首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dietary-induced responses in the phagotrophic flagellate Oxyrrhis marina   总被引:1,自引:0,他引:1  
Primary producers may be limited by different nutrients as well as by light availability, which in turn affects their quality as food for higher trophic levels. Typically, algae with high C:N and/or C:P ratios are low-quality food for consumers. Heterotrophic protists are important grazers on these autotrophes, but despite their importance as grazers, knowledge of food quality effects on heterotrophic protists is sparse. In the present study, we examined how differently grown Rhodomonas salina (nutrient replete, N-limited and P-limited) affected the phagotrophic flagellate Oxyrrhis marina. The functional response of O. marina (based on ingested biovolume) did not show significant differences between food sources, thus food uptake was independent of food quality. O. marina was weakly homoeostatic which means that its C:N:P ratio still reflected the elemental composition of its food to some extent. Food quality had a significantly negative effect on the numerical response of O. marina. Whereas N-limited R. salina and nutrient replete R. salina resulted in similar growth rates, P-limited algae had a significantly negative effect on the specific growth rate of O. marina. Hence, the lack of elemental phosphorus of O. marina feeding on P-limited algae caused a reduction in growth. Thus, despite their weaker homoeostasis, heterotrophic protists are also affected by high C:P food in a similar way to crustacean zooplankton.  相似文献   

2.
 Protozoa are known for their intermediary trophic role in transferring organic matter from small size planktonic particles to mesozooplankton. This study concentrates on the possible addition of biochemical value during this transfer, by new production of compounds that are essential in copepod food. In laboratory experiments, copepods could not be raised on a diet of the chlorophycean Dunaliella sp., though they readily consumed this alga. Dunaliella sp. contained all essential amino acids, but was deficient in highly unsaturated fatty acids and in sterols. In contrast to copepods, the heterotrophic dinoflagellate Oxyrrhis marina grew well on Dunaliella sp., producing significant amounts of the long-chain fatty acids docosahexaenoic acid and eicosapentaenoic acid, in addition to cholesterol and brassicasterol. Using this O. marina grown on Dunaliella sp. to feed Temora longicornis and Pseudocalanus elongatus, both copepod species rapidly developed from young nauplius larvae to maturity on the dinoflagellate diet. Hence, in this experimental food-chain the inadequate chlorophycean food was biochemically upgraded by the protozoan to high-quality copepod food. The results indicate that highly unsaturated fatty acids and/or sterols are essential compounds, which can be produced by protozoans. Due to their intermediate size, the mechanism of trophic upgrading by protozoans may bridge the gap of essential nutrients between the microbial loop and higher trophic levels. Received: 11 January 1999 / Accepted: 3 June 1999  相似文献   

3.
Batch culture experiments were performed to investigate potential effects of nutrient starvation on the allelochemical potency of the toxic dinoflagellate Alexandrium tamarense. Triplicate cultures with reduced nitrate (−N) or phosphate (−P) seed were compared to nutrient-replete (+N+P) cultures. Total depletion of the dissolved inorganic limiting nutrient, reduced cell quotas, changed mass ratios of C/N/P and reduced cell yield clearly indicate that treatment cultures at stationary phase were starved by either N or P, whereas growth cessation of +N+P cultures was probably due to carbon limitation and/or a direct effect of high pH. Pulsed addition of the limiting nutrient allowed −N and −P cultures to resume growth. Lytic activity of A. tamarense as quantified by a Rhodomonas bioassay was generally high (EC50 around 100 cells mL−1) and was only slightly modulated by growth phase and/or nutrient starvation. Lytic activity per cell increased with time in both +N+P and −P cultures but not −N cultures. P-starved stationary-phase cells were slightly more lytic than +N+P cultures, but this difference may be due to increased cell size and/or accumulation of extracellular compounds. In conclusion, only slight changes but no general and major increase in lytic activity in response to nutrient starvation was observed.  相似文献   

4.
R. J. Orth 《Marine Biology》1977,44(2):187-194
The addition of two commerical fertilizers, one 5% NH4NO3, 10% P2O5, 10% K2O, and the other 10% NH4NO3, 10% P2O5, 10% K2O, ahd a dramatic effect on the growth of Zostera marina in the Chesapeake Bay. There was a significant increase in the length, biomass and total number of turions of fertilized plots compared with controls during a 2 to 3 month period. Data from this short-term field experiment suggest that Z. marina beds in the Chesapeake Bay are nutrient-limited, that the grwoth form of Z. marina may be related to the sediment nutrient supply, and that Z. marina may competitively exclude Ruppia maritima by light-shading.  相似文献   

5.
This study aims to determine the influence of the quality of food on specific dynamic action (SDA) in the ascidian Ciona intestinalis and thereby if respiratory measurements of SDA can be used to monitor the quality of a potential food source. Weight specific rates of filtration, ingestion and respiration of C. intestinalis were examined using two different experimental methods. Two food sources were selected, the flagellate Rhodomonas sp. representing a high-quality food source and the eelgrass Zostera marina representing a potentially low-quality food source. In spite of insignificant differences in weight specific rates of filtration and ingestion of Rhodomonas sp. and Z. marina, significant differences in weight specific respiration rates and weight specific ingestion rates of C. intestinalis at different particle concentrations of the two food sources were found. Ingestion of Rhodomonas sp. resulted in a SDA coefficient of 20%, whereas the respiratory increase after ingestion of Z. marina was insignificant. From the experimental results it is concluded that SDA of C. intestinalis is strongly dependent on the quality of the food ingested.Communicated by L. Hagerman, Helsingør  相似文献   

