首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 622 毫秒
1.
沸石改性及其去除水中氨氮的实验研究   总被引:13,自引:4,他引:9  
通过实验研究了沸石改性条件及其对水中氨氮吸附去除的影响。结果表明,加热改性与无机酸改性不能显著提高沸石对氨氮的吸附量。利用NaOH改性的最佳浓度为1 mol/L,此条件下对氨氮吸附量可提高到650.68 mg/kg,为天然沸石的2.82倍。利用无机盐改性时,对氨氮吸附效果最好的是NaCl改性沸石,其次为KCl改性沸石与CaCl2改性沸石。随着NaCl溶液浓度和改性时间的增加,改性沸石对氨氮的吸附量显著增加,可达天然沸石的3~4倍;在NaCl浓度为150 g/L与改性时间为18 h条件下,改性沸石对氨氮吸附量可达887.35 mg/kg,为天然沸石的3.84倍。  相似文献   

2.
海水改性沸石处理氨氮废水   总被引:1,自引:1,他引:0  
沸石因具有独特的架状结构而表现出良好的选择吸附和离子交换性能,在废水处理中被广泛应用,但吸附容量偏低,需要进行改性。针对天然沸石的局限性,研究了不同改性方法对氨氮吸附的影响,确定了最佳的沸石改性方法,并进行了吸附等温模型,吸附动力学研究。结果表明,采用高温300℃焙烧后再用预处理后的海水浸泡24 h改性沸石去除氨氮效果最佳。当活化沸石投配量为10 g/L,接触时间为150 min,进水氨氮浓度为37.91 mg/L时,沸石对氨氮吸附容量为4.08 mg/g,氨氮去除率为90.45%;沸石及改性沸石对氨氮的吸附等温线符合Langmuir方程和准一级动力学方程。用海水来改性沸石的方法,不仅可提高沸石对氨氮的吸附容量和吸附速度,而且无任何添加药剂,具有简单易行、费用低廉的优点,为沸石在水处理工程中的应用提供技术支撑。  相似文献   

3.
天然沸石同步去除水中氨氮和磷酸盐   总被引:1,自引:0,他引:1  
通过静态吸附实验考察了浙江缙云产天然沸石对溶液中氨氮和磷酸盐的同步去除能力及机制,结果表明,天然沸石对溶液中氨氮的吸附过程较好地满足拟二级动力学模型、Langmuir和Dubinin-Radushkevich等温吸附模型。天然沸石对磷酸盐的去除能力随溶液中初始氨氮浓度的增加而增加。当溶液pH由7.0增加到9.0时,天然沸石对氨氮的吸附能力随之增加,而当pH由9.0增加到10时,天然沸石对氨氮的吸附能力则下降。当溶液pH低于7.5时,天然沸石对溶液中的磷酸盐无去除能力,当溶液pH位于7.5~9.0时,天然沸石对磷酸盐的去除能力随pH的增加急剧增加,当溶液pH大于9.0时,天然沸石对磷酸盐的去除能力随pH的增加则呈下降趋势。天然沸石对溶液中氨氮和磷酸盐的同步去除过程是自发进行、吸热及熵增加的过程。天然沸石对溶液中氨氮的吸附机制为离子交换,对磷酸盐的去除机制则为化学沉淀作用。  相似文献   

4.
CPB改性沸石对磷酸盐的吸附-解吸性能研究   总被引:2,自引:1,他引:1  
采用溴化十六烷基吡啶(CPB)对天然沸石进行改性,并考察了CPB改性沸石对磷酸盐的吸附-解吸性能。结果表明,CPB改性沸石对磷酸盐具备一定的吸附能力,且吸附行为满足Langmuir等温吸附模型;粒径、改性剂投加量、反应温度、pH值及共存阴离子等因素均会影响CPB改性沸石对磷酸盐的吸附能力;减小粒径和降低反应温度均有利于CPB改性沸石对磷酸盐的吸附去除;粒径≤0.18 mm CPB改性沸石吸附磷酸盐较优的改性剂投加量为250 mmol/kg;当溶液的初始pH值位于4~10之间时CPB改性沸石对磷酸盐的吸附能力随pH值的增加而增强;SO42-的存在会明显降低CPB改性沸石对磷酸盐的吸附效率,而提高溶液的pH值有助于消除SO42-存在对CPB改性沸石吸附磷酸盐的负面影响;HCO3-的存在会一定程度上抑制CPB改性沸石对磷酸盐的吸附去除,而提高溶液的pH值无法消除HCO3-存在对CPB改性沸石吸附磷酸盐的负面影响;CPB改性沸石吸附磷酸盐后一定条件下可以重新解吸出来,且随着解吸液SO42-浓度的增加解吸率明显增大。  相似文献   

