首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The spider crabHyas araneus (L.) was collected from the North Sea in winter 1986–1987 and reared in the laboratory from hatching of the Zoea I (ZI) through the first juvenile instar (CI). Within a given moult cycle, individuals of the same age were sampled in intervals of 2 (ZI, ZII, CI) or 3 d (megalopa) for analysis of dry weight (W), carbon (C), nitrogen (N), hydrogen (H), protein, DNA, and RNA. Lipid was calculated from C. Biomass, growth rate and nucleic acid contents showed high variability during each moult cycle and between instars. Instantaneous growth rates of C were high in postmoult and intermoult, and low in the premoult period of each moult cycle. A shift was observed from high rates of lipid accumulation in the postmoult and intermoult stages to proportionally increasing protein accumulation during late premoult (ZI), or throughout a major part of the remaining moult cycle (in all other instars). DNA was accumulated throughout the ZI and ZII instars, but decreased in late premoult megalopa. It increased again from late intermoult through intermediate premoult in juveniles. RNA increased continuously during ZI and ZII, and decreased in the megalopa, almost to levels that had been found immediately after hatching. In juveniles, variation in RNA followed closely those in DNA. Cell multiplication (expressed by DNA increase) dominated over increase in cell size (defined by the C/DNA ratio) during the zoeal instars and in postmoult through early intermoult in the megalopa and CI. When specific (C-related) RNA values and RNA/DNA ratios were compared with instantaneous growth rates in C and N, no general correspondence was detected. The only significant relationship between specific RNA values and instantaneous C or N growth rates was found in the megalopa. The same held for the relationship between the RNA/DNA ratio and growth. Here, in addition to the megalopa, a correspondence with C growth was also found in the CI instar. Our results suggest that variation in nucleic acids may provide useful insights into mechanisms of growth on the cellular level (cell multiplication vs cell enlargement). However, lack of general correlation with variation in growth rates ofH. araneus larvae shows that the use of nucleic acids as a measure of growth is probably based upon too simplistic assumptions; it may not yield reliable predictions, when growth is associated with developmental events.  相似文献   

2.
The ratio of RNA to DNA (RNA:DNA) was used to assess the relative growth rates of the hydrothermal vent vestimentiferans Ridgeia piscesae Jones and R. phaeophiale Jones. This biochemical indicator of growth is especially valuable when actual growth rates are difficult to measure. Tubeworms were collected from five hydrothermally active sites along the Juan de Fuca Ridge, in the Northeast Pacific Ocean in the summers of 1984 and 1986. We found significant variation in RNA:DNA among Ridgeia spp. from the five sites which was not due to size of the tubeworms or to a species-specific difference. Instead, differences in RNA:DNA were related to site of collection. Mean RNA:DNAs of 2.1 and 3.9 for R. piscesae from two sites were significantly different from each other, but not from that of tubeworms from a third site (mean=2.9). Similarly, mean RNA:DNAs of 2.3 and 4.5 for R. phaeophiale from two sites were significantly different. These patterns in RNA:DNA may reflect differences in growth rates arising from variation in environmental factors over spatial scales as small as 2 m.  相似文献   

3.
Methods are described for the successful rearing of northern anchovy larvae (Engraulis mordax Girard) on cultured foods. Larvae were fed successively on the unarmored dinoflagellate Gymnodinium splendens, the veliger of the gastropod Bulla gouldiana, and nauplii of the brine shrimp Artemia salina. Rearing containers ranging in capacity from 4.5 to 510 l were tested; the smaller ones were found to be most useful for laboratory experimentation. Irreversible starvation occurred when E. mordax were denied food for more than 1.5 days after yolk absorption. Growth rates of larval anchovies fed different diets were compared. Larvae fed G. splendens grew for 1 week at the same rate as animals fed wild plankton, but did not maintain this rate. Laboratory survival of E. mordax larvae on a diet of G. splendens alone, did not differ significantly when veligers supplemented the diet. However, when G. splendens and veligers were fed simultaneously to E. mordax larvae, growth rate was greatly improved, although still not matching the growth attained on a diet of wild plankton. Length (L) versus weight (W) analyses were made for all larvae at all diets. The results showed that weight could be calculated most accurately from length by the relationship log W=3.3237 log L-3.8205, regardless of diet.  相似文献   

