutrients and contaminants in soil. There is little information on DOC fluxes and the relationship between DOC concentration and water flux in agricultural soils. The DOC fluxes and concentrations were measured during 2.5 yr using 30 automatic equilibrium tension plate lysimeters (AETPLs) at 0.4 m and 30 AETPLs at 1.20-m depth in a bare luvisol, previously used as an arable soil. Average annual DOC fluxes of the 30 AETPLS were 4.9 g C m(-2) y(-1) at 0.4 m and 2.4 g C m(-2) y(-1) at 1.2 m depth. The average leachate DOC concentrations were 17 mg C L(-1) (0.4 m) and 9 mg C L(-1) (1.2 m). The DOC concentrations were unrelated to soil moisture content or average temperature and rarely dropped below 9 mg C L(-1) (0.4 m) and 5 mg C L(-1) (1.2 m). The variability in cumulative DOC fluxes among the plates was positively related to leachate volume and not to average DOC concentrations at both depths. This suggests that water fluxes are the main determinants of spatial variability in DOC fluxes. However, the largest DOC concentrations were inversely proportional to the mean water velocity between succeeding sampling periods, suggesting that the maximal net DOC mobilization rate in the topsoil is limited. Elevated DOC concentrations, up to 90 mg C L(-1), were only observed at low water velocities, reducing the risks of DOC-facilitated transport of contaminants to groundwater. The study emphasizes that water flux and velocity are important parameters for DOC fluxes and concentrations.  相似文献   

18.
19.
Degradation and mobility of the surfactants linear alkylbenzene sulfonate (LAS) and nonylphenol (NP) were investigated in a lysimeter study using a sandy loam soil and 45-cm soil columns. Anaerobically digested sewage sludge was incorporated in the top-15-cm soil layer to an initial content of 38 mg LAS and 0.56 mg NP kg(-1) dry wt., respectively. Spring barley (Hordeum vulgare L.) was sown onto the columns. The lysimeters were placed outdoors and therefore received natural precipitation, but were also irrigated to a total amount of water equivalent to 700 mm of precipitation. Leachate and soil samples from three soil layers were collected continuously during a growth period of 110 d. Leachate samples and soil extracts were concentrated by solid-phase extraction (SPE) and analyzed using high performance liquid chromatography (HPLC) with fluorescence detection. The concentrations in the top-15-cm soil layer declined to 25 and 45% of the initial contents for LAS and NP, respectively, within the first 10 d of the study. At the end of the study, less than 1% LAS was left, while the NP content was below the detection limit. Assuming first-order degradation kinetics, half-lives of 20 and 37 d were estimated for LAS and NP, respectively. The surfactants were not measured in leachate samples in concentrations above the analytical detection limits of 4.0 and 0.5 microg L(-1) for LAS and NP, respectively. In addition, neither LAS nor NP were measured in concentrations above the detection limits of 150 and 50 microg kg(-1) dry wt., respectively, in soil layers below the 15 cm of sludge incorporation, indicating negligible downward transport of the surfactants in the lysimeters.  相似文献   

20.
The environmental fate of herbicides can be studied at different levels: in the lab with disturbed or undisturbed soil columns or in the field with suction cup lysimeters or soil enclosure lysimeters. A field lysimeter experiment with 10 soil enclosures was performed to evaluate the mass balance in different environmental compartments of the phenylurea herbicides diuron [3-(3,4-diclorophenyl)-1,1-dimethyl-urea] and linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea]. After application on the agricultural soil, the herbicides were searched for in soil, pore water, and air samples. Soil and water samples were collected at different depths of the soil profile and analyzed to determine residual concentrations of both the parent compounds and of their main transformation products, to verify their persistence and their leaching capacity. Air volatilization was calculated using the theoretical profile shape method. The herbicides were detected only in the surface layer (0-10 cm) of soil. In this layer, diuron was reduced to 50% of its initial concentration at the end of the experiment, while linuron was still 70% present after 245 d. The main metabolites detected were DCPMU [3-(3,4-dichlorophenyl)-1-methylurea] and DCA (3,4-dichloroaniline). In soil pore water, diuron and linuron were detected at depths of 20 and 40 cm, although in very low concentrations. Therefore the leaching of these herbicides was quite low in this experiment. Moreover, volatilization losses were inconsequential. The calculated total mass balance showed a high persistence of linuron and diuron in the soil, a low mobility in soil pore water (less than 0.5% in leachate water), and a negligible volatilization effect. The application of the Pesticide Leaching Model (PELMO) showed similar low mobility of the chemicals in soil and water, but overestimated their volatilization and their degradation to the metabolite DCPMU. In conclusion, the use of soil enclosure lysimeters proved to be a good experimental design for studying mobility and transport processes of herbicides in field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号