首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of varying fuel properties on the emission of mutagenic materials was studied in diesel exhaust particles from a heavy duty engine run under transient speed and load conditions while using nine fuels varying in aromatics, sulfur and boiling point. Mutagenic activity of the soluble organic fraction (SOF) of the particulate was determined using the Ames Salmonella test system with strain TA98 with and without S9 activation. Increasing mutagenic activity relative to fuel consumed (mutants/lb fuel) or to engine work output (mutants/hp-h) was correlated with increasing fuel aromatics (p < 0.05), but not with fuel sulfur. Increased fuel sulfur levels were correlated with increased amounts of SOF but with decreasing mutagenic activity of the SOF (mutants/microgram SOF) (p < 0.05). As a result, mutants/hp-h were essentially the same for high- and low-sulfur fuels with high aromatics. No association was found between the fuels’ boiling points and the mutagenic activity of the SOF. Mutagenic activity with S9 was generally lower than without, but the correlations were not changed.  相似文献   

2.
Chin JY  Batterman SA 《Chemosphere》2012,86(9):951-958
The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (<10% ethanol), E85 (85% ethanol and 15% gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C9 to C16n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished.  相似文献   

3.
The effect of sulfur content on diesel particulate matter (DPM) emissions was studied using a diesel generator (Generac Model SD080, rated at 80 kW) as the emission source to simulate nonroad diesel emissions. A load simulator was used to apply loads to the generator at 0, 25, 50, and 75 kW, respectively. Three diesel fuels containing 500, 2100, and 3700 ppm sulfur by weight were selected as generator fuels. The U.S. Environmental Protection Agency sampling Method 5 "Determination of Particulate Matter Emissions from Stationary Sources" together with Method 1A "Sample and Velocity Traverses for Stationary Sources with Small Stacks or Ducts" was adopted as a reference method for measurement of the exhaust gas flow rate and DPM mass concentration. The effects of various parameters on DPM concentration have been studied, such as fuel sulfur contents, engine loads, and fuel usage rates. The increase of average DPM concentrations from 3.9 mg/Nm3 (n cubic meter) at 0 kW to 36.8 mg/Nm3 at 75 kW is strongly correlated with the increase of applied loads and sulfur content in the diesel fuel, whereas the fuel consumption rates are only a function of applied loads. An empirical correlation for estimating DPM concentration is obtained when fuel sulfur content and engine loads are known for these types of generators: Y = Zm(alphaX + beta), where Y is the DPM concentration, mg/m3, Z is the fuel sulfur content, ppm(w) (limited to 500-3700 ppm(w)), X is the applied load, kW, m is the constant, 0.407, alpha and beta are the numerical coefficients, 0.0118 +/- 0.0028 (95% confidence interval) and 0.4535 +/- 0.1288 (95% confidence interval), respectively.  相似文献   

4.
Air pollution caused by ship exhaust emission is receiving more and more attention. The physical and chemical properties of fuels, such as sulfur content and PAHs content, potentially had a significant influence on air pollutant emissions from inland vessels. In order to investigate the effects of fuel qualities on atmospheric pollutant emissions systematically, a series of experiments was conducted based on the method of actual ship testing. As a result, SO2, PM and NOx emission rates all increased with the increase of main engine rotating speed under cruise mode, while PM and NOx emission factors were inversely proportional to the main engine rotating speed. Moreover, SO2 emission factor changed little with the increase of the main engine rotating speed. In summary, the fuel-dependent specific emission of SO2 was a direct reflection of the sulfur content in fuel. The PM emission increased with the increase of sulfur content and PAHs content in fuel. However, fuel qualities impacted little on NOx emissions from inland vessels because of NOx formation mechanisms and conditions.

Implications: Ship activity is considered to be the third largest source of air pollution in China. In particular, air pollutants emitted from ships in river ports and waterways have a direct impact on regional air quality and pose threat on the health of local residents owing to high pollutants concentration and poor air diffusion. The study on the relationship between air pollutant emissions and fuel quality of inland vessels can provide foundational data for local authority to formulate reasonable and appropriate policies for reducing atmospheric pollution due to inland vessels.  相似文献   