4.
The brine shrimp Artemia salina L. and the polychaete worm Ophryotrocha labronica La Greca and Bacci were acclimated in sea water with copper sulphate at concentrations of 0.1, 0.05, and 0.025 ppm Cu++, for 3 and 2 generations, respectively. Both adults and larvae of A. salina showed a greater tolerance to 1 ppm Cu++ after acclimation compared to controls of the same age, although this tolerance diminished in successive generations. The acclimation effect was less marked in O. labronica. In both species, tolerance to 10 ppm Cu++ upwards was not enhanced. Growth-rate inhibition and an adverse effect on reproduction was observed, in some instances in direct relationship to the acclimation concentration. It is suggested that, in A. salina, a certain tolerance to copper may be acquired through exposure to low concentrations.  相似文献   

5.
Competitive interactions between two fucoid algae with different growth forms, Fucus serratus L. and Himanthalia elongata (L.) S.F. Gray were examined both in the laboratory and on a shore of the Isle of Man, Irish Sea. The growth of germlings of both species declined with increasing density, irrespective of whether they were with cohorts or rival species, indicating that intra- and interspecific competition occurred between germlings. H. elongata suppressed the performance of F. serratus at the germling stage by virtue of its larger initial size, and at the mushroom stage by forming a miniature canopy with the caps of the adjacent plants. In a field experiment, the mortality of H. elongata juveniles generally increased in mixtures with F. serratus and was highest when F. serratus were 50% of the plants. At the juvenile stage, the negative effect of F. serratus on H. elongata was more severe than the other way round. This was because F. serratus grows predominantly upwards, whereas H. elongata had already begun to expand laterally at the distal end. If F. serratus survives in sparse mixed stands with H. elongata juveniles, it can overgrow them and inhibit their subsequent survivorship and growth, probably by both shading and physical sweeping. H. elongata and F. serratus maintain their discrete monospecific stands because of the varying outcomes of mutual competitive exclusion resulting from their differing growth patterns. Thus it is possible for them to co-occur at a similar shore height.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

6.
Feeding rates, conversion efficiencies and growth of larvae of the mummichog Fundulus heteroclitus, an extremely abundant estuarine fish, were measured at temperatures ranging from 18° to 30°C. The food used was Artemia salina nauplii. At the time of total yolk sac absorption (5 to 7 days after hatching), the feeding rate decreased for a short time, an indication of a shift in metabolism. Higher feeding rates and growth occurred at higher rearing temperatures. The highest conversion efficiency (gross growth efficiency) was 1.1%, at 22°C. Mummichog larvae may be energetically inefficient compared with other fish species, but efficiency might not be critical for this fish, which is an opportunistic omnivore in an energy-rich environment.Contribution No. 291 of the Belle W. Baruch Institute for Marine Biology and Coastal Research, supported by DOE contract No. EY-76-5-09-0869.  相似文献   

7.
Five species of unicellular algae of the same age, cultured bacteria-free under standard growth conditions, were analyzed for chemical composition and fed to different size classes of Artemia salina. The green algae Chlamydomonas sphagnicolo, Dunaliella viridis, Platymonas elliptica and Chlorella conductrix had significantly higher percentages of protein and lipid than did the diatom Nitzschia closterium. Total ash value was highest in populations of N. closterium. Shrimp fed Chlamydomonas sphagnicolo cells assimilated highest percentages of organic matter, while those fed Chlorella conductrix had lowest assimilation rate. Respiration rates were inversely proportional to animal size (weight) and algal cell volume. Growth, survival, rate of sexual maturtion, and sex ratio were dependent on the growth and assimilation efficiencies obtained from each respective algal food. Shrimp fed Chlamydomonas sphagnicolo, D. viridis, or P. elliptica cells displayed highest growth and assimilation efficiencies.  相似文献   

8.
In order to estimate growth rates based on biochemical indices of the liver of wild Japanese flounder (Paralichthys olivaceus), juveniles were reared at six ration levels (0, 0.5, 2, 4, 6 and 8% body weight day−1) in the laboratory for 14 days, and the relationship between their growth rates and biochemical indices (RNA/DNA, protein/DNA, triglyceride/DNA, phospholipid/DNA and cathepsin D activities) were determined. Positive and approximately linear relationships were seen between growth rates and the indices of RNA/DNA, protein/DNA and phospholipid/DNA. The triglyceride/DNA ratio decreased with increasing growth rates up to approximately 1% body weight day−1, then increased linearly with increasing growth rates. There was no significant correlation between growth rates and cathepsin D activity, and the highest values were obtained in the starved fish. Compared with laboratory-reared specimens, wild specimens of similar sizes were found to have significantly larger livers. The RNA/DNA, protein/DNA and phospholipid/DNA ratios of wild specimens fell in a broad range between ration groups of reared juveniles. The protein/DNA ratios of wild specimens were low and outside the range of the reared juveniles at six ration levels. In contrast, the levels of cathepsin D activity of wild fish were highest compared to the reared fish. Estimated growth rates of wild fish from the RNA/DNA, protein/DNA and phospholipid/DNA regressions obtained from the rearing experiment were 1.66, −1.74 and 0.10% day−1, respectively. Based on our results, the RNA/DNA index may be regarded as the most valid and reliable growth estimator. It is noted that the larger liver size, the lower liver protein/DNA ratio and the unexpectedly high level of cathepsin D activities of wild specimens found in this study may reflect the different metabolic conditions of fish reared in the laboratory compared to those collected in the field. Received: 29 February 2000 / Accepted: 26 August 2000  相似文献   

