首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The emigration and raiding behavior of the SE Asian ponerine ant Leptogenys sp. 1, which resembles L. mutabilis, were observed in the field (Ulu Gombak, Malaysia). The ants formed monogynous colonies that consisted of up to 52 100 workers. The bivouac sites of this species were found in leaf litter, rotten logs, ground cavities, etc., and were rarely modified by the ants. The colonies stayed in these temporary nests for several hours to 10 days; afterwards, they moved to a new nest site. The emigration distances ranged from 5–58 m. Since nest changing takes place at irregular intervals, and pupae and larvae are always present in the nest relocations of Leptogenys sp. 1, the emigration behavior is not linked to a synchronized brood development. Leptogenys sp. 1 is a nocturnal forager; in our study, up to 42 600 workers participated in each raid. The ants move forward on a broad front; behind the swarm a fan-shaped network of foraging columns converges to form a main trunk trail. A new system of foraging trails is developed in each raid. The workers search for their prey collectively; they attack and retrieve the booty together. The diet of Leptogenys sp. 1 consists mainly of arthropods. Army ant behavior is characterized by (1) formation of large monogynous colonies, (2) frequent emigrations, and (3) mass raids in which all foraging activities are carried out collectively. Since Leptogenys sp. 1 performs these typical army ant behavior patterns, this species represents the army ant ecotype. However, this species differs considerably from army ant species that have synchronized broods and huge colonies with dichthadiiform queens.Dedicated to Professor Dr. M. Lindauer on the occasion of his 70th birthday  相似文献   

2.
3.
Effective management of invasive ants is an important priority for many conservation programs but can be difficult to achieve, especially within ecologically sensitive habitats. This study assesses the efficacy and nontarget risk of a precision ant baiting method aiming to reduce a population of the invasive big-headed ant Pheidole megacephala on a tropical island of great conservation value. Area-wide application of a formicidal bait, delivered in bait stations, resulted in the rapid decline of 8 ha of P. megacephala. Effective suppression remained throughout the succeeding 11-month monitoring period. We detected no negative effects of baiting on nontarget arthropods. Indeed, species richness of nontarget ants and abundance of other soil-surface arthropods increased significantly after P. megacephala suppression. This bait station method minimized bait exposure to nontarget organisms and was cost effective and adaptable to target species density. However, it was only effective over short distances and required thorough bait placement. This method would therefore be most appropriate for localized P. megacephala infestations where the prevention of nontarget impacts is essential. The methodology used here would be applicable to other sensitive tropical environments.  相似文献   

4.
The life cycle of the hydroidClytia attenuata (Calkins) (Calyptoblastea: Campanulariidae) has been completed in the laboratory including development of the medusa, previously described asPhialidium lomae Torrey (Leptomedusae: Campanulariidae). Under laboratory conditions, the hydroid exhibits some morphological variation. Characteristic branching of the hydroid occurs at temperatures between 17° to 19°C. At 13° to 15°C the colonies are unbranched and cannot be distinguished fromClytia cylindrica L. Agassiz. Young medusae are similar to other young species ofPhialidium. Development to the adult form requires 25 to 30 days at 17° to 24°C. The adult medusae are 6 to 10 mm in diameter, watch-glass shaped, and have 20 to 28 tentacles. Based on the adult medusa,Clytia attenuata is maintained as a valid species.  相似文献   

5.
1.  Colonies of Pheidole dentata employ a complex strategy of colony defense against invading fire ants. Their responses can be conveniently divided into the following three phases: (1) at low stimulation, the minor workers recruit nestmates over considerable distances, after which the recruited major workers (soldiers) take over the main role of destroying the intruders; (2) when the fire ants invade in larger numbers, fewer trails are laid, and the Pheidole fight closer to the nest along a shorter perimeter; (3) when the invasion becomes still more intense, the Pheidole abscond with their brood and scatter outward in all directions (Figs. 1, 4).
2.  Recruitment is achieved by a trail pheromone emitted from the poison gland of the sting. Majors can distinguish trail-laying minors that have just contacted fire ants, apparently by transfer of the body odor, and they respond by following the trails with more looping, aggressive runs than is the case in recruitment to sugar water. Majors are superior in fighting to the minors and remain on the battleground longer.
3.  The first phase of defense, involving alarm-recruitment, is evoked most strongly by fire ants and other members of the genus Solenopsis; the presence of a single fire ant worker is often sufficient to produce a massive, prolonged response (Figs. 2, 5, 6). In tests with Solenopsis geminata, it was found that the Pheidole react both to the odor of the body surface and to the venom, provided either of these chemical cues are combined with movement. Fire ants, especially S. geminata, are among the major natural enemies of the Pheidole, and it is of advantage for the Pheidole colonies to strike hard and decisively when the first fire ant scouts are detected. Other ants of a wide array of species tested were mostly neutral or required a large number of workers to induce the response. The alarm-recruitment response is not used when foragers are disturbed by human hands or inanimate objects. When such intrusion results in a direct mechanical disturbance of the nest, simulating the attack of a vertebrate, both minor and major workers swarm out and attack without intervening recruitment.
  相似文献   