5.
In the present work, the effect of ethanol addition to gasoline on regulated and unregulated emissions is studied. A 4-cylinder OPEL 1.6 L internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, 1,3-butadiene, toluene, acetic acid and ethanol. Addition of ethanol in the fuel up to 10% w/w had as a result an increase in the Reid vapour pressure of the fuel, which indicates indirectly increased evaporative emissions, while carbon monoxide tailpipe emissions were decreased. For ethanol-containing fuels, acetaldehyde emissions were appreciably increased (up to 100%), especially for fuel containing 3% w/w ethanol. In contrast, aromatics emissions were decreased by ethanol addition to gasoline. Methane and ethanol were the most resistant compounds to oxidation while ethylene was the most degradable compound over the catalyst. Ethylene, methane and acetaldehyde were the main compounds present at engine exhaust while methane, acetaldehyde and ethanol were the main compounds in tailpipe emissions for ethanol fuels after the catalyst operation.  相似文献   

6.
Diesel engines: environmental impact and control.   总被引:10,自引:0,他引:10  
The diesel engine is the most efficient prime mover commonly available today. Diesel engines move a large portion of the world's goods, power much of the world's equipment, and generate electricity more economically than any other device in their size range. But the diesel is one of the largest contributors to environmental pollution problems worldwide, and will remain so, with large increases expected in vehicle population and vehicle miles traveled (VMT) causing ever-increasing global emissions. Diesel emissions contribute to the development of cancer; cardiovascular and respiratory health effects; pollution of air, water, and soil; soiling; reductions in visibility; and global climate change. Where instituted, control programs have been effective in reducing diesel fleet emissions. Fuel changes, such as reduced sulfur and aromatics content, have resulted in immediate improvements across the entire diesel on- and off-road fleet, and promise more improvements with future control. In the United States, for example, 49-state (non-California) off-road diesel fuel sulfur content is 10 times higher than that of national on-road diesel fuel. Significantly reducing this sulfur content would reduce secondary particulate matter (PM) formation and allow the use of control technologies that have proven effective in the on-road arena. The use of essentially zero-sulfur fuels, such as natural gas, in heavy-duty applications is also expected to continue. Technology changes, such as engine modifications, exhaust gas recirculation, and catalytic aftertreatment, take longer to fully implement, due to slow fleet turnover. However, they eventually result in significant emission reductions and will be continued on an ever-widening basis in the United States and worldwide. New technologies, such as hybrids and fuel cells, show significant promise in reducing emissions from sources currently dominated by diesel use. Lastly, the turnover of trucks and especially off-road equipment is slow; pollution control agencies need to address existing emissions with in-use programs, such as exhaust trap retrofits and smoke inspections. Such a program is underway in California. These and other steps that can be continued and improved will allow the use of the diesel engine, with its superior fuel consumption, to continue to benefit society while greatly reducing its negative environmental and health impacts. The next ten years can and must become the "Decade of Clean Diesel."  相似文献   

7.
The effect of intake valve closure (IVC) timing by utilizing Miller cycle and start of injection (SOI) on particulate matter (PM), particle number, and nitrogen oxide (NOx) emissions was studied with a hydrotreated vegetable oil (HVO)-fueled nonroad diesel engine. HVO-fueled engine emissions, including aldehyde and polyaromatic hydrocarbon (PAH) emissions, were also compared with those emitted with fossil EN590 diesel fuel. At the engine standard settings, particle number and NOx emissions decreased at all the studied load points (50%, 75%, and 100%) when the fuel was changed from EN590 to HVO. Adjusting IVC timing enabled a substantial decrease in NOx emission and combined with SOI timing adjustment somewhat smaller decrease in both NOx and particle emissions at IVC??50 and??70 °CA points. The HVO fuel decreased PAH emissions mainly due to the absence of aromatics. Aldehyde emissions were lower with the HVO fuel with medium (50%) load. At higher loads (75% and 100%), aldehyde emissions were slightly higher with the HVO fuel. However, the aldehyde emission levels were quite low, so no clear conclusions on the effect of fuel can be made. Overall, the study indicates that paraffinic HVO fuels are suitable for emission reduction with valve and injection timing adjustment and thus provide possibilities for engine manufacturers to meet the strictening emission limits.

Implications: NOx and particle emissions are dominant emissions of diesel engines and vehicles. New, biobased paraffinic fuels and modern engine technologies have been reported to lower both of these emissions. In this study, even further reductions were achieved with engine valve adjustment combined with novel hydrotreated vegetable oil (HVO) diesel fuel. This study shows that new paraffinic fuels offer further possibilities to reduce engine exhaust emissions to meet the future emission limits.