9.
Dietary-induced responses in the phagotrophic flagellate Oxyrrhis marina   总被引:1,自引:0,他引:1  
Primary producers may be limited by different nutrients as well as by light availability, which in turn affects their quality as food for higher trophic levels. Typically, algae with high C:N and/or C:P ratios are low-quality food for consumers. Heterotrophic protists are important grazers on these autotrophes, but despite their importance as grazers, knowledge of food quality effects on heterotrophic protists is sparse. In the present study, we examined how differently grown Rhodomonas salina (nutrient replete, N-limited and P-limited) affected the phagotrophic flagellate Oxyrrhis marina. The functional response of O. marina (based on ingested biovolume) did not show significant differences between food sources, thus food uptake was independent of food quality. O. marina was weakly homoeostatic which means that its C:N:P ratio still reflected the elemental composition of its food to some extent. Food quality had a significantly negative effect on the numerical response of O. marina. Whereas N-limited R. salina and nutrient replete R. salina resulted in similar growth rates, P-limited algae had a significantly negative effect on the specific growth rate of O. marina. Hence, the lack of elemental phosphorus of O. marina feeding on P-limited algae caused a reduction in growth. Thus, despite their weaker homoeostasis, heterotrophic protists are also affected by high C:P food in a similar way to crustacean zooplankton.  相似文献   

10.
A. Le Roux 《Marine Biology》1973,22(2):159-166
Larvae of Nyctiphanes couchii (Bell) were reared in the laboratory from the second and third calyptopis stages; they were fed animal, algal and mixed diets. Data are presented on larval morphology, growth and moulting rates. It is demonstrated that N. couchii is capable of filter-feeding and of capturing prey from the calyptopis phase onwards. The influence of diet on larval development is discussed: algal diets induce a slower growth rate than that achieved by feeding with Artemia salina nauplii alone, and increase the length of intermoult periods and of ontogenesis. A limited supply of A. salina nauplii has similar effects.  相似文献   

11.
B. Werding 《Marine Biology》1969,3(4):306-333
More than 6000 individuals of the snailLittorina littorea L., from 6 different localities on the coast of the German Bay (North Sea), were examined for larval trematodes by crushing their shells, an additional 6000 by isolation in small quantities of sea water. Six species of larval trematodes were found inL. littorea and described: Notocotylid larva —Cercaria lebouri Stunkard, 1932; Cercaria ofHimasthla elongata (Mehlis, 1831); Cercaria ofPodocotyle atomon (Rudolphi, 1802); Cercaria ofRenicola roscovita (Stunkard, 1932) n. comb.; Metacercaria ofMicrophallus pygmaeus (Levinsen, 1881); Cercaria ofCryptocotyle lingua (Creplin, 1825). Considering the large number of investigated snails, the trematode fauna ofL. littorea in this area is assumed to be completely known. The life cycles ofHimasthla elongata andRenicola roscovita are described. Larvae of the different trematode species show differential preferences for distinct size groups of snail hosts. Juvenile snails are not infected. No correlation exists between infection rates and sex of the hosts. Quantitative aspects of multiple infections are calculated and discussed. The incidence of larval trematodes in the investigated localities differs. Information is presented on seasonal variations of infestations and their possible causes.  相似文献   