6.
Summary Larvae of Myrmeleon immaculatus in large pits captured both large and samll prey, while larvae in small pits captured only the small prey. Larvae in small pits did not respond to large ants, although they always responded by sand-flinging to small ants. Larvae in medium-sized pits often captured large ants only after prolonged and vigorous sand-flipping. Larvae in large pits usually captured large ants with relatively little sand-flipping. Pit enlargement and pit relocation in the laboratory were not significantly correlated with reduction of rations in the first 3 weeks after a pit was built. However, after a month without food, larvae on the average moved once every 10 days, built successively smaller pits, and moved longer distances before building a new pit. In the field pits were dug primarily in response to microclimatological factors and possibly edge-effects. The presence or absence of suitable prey at a site, per se, had no effect on whether or not a larva would dig a pit there. We conclude that these sit-and-wait predators have a relatively large repertoire of behavior that enhances their foraging success, and we contrast it with previously made optimal foraging models relating to pit locations, pit relocations, pit size and ant lion responses.  相似文献   

7.
Summary Ten species of Pheidole, representing as many species groups from various localities in North and South America, Asia, and Africa, were analyzed to probe for possible relationships between caste ratios and division of labor.Minor workers are behaviorally almost uniform among the species, but major workers vary in repertory from 4 to 19 behavioral acts (Table 1, Fig. 2). The major repertory size increases significantly across the species with the percentage of majors in the worker force (Fig. 3). This trend is consistent with the basic prediction of ergonomic optimization models under an assumption of colony-level selection. There is also a trend toward reduction of behavioral repertory with increase of size in the major relative to the minor, a second relation expected from theory, but the data are not sufficient to reach statistical significance.When the minor:major ratio was lowered to below 1:1 (from the usual 3:1 to 20:1, according to species), in three widely different species (guilelmimuelleri, megacephala, pubiventris), the repertory size increased by 1.4–4.5X and the rate of activity by 15–30X (Table 1, Figs. 4–6). The change occurred within 1 h of the ratio change and was reversed in comparably short time when the original ratio was restored.This abrupt and important shift in behavior permitted the major workers to serve as an emergency stand-by caste, available to be summoned to a nearly full repertory when the minor worker caste was depleted. The majors also restored 75% or more of the missing minor workers' activity rate under laboratory conditions. Their transformation allowed continued oviposition by the queen and the rearing of larvae to the adult stage.In line with these findings, a distinction is made between programmed elasticity in the repertory of individual workers and castes and the resiliency of the colony as a whole, which depends upon the pattern of caste-specific elasticity.  相似文献   

8.
Summary When deprived of minor workers under expermental conditions, major workers of the ant Pheidble pubiventris dramatically increase their repertory and rate of activity, and the change is due in good part to the greater attention they pay the brood. When minor workers are reinstated in appropriate numbers, the majors reduce their attention to the immature stages to the ordinary, low levels. Their response consists of the active avoidance of minors while in the vicinity of the immature stages. However, majors do not turn from other majors near the brood as much as they do from the minors, and they do not avoid minors at all while in other parts of the nest. In addition, minors do not avoid either minors or majors anywhere in the nest. The result is a striking division of labor with reference to brood care.  相似文献   

9.
Summary The queens of larger colonies of the primitive ant Amblyopone silvestrii are exclusively dependent on the hemolymph of their own larvae as a nutrient, even when prey feeding is possible. On the other hand, the foundresses suppress larval hemolymph feeding (LHF) when prey is available, allowing them to rear the first workers more swiftly. The nondestructive form of cannibalism can be regarded as a nutritive adaptation related to: (1) the lack of social food transfer in this species, and (2) its specialized predation on large sporadic prey (centipedes). LHF similar to that in Amblyopone was found in Proceratium and another type of LHF, with a larval specialized exudatory organ, in Leptanilla.  相似文献   