Supplementary Materials: Supplementary materials are available for this paper. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for a complete list of analysed PAH compounds.  相似文献   

8.
Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min−1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NOx and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.  相似文献   

9.
Speciated hydrocarbon emissions data have been collected for six single-component fuels run in a laboratory pulse flame combustor (PFC). The six fuels include n-heptane, isooctane (2, 2, 4-trimethylpentane), cyclohexane, 1-hexene, toluene, and methyl-t-butyl ether (MTBE: an oxygenated fuel extender). Combustion of non-aromatic fuels in the PFC (at a fuel/air equivalence ratio of Φ = 1.02) produced low levels of unburned fuel and high yields of methane and olefins (> 75 percent combined) irrespective of the molecular structure of the fuel. In contrast, hydrocarbon emissions from toluene combustion in the PFC were comprised predominantly of unburned fuel (72 percent). With the PFC, low levels of 1, 3-butadiene (0.3-1.8 percent) were observed from all the fuels except MTBE, for which no measurable level (<0.2 percent) was detected; low levels of benzene were observed from isooctane, heptane, and 1-hexene, but significant levels (9 percent) from cyclohexane and toluene. No measurable amount of benzene (< 0.2 percent) was observed in the MTBE exhaust.

For isooctane and toluene the speciated hydrocarbon emissions from a spark-ignited (SI) single-cylinder engine were also determined. HC emissions from the SI engine contained the same species as observed from the PFC, although the relative composition was different. For the non-aromatic fuel isooctane, unburned fuel represented a larger fraction (50 percent) of the HC emissions when run in the engine. HC emissions from toluene combustion in the engine were similar to those from the PFC.  相似文献   

10.
To explore the effect of biodiesel and sulfur content on PM2.5 emissions, engine dynamometer tests were performed on a Euro II engine to compare the PM2.5 emissions from four fuels: two petroleum diesel fuels with sulfur contents of 50 and 100 ppm respectively, and two B20 fuels in which soy methyl ester (SME) biodiesel was added to each of the above mentioned petroleum diesel fuels (v/v: 80%/20% for petroleum diesel and SME respectively). Gaseous pollutants and PM2.5 emissions were sampled with an AVL AMA4000 and Model 130 High-Flow Impactor (MSP Corp). Measurements were made of the PM2.5 mass, organic carbon (OC), elemental carbon (EC) and the water-soluble ion distribution. The results showed that PM2.5 emissions decreased with lower sulfur content or blending with SME biodiesel, and the decrease would be more by applying both two methods together. Particles of approximately 0.13 μm contributed 48–83% of PM2.5 emissions. The impact of sulfur content on this percentage was different for low and high engine speed. The majority of PM2.5 was comprised of OC and EC, and the carbon emission rate had the same trend as PM2.5. Since the EC abatement of B20 was larger than OC, the OC/EC ratio of B20 was always larger than that of petroleum diesel. For petroleum diesel, the OC/EC increased with sulfur content, which was not the case for B20. The SO42? had highest emission rate in the water-soluble ions of PM.  相似文献   

11.
Sidhu S  Graham J  Striebich R 《Chemosphere》2001,42(5-7):681-690
Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels.  相似文献   

12.
Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.  相似文献   

13.
Modelling of soot and SOF emissions from a typical European turbocharged diesel engine has been made. The model consists of a detailed kinetic mechanism with 472 reactions (120 chemical species) and data from the thermodynamic diagnostic procedure of the combustion process of the engine. The forward kinetic constants were obtained from literature and the background constants from a self-developed non-linear fitting routine based on the Marquardt algorithm. The dilution and mixing processes inside the engine are represented by a simple Wiebe function. The system of ordinary differential equations is solved with the Rosenbrock method for rigid systems and using the interpolating Lagrange polynomials to calculate the heat capacity of each species at the corresponding temperature. The kinetic model has been implemented in Digital Visual Fortran 6.0. The model has been executed for five different fuels and three mixtures of biodiesel and reference diesel operating under three diverse conditions from the European transient urban/extraurban Certification Cycle and the results of soot and SOF predicted are compared with experimental data.  相似文献   