5.
沸石联合微生物固定化去除微污染水体中氨氮的研究   总被引:5,自引:0,他引:5  
将沸石联合经过驯化的活性污泥微生物固定化,通过静态实验.考察了不同粒径沸石及不同组分固定化方法对沸石联合微生物固定化去除氨氮的影响;通过动态实验,考察了沸石联合微生物固定化去除微污染水体中低浓度氨氮的机制.结果表明,活性污泥经过16 d的驯化,氨氮去除率为90%以上;沸石吸附氨氮为快速吸附,粒径<0.5 mm的沸石的吸附容量明显大于其他粒径的沸石;不同组分固定化小球对氨氮的去除效率不同,各组分均有贡献,吸附容量依次为:沸石固定化小球>沸石联合微生物固定化小球>微生物固定化小球;沸石联合微生物固定化去除微污染水体中低浓度氨氮可分为4个阶段,即沸石吸附阶段、吸附饱和及微生物适应阶段、硝化作用明显加强和沸石部分再生阶段、微生物作用良好和沸石进一步再生阶段,最终沸石吸附与生物再生处于良好的动态平衡中,氨氮去除率达到60%左右.  相似文献   

6.
钙型天然斜发沸石去除猪场废水中营养物的实验研究   总被引:1,自引:1,他引:1  
以钙型天然斜发沸石为实验材料,研究反应时间、沸石投加量、pH值、有机物浓度等因素对去除实际猪场废水中氨氮、磷和COD效果的影响。研究表明,钙型天然斜发沸石对实际猪场废水的处理效果良好,在沸石投加量为250 g/L、pH值为8.0~9.0、反应时间为24 h的条件下,钙型天然斜发沸石对氨氮、磷和COD的去除率分别达到96%、97%和84%。pH值对钙型天然斜发沸石氨氮去除效果影响不大,但对磷和COD的去除效果影响较显著;当pH值由6.0升高至7.0时,磷的去除率由63%迅速升高至93%,pH值为8.0以上时,去除率接近95%;随pH值的升高,COD的去除率先升高后降低,在pH值为8.0时,去除率达到最大,为84%。废水COD浓度对氨氮去除率的影响基本可忽略,但对磷的去除有轻微的抑制作用。采用固定滤柱过滤时,水力负荷控制在375 mL/h以下,氨氮、磷和COD的去除效果较好。  相似文献   

7.
NaCl改性沸石对氨氮吸附性能的研究   总被引:3,自引:0,他引:3  
采用NaCl溶液对天然沸石进行改性,考察了NaCl浓度、温度及沸石用量对改性效果的影响。通过表面特征分析、吸附机制分析、吸附等温试验和吸附动力学试验,进一步比较了天然沸石和改性沸石对氨氮的吸附性能。结果表明,在NaCl溶液为6%(质量分数)、温度为303 K、天然沸石用量为15 g(以100 mL的NaCl溶液计)的优化条件下,改性沸石对氨氮的吸附效果最佳。扫描电子显微镜(SEM)和比表面积(BET)分析可知,沸石经改性后表面变粗糙,平均吸附孔径变小,比表面积变大。2种沸石对氨氮的吸附过程均可用Langmuir、Freundlich吸附等温方程较好地拟合,在温度为303 K时,改性沸石比天然沸石单分子层饱和吸附量增幅为34%以上。颗粒内扩散是沸石吸附氨氮的限制性因素,其吸附动力学较符合准二级反应动力学方程,拟合结果表明改性沸石具有更好的动力学性能,其吸附速率常数略大于天然沸石。  相似文献   

8.
改性沸石吸附低浓度氨氮废水及其脱附的研究   总被引:4,自引:2,他引:2  
采用氯化钠溶液对浙江某地天然沸石改性,以低浓度氨氮废水为处理对象,比较了天然沸石和改性沸石的吸附等温线、吸附动力学和动态吸附,并进行了改性沸石的动态脱附研究.结果表明,沸石的平衡吸附量随着平衡浓度的增大而增大;Freundlich方程比Langmuir方程更好地描述沸石吸附低浓度氨氮废水的行为,改性沸石比天然沸石具有更...  相似文献   

9.
改性沸石对二级生化出水中氨氮的吸附特性   总被引:1,自引:0,他引:1  
采用氯化钠联合高温对天然斜发沸石进行改性,通过批次实验探究改性沸石吸附氨氮特性。结果表明:氯化钠浓度为0.8 mol·L~(-1),焙烧温度为300℃条件下,氨氮去除效果最佳;改性沸石在氨氮初始浓度为8mg·L~(-1),投加量为10 g·L~(-1),反应时间为120 min的条件下,去除率可达71%,相比天然沸石提高23.1%。通过扫描电镜(SEM)、X射线能谱(EDS)、比表面积(BET)、X射线衍射(XRD)和傅里叶光谱(FT-IR)考察改性前后沸石组成特征以及化学键的变化,可以看出,改性机制可去除孔道杂质及Na~+置换沸石中金属阳离子;氨氮吸附过程满足拟二级动力学方程(R~2=0.986),Langmuir等温线模型拟合结果 (R~2=0.998)优于Freundlich模型(R~2=0.839),且改性沸石最大吸附容量为5.94 mg·L~(-1)。热力学计算结果表明,沸石对氨氮的吸附过程是一个自发、吸热、熵增过程。上述结果表明,改性沸石能够有效地对污水厂二级生化出水中氨氮进行深度处理。  相似文献   