10.
11.
Summary. The African stink ants (Pachycondyla tarsata) lay recruitment trails with secretions from sternal glands. The glandular secretions consist of 10 compounds, 9 of which have been chemically identified. One of the substances, 9-heptadecanone, elicits trail following behavior in P. tarsata workers that have before been stimulated by a sucessful scout ant. Received 7 August 1998; accepted 24 November 1998.  相似文献   

12.
Ceratium tripos dominated a multi-species dinoflagellate patch in the sub-surface chlorophyll maximum in August 1978 on the Southern California shelf. The specific growth rate () ofC. tripos averaged 0.25 d-1. Patch length was about 45 km along the shelf. Several members of the subsurface dinoflagellate assemblage were also present in surface samples, but only during the daytime. These apparent vertical migrators includedProrocentrum micans, C. furca, Gonyaulax polyedra and other less common forms. The growth ofC. tripos in the California patch is compared with that in aC. tripos patch off New York in 1976.  相似文献   

13.
Summary Pheidole titanis Wheeler, an ant that occurs in desert and deciduous thorn forest in the southwestern United States and western Mexico, is a predator on termites. In the dry season well-coordinated raids against termite foraging parties occur early in the morning or late in the afternoon, whereas in the wet season most raids occur at night. This seasonal shift in the timing of raids is due to the increased activity of a fly (Diptera: Phoridae) that is a specialist parasitoid on P. titanis workers and soldiers. When parasitic flies discover P. titanis nest entrances or raiding columns, workers stop foraging and defend themselves against oviposition attacks. Flies are only active during the day and never interfere with foraging at night. However, P. titanis does not increase the frequency of raids at night and, as a result, colonies collect less food in the wet season compared to the dry season. Presence of parasitic flies also interferes with normal defense behavior of P. titanis against conspecific and heterospecific enemy ants. Dissections of P. titanis workers and soldiers suggest that the parasitism rate by flies is less than 2% and observations indicate that parasitic flies are much rarer than their host workers and soldiers. Nonetheless, these parasites exert a strong ecological impact on their host.  相似文献   

14.
Summary The contribution to maternity of workers and female sexuals over time by queens in six multiple-queen laboratory colonies of Solenopsis invicta was directly assessed by use of enzyme genetic markers. Queens contributed more equally to the worker pool than to the pool of sexuals in virtually all samples (Fig. 1), and individuals producing a substantial proportion of the workers often had low or no representation of their daughters in the pool of sexuals. Signficant disparity among queens in their relative production of sexual daughters was often evident, with dominance in production of sexuals by a given queen commonly occurring in association with a pronounced loss of weight followed shortly by her death. The results suggest that significant variability in short-as well as long-term reproductive success may occur among the distantly related queens associating in natural polygyne S. invicta nests. Variance in apportionment of maternity of sexuals did not appear to be simply related to varying levels of fecundity, suggesting that the common presumption that reproductive success can be equated with fecundity in polygyne social Hymenoptera may not be well founded. The observed variance also did not appear to result from a simple mechanism of kin recognition and discrimination by workers in the process of brood rearing. Rather, this variance may have largely resulted from either, 1) recognition of certain queens and their progeny coupled with preferential sexualization of these immatures by nurse workers, or, 2) queen biasing of eggs toward development as sexuals. The frequent association of weight loss and death of mother queens with high levels of sexual daughter production may be best explained by the latter mechanism.  相似文献   

15.
Summary. Leaf cutting ants live in symbiosis with a basidiomycete fungus that is exploited as a source of nutrients for the ant larvae. Tests of fungus transport demonstrated that Acromyrmex subterraneus subterraneus workers discriminate concolonial fungus from alien fungus, and rejected the latter. Larvae and pupae of the ant were used as controls. Chemical analysis of the fungus revealed a great similarity between its hydrocarbon profile and that found on the ant brood. Experiments with lures showed that chemical extracts from the fungus are responsible for this discrimination process. Moreover, the presence of brood inside the fungus seemed to be important for discrimination of the fungus by workers. Resident workers accepted concolonial broodless fungus less than concolonial fungus inoculated with brood odor. Fungus seems to acquire colonial odor passively, simply by contact with the brood. The impact of fungus volume present in the nest on closure of the colony is discussed. We show here for the first time the importance of a symbiotic vegetal organism in colonial recognition in social insects. Received 14 April 2000; accepted 29 September 2000  相似文献   