14.
The objective of this study was to characterize exhaust emissions from a series of handheld, 2-stroke small engines. A total of 23 new and used engines from model years 1981–2003 were studied; these engines spanned three phases of emission control (pre-control, phase-1, phase-2). Measured emissions included carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), hydrocarbons (HC), fine particulate matter (PM2.5), and sulfur dioxide (SO2). Emissions reductions in CO (78%) and HC (52%) were significant between pre-control and phase-2 engines. These reductions can be attributed to improvements in engine design, reduced scavenging losses, and implementation of catalytic exhaust control. Total hydrocarbon emissions were strongly correlated with fuel consumption rates, indicating varying degrees of scavenging losses during the intake/exhaust stroke. The use of a reformulated gasoline containing 10% ethanol resulted in a 15% decrease in HC and a 29% decrease in CO emissions, on average. Increasing oil content of 2-stroke engine fuels results in a substantial increase of PM2.5 emissions as well as smaller increases in HC and CO emissions. Results from this study enhance existing emission inventories and appear to validate predicted improvements to ambient air quality through implementation of new phase-2 handheld emission standards.  相似文献   

15.
Exhaust emissions of seventeen 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin/furan (PCDD/F) congeners, tetra-octa PCDD/F homologues, 12 WHO 2005 polychlorinated biphenyl (PCB) congeners, mono-nona chlorinated biphenyl homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from three legacy diesel engines were investigated. The three engines tested were a 1985 model year GM 6.2 J-series engine, a 1987 model year Detroit Diesel Corporation 6V92 engine, and a 1993 model year Cummins L10 engine. Results were compared to United States’ mobile source inventory for on-road diesel engines, as well as historic and modern diesel engine emission values. The test fuel contained chlorine at 9.8 ppm which is 1.5 orders of magnitude above what is found in current diesel fuel and 3900 ppm sulfur to simulate fuels that would have been available when these engines were produced. Results indicate PCDD/F emissions of 13.1, 7.1, and 13.6 pg International Toxic Equivalency (I-TEQ) L−1 fuel consumed for the three engines respectively, where non-detects are equal to zero. This compares with a United States’ mobile source on-road diesel engine inventory value of 946 pg I-TEQ L−1 fuel consumed and 1.28 pg I-TEQ L−1 fuel consumed for modern engines equipped with a catalyzed diesel particle filter and urea selective catalytic reduction. PCB emissions are 2 orders of magnitude greater than modern diesel engines. PAH results are representative of engines from this era based on historical values and are 3-4 orders of magnitude greater than modern diesel engines.  相似文献   

16.
Solid particulate matter, mainly carbon, emitted into the air from the combustion of fossil fuels contains a variety of organic species adsorbed on it. In our examination of these particulates from the combustion of kerosene type fuels in a gas turbine engine, attention was focused on polynuclear aromatic compounds, phenols, nitrosamines, and total organics. Polynuclears were determined by HPLC, GC/MS, and NMR examination. Phenols and nitrosamines were isolated and then measured by gas chromatography using a flame ionization detector and nitrogen detector. Total organics were determined by a backflush chromatographic procedure. The particulates were collected using a high capacity pumping system and 293 mm diameter teflon filters through which was passed up to 43 m3 of exhaust gas. Extraction of the organic matter was done in a Soxhlet extractor using hexane usually. The engine was operated at idle, approach, climb, and takeoff power settings with low sulfur and high sulfur (0.25%) fuels. Most of the PAH were small 3 and 4 fused ring compounds with very few, at low concentrations, of 5 and 6 fused ring species. No nitrosamines were found and except in a few cases, at low levels, no phenols. PNA and total organic levels decreased with increase in a power setting and were higher in the exhaust from low sulfur fuels. Less than 1% of the organic matter emitted by the engine was absorbed on the particulate matter. The body of information presented in the paper is directed to individuals concerned with the nature of emissions from gas turbine engines. The work was supported by a contract with the Environmental Protection Agency.  相似文献   

17.
ABSTRACT

Emissions levels from current gasoline spark-ignited engines are low, and emissions changes associated with the blending of ethanol into gasoline are small and difficult to quantify. Addition of ethanol, with a high blending octane number, allows a reduction in aromatics in market gasoline. Blending behavior of ethanol is nonlinear, altering the distillation curve, including the 50% temperature point, T50. Increase in gasoline direct injection (GDI) engine technology in the fleet challenges ability of older models based on port fuel injection (PFI) results to predict the overall air quality impact of ethanol blending. Five different models derived from data collected through U.S. Environmental Protection Agency Energy Policy Act (EPAct) programs were used to predict LA92 Phase 1 particulate matter (PM) emissions for summer regular (SR) E0 (gasoline with 0% ethanol by volume), E10 (gasoline with 10% ethanol) and E15 (gasoline with 15% ethanol). Substantial reductions of PM for E10 and E15 relative to E0 were predicted when aromatics were displaced by ethanol to maintain octane rating. SR E0 and E10 were also matched to linear combinations of EPAct fuels and results showed a 35% PM reduction for SR E10 relative to SR E0. For GDI vehicles the Coordinating Research Council (CRC) E-94-3 study found that E10 had 23% or 29% PM increase. However, CRC E-129 found an E10 PM reduction of 10% when one E0 fuel and its splash blended (SB) E10 were compared. Both CRC project E-129 SB data and fuel triplets selected from the EPAct study showed variation for E15 emissions, although E-129 suggests that E15 in GDI offers about a 25% reduction of PM with respect to E0. Overall, data suggest that ethanol blending offers a modest to a substantial reduction of cold-start PM mass if aromatic levels of the finished products are reduced in response to ethanol addition.