10.
沸石负载高锰酸钾去除低浓度氨氮   总被引:1,自引:0,他引:1  
通过静态吸附实验,考察了辽宁锦州某天然沸石负载高锰酸钾(下称复合沸石)对水中氨氮的去除效能。结果表明,复合沸石对氨氮的吸附能力较天然沸石有所降低,但仍保持优惠吸附。复合沸石对氨氮的吸附过程较好地满足Fruendlich等温吸附模型,其动力学特性与准二级动力学方程拟合度高。pH对复合沸石吸附氨氮的影响显著,最适pH为中性条件,在酸性或碱性条件下,复合沸石对氨氮的吸附能力均较低,这与氨氮在不同pH溶液中存在的形式有关。  相似文献   

11.
Bench-scale packed zeolite columns were set up and operated to investigate the continuous removal of ammonium ions from compost leachate. The effects of hydraulic retention time (HRT), and particle size of the zeolite on the ammonia adsorption capacity were studied. For both the coarse particle and the powdered zeolite columns, higher ammonia removal efficiencies were achieved with longer HRT (i.e., lower influent flow rate) tests. At the same HRT, ammonia removal efficiencies from tests with powdered zeolite were generally 20% higher than tests with the coarse particle zeolite. A HRT of 6 hours was found appropriate for efficient ammonia removal, and an operating capacity of 1.31 mg N/g zeolite was obtained. Over 98% of the ammonia input from the influent was consistently removed for over 5 bed volumes (BV) of compost leachate flowing through the zeolite column. Zeolite proved to have a great potential as a medium for ammonia removal in treating composting leachate.  相似文献   

12.
Bench-scale packed zeolite columns were set up and operated to investigate the continuous removal of ammonium ions from compost leachate. The effects of hydraulic retention time (HRT), and particle size of the zeolite on the ammonia adsorption capacity were studied. For both the coarse particle and the powdered zeolite columns, higher ammonia removal efficiencies were achieved with longer HRT (i.e., lower influent flow rate) tests. At the same HRT, ammonia removal efficiencies from tests with powdered zeolite were generally 20% higher than tests with the coarse particle zeolite. A HRT of 6 hours was found appropriate for efficient ammonia removal, and an operating capacity of 1.31 mg N/g zeolite was obtained. Over 98% of the ammonia input from the influent was consistently removed for over 5 bed volumes (BV) of compost leachate flowing through the zeolite column. Zeolite proved to have a great potential as a medium for ammonia removal in treating composting leachate.  相似文献   

13.
为同步实现吸附脱氨和微尺寸沸石回收,将沸石与动态膜技术耦合联用,构建了一种复合沸石-动态膜系统,并考察其脱氨和沸石回收效果。在初始氨氮质量浓度为10 mg·L−1条件下,投加10 g·L−1沸石可有效实现氨氮的去除,去除率为67%。吸附动力学和等温模型分析结果表明,该过程符合准二级动力学模型,Langmuir吸附等温模型拟合得到的最大氨氮吸附量为4.12 mg·g −1。按照1:1的质量比投加沸石与硅藻土,在投加量均为1 g·L−1,流量为40 mL·min−1,支撑膜孔径38 μm下可快速形成动态膜,出水浊度稳定在1 NTU以下,氨氮去除率可达到56%,在脱氨的同时能够实现沸石的有效回收。该研究结果可为复合沸石动态膜系统同步吸附脱氨和吸附材料回收提供参考。  相似文献   

14.
天然沸石处理富营养化水的生物基作用研究   总被引:7,自引:1,他引:6  
采用实验室模拟封闭池塘水体的方法研究了天然沸石处理富营养化水的机理与方法,采用电镜等手段观察和研究了沸石生物膜的形态。结果表明,天然沸石是一种良好的生物基材料,具备生物膜功能的沸石对富营养化池塘水中的NH3-N和COD能保持长效和稳定的去除作用,两者的去除率分别为85%~88%和64%~73%。对磷的去除以吸附为主,去除率可达27%,吸附饱和后沸石失去除磷效果。天然沸石的吸附、离子交换和生物作用,能形成一个完整和谐的吸收消化系统,使天然沸石始终处于吸附未饱和状态,是沸石去除NH3-N和COD的重要机理。天然沸石来源广泛,价格不高,在富营养化池塘水净化中,具有效果持久、无二次污染和不影响水体景观的特点,在提高和改善水质的同时,对增强水生态系统的自净能力有利,是一种安全和纯生态的处理方法。  相似文献   