16.
Summary Two forms of the fire ant, Solenopsis invicta, occur in North America; the monogyne form has colonies with a single functional queen while the polygyne form has colonies containing many functional queens. Field surveys indicate that diploid males are common in natural populations of the polygyne form but absent from monogyne populations, in contrast to laboratory data showing that similar frequencies of queens producing such males occur in the two types of populations. Our results show that mature monogyne colonies with adopted queens rear diploid males in the laboratory, so it is unlikely that the absence of these males from monogyne colonies in the field is due to discrimination against them by monogyne workers. On the other hand, incipient monogyne colonies that produce diploid males exhibit significantly higher mortality and significantly slower rates of growth (Figs. 1–3) than colonies producing workers only. These results suggest that the observed distribution of male diploidy in S. invicta can be explained by differential mortality of diploid male producing colonies of the two forms, with such colonies of the monogyne form experiencing 100% mortality early in development. The mortality differences due to this factor are shown to be related to the different social structures and modes of colony founding characterizing the two forms.  相似文献   

17.
Reproductive phenologies reflect the interaction between the mating system of a taxon and the local environment. Ant colonies reproduce and disperse via the flights of winged alates. Few data exist on the reproductive phenologies of ant assemblages. Here we analyze the reproductive phenologies of 81 common ant species from 23,182 individuals collected over 3 years on Barro Colorado Island, Panama (BCI). Species ranged from highly synchronous to continuous fliers, but showed a median flight duration of at least 8 of 13 lunar months. In two statistical analyses (variance ratio test and Spearman rank correlations), 84% (16 of 19) of ant genera had species trending toward positively associated phenologies, more than expected by chance (P<0.00036 by a binomial test). Thus, there was little evidence for the hypothesis that competition for limiting resources staggers congeneric flights and ultimately promotes reproductive isolation. On the contrary, the timing of reproduction, and its synchrony, tended to be conserved within genera and subfamilies. These results closely match phenological studies of plant assemblages. The continuous reproduction and small colony size of many species in this study suggest that the female calling syndrome, a poorly documented mating system in ants, may be common on BCI.  相似文献   

18.
19.
Summary Food-sharing experiments were performed with laboratory colonies of Solenopsis invicta containing 1000, 10,000, or 20,000 workers and starved for 0, 3, 7, or 14 days. The effect of these variables was measured on the uptake of radioactive sugar water (1 M) by 1% of the colony's workers and on the trophallactic flow of food from these foragers to the remainder of the colony.Patterns of food distribution in small colonies differed significantly from those in larger nests. In 1000-ant nests, small workers more frequently received food than large workers, but in bigger colonies the opposite occurred.Fire ants were adept at distributing sugar water, with food from a few workers rapidly reaching the majority of the colony as foragers donate their crop contents to groups of recipients and these recipients may themselves act as donors.Foragers respond to colony starvation by individually taking up more food and sharing this fluid with a greater proportion of nestmates. Even foragers from satiated colonies can retrieve at least small amounts of liquid.The forager's state of hunger plays an important role in regulating food distribution. In sugar-satiated nests, previously starved foragers are highly successful at passing on labelled sugar whereas prviously fed foragers are not.  相似文献   

20.
Summary Production of the major subcaste and its contribution to nest survival in the dimorphic ant Colobopsis nipponicus was examined in the field. In this species, the first major workers were reared in the second brood, very early in the colony life cycle. A field experiment demonstrated that artificial colonies without major workers could not survive, whereas colonies with at least one major worker per nest entrance could. Because major workers of C. nipponicus defend the nest entrance by head plugging, the lack of nest defenders in the experimental colonies seemed to be a major cause of nest failure. The defensive value of major workers was much higher than that of minor workers. Many artificial colonies without major workers were displaced by competitors for nest sites, especially by those of other conspecific colonies. In addition, more than 90% of field colonies nested with other conspecific colonies on the same tree. The early production of major workers in C. nipponicus seemed to be very important for the survival of incipient colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号