12.
Nutritional indices were used to develop biochemical correlates of feeding and growth rates for juvenile summer flounder, Paralichthys dentatus (Linnaeus), from North Carolina (NC) and Delaware (DE). Six parameters (Fulton's condition K=104xweight/(length3), wet weight/dry weight, [protein], [RNA], [DNA], and RNA:DNA) were related to feeding and growth rates of fish from previously reported 10 to 14-d experiments at temperatures ranging from 2 to 20 °C with varying feeding levels (0 to 100% and libitum). RNA:DNA ratios were the best predictors of growth rates, but inclusion of a temperature term improved the relationship between RNA:DNA ratios and growth rate for Delaware fish. Feeding rates were poorly correlated with all parameters. RNA:DNA ratios of fish in the laboratory changed significantly within 1 d of starvation and refeeding at 16 °C. RNA:DNA of juvenile summer flounder collected from one site in Indian River Bay, DE and two sites in the Newport River Estuary, NC, between January and June 1992 were used to estimate in situ growth rates following settlement. Predicted growth rates in both estuaries were close to maximum (suggesting ad libitum feeding) until early May. Growth rates of juveniles from Delaware were <0% d-1 from December through early March, and were higher (0.6 to 3% d-1) from April through early June. However, growth rates of DE juveniles during May were <50% of maxinum. North Carolina juveniles had growth rates of 2 to 5% d-1 from February through early April. Juveniles from one of the Newport River sites (a marsh habitat) were also severely growth limited (<20% of maximum) after April. Prolonged periods of sub-optimal growth may be important to survival and recruitment of juvenile summer flounder in northern mid-Atlantic estuaries. A model is presented which illustrates the potential impact that small changes in temperature and growth limitation can have on recruitment success in both delaware and North Carolina estuaries.  相似文献   

13.
J. Yen 《Marine Biology》1983,75(1):69-77
Adult females of the large carnivorous copepod Euchaeta elongata Esterly were collected from 1977 to 1980 in Port Susan, Washington, USA. Predation rates of the adult females increased with increasing prey abundance when fed the following 4 sizes of copepods: adult females of Calanus pacificus (average prosome length [PL] of 2 650 μm), adults of Aetideus divergens (PL of 1 560 μm), adult females of Pseudocalanus spp. (PL of 1 060 μm), and nauplii of C. pacificus (PL of 410 μm). Saturation feeding levels were reached when adult females of the predator were fed the small adult copepod, Pseudocalanus spp. Maximum biomass ingested of this small copepod was more than the maximum amount ingested of the larger copepods. Predation rates of the predatory copepodids at Stages IV and V also increased with increasing concentration of the 1 060 μm (PL) prey. High feeding rates exhibited by both adults and copepodids at Stage V of the predator indicate their importance as sources of mortality on populations of small copepods. Ingestion efficiency E i (prey wholly consumed [prey attacked]-1) varied as follows: adults of E. elongata were more efficient than copepodids of E. elongata; adults were more efficient than copepodids when ingesting smaller prey; starved adults were more efficient than fed ones; and both adults and copepodids were more efficient at low food concentrations. For adults of E. elongata, there were no marked seasonal variations in predation or respiratory rates that would represent acclimatory responses; however, small adults obtained during winter were more efficient at ingesting prey than were the larger adults gathered in summer. This seasonal variation in the efficiency of ingestion may be a useful indicator of physiological state: high E i values could indicate that predators are starving in winter, and low E i values could indicate that predators are satiated in summer.  相似文献   

14.
Individuals of Mytilus edulis of the same age (ca 2 months) were collected as spat from natural populations. Relative growth rates were determined among individuals differing in heterozygosity at five enzyme loci. Growth rate was positively correlated with individual heterozygosity and each of the five loci contributed about equally to the relatinship. More heterozygous individuals also achieved more uniform average growth rates. Although there was a deficiency of heterozygotes at each locus, relative to Hardy-Weinberg expectations, the magnitude of the deficiency, measured as FIS, was less among faster growing mussels. Our results conform closely with those of Zouros et al. (1980) on the American oyster. We conclude that the relationship between multiple locus heterozygosity and growth rate is one that is general to a diversity of outbreeding plant and animal populations. Other studies indicate that this relationship is due to a greater average metabolic efficiency of more heterozygous individuals. This relationship does not emerge from experimental designs in which there has been limited genetic sampling of the natural genetic variation.  相似文献   