Implications: Studies of exhaust emissions effects of ethanol blending with gasoline vary in conclusions. Blending properties are nonlinear. Modeling of real-world emissions effects must consider all fuel composition adjustments and property changes associated with ethanol addition. Aromatics are reduced in E10 or E15, compared with E0, and distillation changes. PFI-derived models show reductions in cold-start PM for expected average E10 versus E0 pump fuel, due to reduced aromatic content. Relative emissions effects from older technology (PFI) engines do not predict newer engine (GDI) results reliably, but recent GDI data show reduced cold-start PM when ethanol displaces aromatics.  相似文献   

18.
Bottom sediment and suspended sediment samples from Hamilton Harbour (western Lake Ontario) and from a major tributary were profiled using a bioassay-directed fractionation approach. Sample extracts were fractionated using an alumina/Sephadex gel clean-up procedure to afford non-polar aromatic fractions which were characterized using chemical analyses and the Ames/microsome bacterial assay in Salmonella typhimurium strains YG1025 with the addition of oxidative metabolism (S9), and YG1024 without S9. Non-polar aromatic fractions of selected samples were separated by normal phase HPLC into 1-min fractions which were subjected to bioassay analyses. The bioassays using strain YG1025+S9, a TA100-type strain, were performed to assess genotoxicity arising from the presence of polycyclic aromatic hydrocarbons (PAH). Fractions which exhibited mutagenic activity contained PAH with molecular masses of 252, 276 and 278 amu; these fractions contained over 80% of the genotoxicity attributable to PAH. Individual compounds identified using Gas Chromatography-Mass Spectrometry analyses in these active fractions included benzo[a]pyrene, indeno[cd]pyrene and dibenz[a,h]anthracene. The YG1025+S9 mutagenic activity profiles were similar for all samples. Mutagenic activity profiles generated using strain YG1024-S9, a TA98-type strain sensitive to compounds characteristic of mobile source emissions, were very different. The mutagenic activities in strain YG1024-S9 were greatest for harbour-suspended sediment samples collected from sites impacted by a major tributary. Suspended sediments collected near areas known to contain high levels of coal tar-contamination in the bottom sediments contained higher levels of genotoxic PAH than suspended sediments collected from other areas of the harbour.  相似文献   

19.
The body of information presented in this paper is directed towards engineers in the field of environmental sciences involved in measuring and/or evaluating the emissions from a variety of diesel engines or vehicles. This paper summarizes recent data obtained by EPA on identification and quantification of different emissions (i.e. characterization) from a variety of diesel engines.

Extensive work has been done comparing emissions from some light duty diesel and gasoline passenger cars. The work on the diesel vehicles was expanded to include tests with five different diesel fuels to determine how fuel composition affects emissions. This work showed that use of a poorer quality fuel frequently made emissions worse. The investigation of fuel composition continued with a project in which specific fuel parameters were systematically varied to determine their effect on emissions. EPA is presently testing a variety of fuels derived from coal and oil shale to determine their effects on emissions.

EPA has also tested a heavy duty Volvo diesel bus engine designed to run on methanol and diesel fuel, each injected through its own injection system. The use of the dual fuel resulted in a reduction in particulates and NO x but an increase in HC and CO compared to a baseline Volvo diesel engine running on pure diesel fuel.

Finally, some Ames bioassay tests have been performed on samples from the diesel passenger cars operated on various fuels and blends. An increase in Ames test response (mutagenicity) was seen when the higher aromatic blend was used and also when a commercial cetane improver was used. Samples from the Volvo diesel bus engine fueled with methanol and diesel fuel showed that use of a catalyst increased the Ames response.  相似文献   

20.
Abstract

Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L?1, respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L?1, respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号