15.
张芙蓉  雷行  常冰  刘婷  吴鹍 《环境工程学报》2017,11(4):2163-2169
采用氧化还原-共沉淀法将铝锰复合氧化物负载到沸石表面制成颗粒型吸附材料,探究了该吸附剂同步去除氨氮(NH4+-N)和磷(P)的吸附动力学和吸附等温线特征,并讨论了吸附剂投加量和溶液pH值对吸附效果的影响。结果表明:铝锰复合氧化物改性沸石(aluminum-manganese bimetal oxide coated zeolite,AMOCZ)对NH4+-N及P的吸附动力学曲线均符合拟二阶吸附动力学方程的特征;NH4+-N的吸附等温线数据可用Freundlich方程进行较好地拟合,而Langmuir方程更适用于描述P的吸附等温线特征。NH4+-N和P共存时,两者在AMOCZ表面的饱和吸附量分别从单独体系下的1.24和6.43 mg·g-1变为8.17和6.51 mg·g-1。这说明P的存在可显著促进AMOCZ对NH4+-N的吸附,而NH4+-N的存在对P的吸附无显著影响。此外,复合污染条件下,P的存在在pH=3~10范围内均能促进AMOCZ对NH4+-N的吸附;NH4+-N在pH为3~8时对P的吸附起促进作用,pH大于8时则会抑制AMOCZ对P的吸附。  相似文献   

16.
以天然沸石为吸附剂进行吸附海水中氨氮实验研究,考察了沸石粒径、反应液pH值和盐度对吸附效果的影响,对吸附动力学和热力学特性进行了探讨。实验结果表明,天然沸石粒径越小,越有利于其对海水中氨氮的吸附,反应液pH值对氨氮吸附影响较小,但在碱性条件下NH4+能够与海水中的Mg2+、PO43-反应生成MgNH4PO4·6H2O沉淀,导致反应液氨氮平衡浓度降低。随着海水盐度梯度增加,天然沸石对氨氮的吸附量呈显著下降趋势。天然沸石对海水中氨氮的吸附是快速吸附、缓慢平衡的过程,吸附过程较好地满足准二级动力学模型。吸附等温线更好地符合Langmuir等温吸附方程,通过热力学计算发现,△G0为负值,而△H0和△S0均为正值,说明天然沸石对海水中氨氮的吸附是吸热易发过程。  相似文献   

17.
城市面源污染是重要水体污染源之一,降雨发生时,雨水径流会携带累积在路面、屋面的含有机物、氮磷、重金属等污染物质进入水体,其中氮磷是造成水体富营养化的重要因素。针对这一情况,采用不同种类沸石,对雨水径流中的氮磷进行了吸附研究,着重考察了沸石对氨氮的吸附动力学,吸附等温线特征,并考察了pH、共存阳离子以及COD对吸附能力的影响。结果表明,Na型改性沸石吸附性能优于其他2种,饱和吸附量达到9.09 mg/g,沸石的吸附过程符合准二级动力学模型。Mg2+、Ca2+对Na型改性沸石的影响较大,Na型改性沸石吸附氨氮的适宜pH为5~8。本研究为探索用物化方法来处理雨水提供了依据,Na型改性沸石可以作为吸附雨水中氨氮的优选吸附剂。  相似文献   

18.
沸石曝气生物滤池预处理微污染水源水中氨氮的研究   总被引:2,自引:0,他引:2  
利用沸石曝气生物滤池预处理微污染水源水中的氨氮,研究了沸石的静态吸附性能以及不同运行参数对处理效果的影响.结果表明:(1)沸石具有快速吸附,缓慢平衡的特点.采用氨氮质量浓度为5.00 mg/L的使用溶液进行静态吸附实验,当吸附时间为30 min时,氨氮质量浓度为0.66 mg/L,去除率为86.8%,之后氨氮浓度和去除率基本保持不变.(2)水力负荷对氨氮的去除率影响不大,随着水力负荷的升高,氨氮去除率总体呈小幅度下降趋势.当水力负荷由0.4 m~3/(m~2·h)提高到1.3m~3/(m~2·h)时,氨氮平均去除率降低了13.2%.(3)在实验范围内,随着气水比的增大,氨氮平均去除率略有上升.当气水比为0.5(体积比,下同)、1.0、1.5时,氨氮平均去除率分别为81.8%、85.3%、86.7%.(4)氨氮去除主要发生在填料层200~600 mm处,600mm处的氨氮去除率已经达到89.7%,占总去除率的96.9%,而600 mm处后的氨氮浓度趋于平缓,去除率变化很小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号