15.
Previous studies on various marine mollusc species have shown that both larval and juvenile growth rates are substantially heritable, but few workers have examined the extent to which larval and juvenile growth rates covary. We examined the relationship between larval and juvenile growth rates in seven laboratory experiments conducted between 1986 and 1993, using the prosobranch gastropods Crepidula plana Say and C. fornicata (L.). In most experiments larvae were reared individually, measured twice nondestructively to determine larval grwoth rate, allowed or stimulated (daily 5-h exposure to 20 mM excess K+ in seawater) to metamophose, and then measured at least twice after metamorphosis to determine juvenile growth rates. Generally, there was no significant (p >0.10) relationship between larval and juvenile growth rates, suggesting that in these two species selection can act independently on the two stages of development. A positive correlation (p=0.007) between larval and juvenile growth rates was observed for C. fornicata in one experiment, but only for offspring from females maturing the most rapidly in laboratory culture. Even for these larvae, however, variation in larval growth rate explained<2% of the variation in juvenile growth rate, so that larval and juvenile growth rates are at most only weakly associated in this species.  相似文献   

16.
Experimental studies of feeding on zooplankton often involve the use of non-evasive Artemia spp. to represent zooplanktonic prey. Some zooplankton, however, such as copepods, are potentially evasive due to possession of effective predator-avoidance mechanisms such as high-speed escape swimming. In the present study, we compared the efficiencies with which non-evasive (A. salina) and evasive (copepods) zooplankton were captured by a sessile, suspension feeder, the coral-inhabiting barnacle Nobia grandis (Crustacea, Cirripedia). N. grandis specimens and zooplankton used in the present study were collected near Eilat, Israel in 1993. The effect of different flow speeds (from 0 to 14 cm s-1) on captures of the two preys was also investigated. Additionally, we examined the effect of a flow-induced barnacle behavioral switch from active to passive suspension feeding, on zooplankton capture. Two video cameras were used to make close-up, three dimensional recordings of predator-prey encounters in a computer-controlled flow tank. Frame-by-frame video analysis revealed a highly significant difference (P< 0.001) in the efficiency with which A. salina and copepods were caught (A. salina being much more readily captured than copepods). After an encounter with cirri of feeding barnacles, copepods were usually able to swim out of the barnacles capture zone within one video frame (40 ms), by accelerating from a slow swimming speed (approximately 1.85 cm s-1) to a mean escape swimming speed of 18.11 cm s-1 (ca. 360 body lengths s-1). This was not the case for A. salina nauplii, which usually remained in contact with cirri before being transferred to the mouth and ingested. Thus, experimental studies addressing the methodology of organisms feeding on zooplankton should consider that slow-swimming prey like Artemia sp. nauplii may only represent the non-evasive fraction of natural mesozooplankton assemblages.  相似文献   

17.
To what extent densities of amphipods associated with red algae are related to food value or habitat form and architecture were investigated. Four epiphytic red algae common on kelp stipes (Laminaria hyperborea) were sampled, and the densities of three species of associated amphipods were analysed. The algae were chosen to represent different structures and levels of architectural complexity. Palmaria palmata and Delesseria sanguinea are leaf-shaped, and Ptilota gunneri and Polysiphonia elongata are branched. The algae were later fed to the common epiphyte-associated amphipods Ampithoe rubricata, Jassa falcata and Caprella septentrionalis in no-choice laboratory experiments. Survival and growth were measured. J. falcata was found at the highest densities on P. gunneri and D. sanguinea, C. septentrionalis was found in highest densities on P. elongata, and P. gunneri and A. rubricata were found at the highest densities on P. gunneri. The survival and growth were highest on P. palmata for all amphipods. This indicates that the form and function of the algal host is more important for the distributions of amphipods than the food value. Interspecific distribution differences between amphipods may have been related to differences in their body form and size, as well as to crypsis.Communicated by L. Hagerman, Helsingør  相似文献   

18.
Seasonal variations and the effect of reproductive development on resource acquisition by two intertidal fucoid species, the iteroparous Fucus serratus L. and the semelparous Himanthalia elongata (L.) S. F. Gray were examined. The oxygen-exchange characteristics of vegetative apical tissue of both non-fertile and fertile plants and receptacle tissue were compared at monthly intervals throughout reproductive development. Respiratory rates in non-fertile F. serratus varied seasonally between 1.5 and 8.0 μmol g−1 fresh wt h−1; in fertile plants the receptacle had a significantly lower respiratory rate than the vegetative tissue. The respiratory rate of the vegetative button of fertile H. elongata displayed less seasonal variation and was lower than that of the receptacle, which varied from a maximum of 9.5 μmol g−1 fresh wt h−1 at receptacle initiation in October to a minimum of 2.0 μmol g−1 fresh wt h−1 in February. The maximum photosynthetic rate (P max) of non-fertile plants of both species did not vary in a distinct seasonal manner (∼60 μmol g−1 fresh wt h−1 for F. serratus and ∼12 μmol g−1 fresh wt h−1 for H. elongata). In fertile plants, the P max of the receptacle tissue was (∼50% lower in F. serratus, and at its peak three times higher in H. elongata, than that of vegetative tissue. The stable carbon-isotope ratio (δ13C) did not differ between different tissue types in F. serratus, but values did vary seasonally, being less negative in the summer than in the winter (−13.5‰ compared to −18‰). The receptacle tissue of H. elongata also displayed a distinct seasonal variation in δ13C values (−12‰ in summer, −16‰ in winter), whilst the δ13C of the vegetative button did not vary seasonally. The rate of uptake of inorganic nitrogen by the vegetative thallus was lower in H. elongata than in F. serratus. The receptacle tissue of F. serratus had lower uptake rates than the vegetative tissue, whilst the uptake rate by H. elongata receptacle tissue was higher than that of the vegetative button. Received: 14 March 1997 / Accepted: 22 April 1997  相似文献   

19.
The kinetics and efficiency of sterol production and bioconversion of phytosterols in two heterotrophic protists Oxyrrhis marina and Gyrodinium dominans were examined by feeding them two different algal species (Rhodomonas salina and Dunaliella tertiolecta) differing in sterol profiles. R. salina contains predominantly brassicasterol (≅99%) and <2% cholesterol. The major sterols in D. tertiolecta are ergosterol (45–49%), 7-dehydroporiferasterol (29–31%) and fungisterol (21–26%). O. marina fed R. salina metabolized dietary brassicasterol to produce 22-dehydrocholesterol and cholesterol. O. marina fed D. tertiolecta metabolized dietary sterols to produce cholesterol, 22-dehydrocholesterol, brassicasterol and stigmasterol. G. dominans fed either R. salina or D. tertiolecta metabolized dietary sterols to make cholesterol, brassicasterol and a series of unknown sterols. When protists were fed R. salina, which contains cholesterol, the levels of cholesterol were increased to a magnitude of nearly 5- to 30-fold at the phytoplankton-heterotrophic protist interface, equivalent to a production of 172.5 ± 16.2 and 987.7 ± 377.7 ng cholesterol per mg R. salina carbon consumed by O. marina and G. dominans, respectively. When protists were fed D. tertiolecta, which contains no cholesterol, a net production of cholesterol by the protists ranged from 123.2 ± 30.6 to 871.8 ± 130.8 ng per mg algal C consumed. Cholesterol is not only the dominant sterol, but a critical precursor for many physiologically functional biochemicals in higher animal. As intermediates, these heterotrophic protists increase the amount of cholesterol at the phytoplankton–zooplankton interface available to higher trophic levels relative to zooplankton feeding on algae directly.  相似文献   

20.
Scleractinian corals experience a wide range of flow regimes which, coupled with colony morphology, can affect the ability of corals to capture zooplankton and other particulate materials. We used a field enclosure oriented parallel to prevailing oscillatory flow on the forereef at Discovery Bay, Jamaica, to investigate rates of zooplankton capture by corals of varying morphology and polyp size under realistic flow speeds. Experiments were carried out from 1989 to 1992. Particles (Artemia salina cysts) and naturally occurring zooplankton attracted into the enclosures were used as prey for the corals Madracis mirabilis (Duchassaing and Michelotti) (narrow branches, small polyps), Montastrea cavernosa (Linnaeus) (mounding, large polyps), and Porites porites (Pallas) (wide branches, small polyps). This design allowed corals to be used without removing them or their prey from the reef environment, and avoided contact of zooplankton with net surfaces. Flow speed had significant effects on capture rate for cysts (M. mirabilis), total zooplankton (M. mirabilis, M. cavernosa), and non-copepod zooplankton (M. mirabilis). Zooplankton prey capture increased with prey concentration for M. mirabilis and M. cavernosa, over a broad range of concentrations, indicating that saturation of the feeding response had not occurred until prey density was over 104 items m−3, a concentration at least an order of magnitude greater than the normal range of reef zooplankton concentrations. Location of cyst capture on coral surfaces was not uniform; for M. cavernosa, sides and tops of mounds captured most particles, and for P. porites, capture was greatest near branch tops, but was close to uniform for M. mirabilis branches in all flow conditions. The present study confirms laboratory flume results, and field results for other species, suggesting that many coral species experience particle flux and encounter rate limitations at low flow speeds, decreasing potential zooplankton capture rates. Received: 17 September 1996 / Accepted: 22 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号