6.
Egg production and viability in the copepod Temora stylifera (collected in the Bay of Naples, Italy in 1992) were strongly dependent on food type. A flagellate (Isochrysis galbana) diet induced the production of good quality eggs that developed to hatching. By contrast, two diatoms (Chaetoceros curvisetum, Phaeodactylum tricornutum) resulted in poor egg quality, with hatching success as low as 20% of total egg production. With the third diatom tested, Skeletonema costatum, females produced eggs for only 3 to 4 d, after which time they either became sterile or died. These results are discussed in relation to previous findings regarding the impact of the dinoflagellate Prorocentrum minimum and the diatom Thalassiosira rotula on the hatching success of T. stylifera eggs. Low egg viability was possibly not due to an absence of remating or a deficiency of some specific essential nutrient required for egg development but to the presence of inhibitory compounds blocking cell division during early copepod embryogenesis. This questions the traditional view that diatoms are an important food item regulating copepod secondary production.  相似文献   

7.
Recent studies demonstrated that the toxic red tide phytoplankton Chattonella spp. produce activated oxygen species such as superoxide anion (O 2 - ), hydrogen peroxide (H2O2), and hydroxyl radicals (·OH), which may be responsible for the toxicity of this flagellate. However, the mechanism behind the production of these oxygen radicals and H2O2 by Chattonella spp. is largely unknown, and the physiological significance of activated oxygen species for Chattonella spp. is also unclear. In the present study, we investigated the involvement of iron in the generation of O 2 - and H2O2 by C. marina. The generation of O 2 - by C. marina was related to the growth phase; the highest rate of O 2 - production was observed during the exponential growth phase. However, no such increase during the exponential growth phase was observed in C. marina growing in an iron-deficient medium, even though the growth of C. marina was not significantly affected by iron-deficiency during the first 4 d. In addition, the iron chelator desferrioxamine (Desferal) strongly inhibited the generation of both O 2 - and H2O2 by C. marina in a concentration-dependent manner. The growth of C. marina was also inhibited by Desferal. Furthermore, in the presence of 500 M Desferal, C. marina-induced growth inhibition of the marine bacteria Vibrio alginolyticus was almost completely abolished. These results suggest that iron is required for the generation of activated oxygen species by C. marina, as well as for its own growth.  相似文献   

8.
Lysianassid amphipods were collected in 1987 from Frobisher Bay, Baffin Island, and from the Mingan Archipelago, Gulf of St Lawrence. Meal size and feeding rate of Anonyx nugax (Phipps), Onisimus (=Pseudalibrotus) litoralis (Krøyer) and Orchomenella pinguis (Boeck) were estimated directly, gravimetrically and/or from predictive equations. Size-specific ingestion was greatest in A. nugax, which fed swiftly and efficiently in comparison to O. litoralis and O. pinguis. These two latter species dispersed some bait while feeding and crawling on its surface. Groups of lysianassids fed more wastefully than single individuals. Meal size of females of O. litoralis decreased with increasing maturity, while berried females of O. pinguis consumed less food than mature males. Up to 30 d of starvation had no effect on survival and feeding ability of A. nugax, but 10 to 15 d of starvation dramatically reduced feeding ability or killed O. litoralis and O. pinguis. Differences between meal size, feeding rate and survival point to divergent feeding patterns, which also have been evidenced elsewhere by analysis of gut contents. O. litoralis and O. pinguis are best characterized as facultative scavengers, while large A. nugax are possibly obligate carnivores. Results emphasize the importance of lysianassid amphipods, particularly A. nugax, as bait stealers and as predators of commercial species trapped by various fishing gear.  相似文献   

9.
Nutrient enrichment of seagrass beds in a rhode island coastal lagoon   总被引:7,自引:0,他引:7  
Seagrass and algal beds showed a variety of reponses when the water column was treated with low level additions of ammonium, nitrate and phosphate. The nutrients were added separately to 3 uniform seagrass beds of a temperature coastal lagoon during 1979 and 1980. (1) Ammonium caused the production of dense mats of free-floating green algae Enteromorpha plumosa and Ulva lactuca. It also stimulated growth in both the leaf and root-rhizome fractions of Zostera marina. This growth response in Z. marina was greater in the area where current reached 12 cm · s-1 than in the area with little or no current. The concentration of nitrogen in the tissue did not change. In contrast, where current was lacking, Z. marina growth increase with ammonium was small, but the concentration of nitrogen in the tissue doubled over that in control plots. The growth of Ruppia maritima was inversely related to the growth of green algae in the same plots. The red alga Gracilaria tikvahiae did not grow better in ammonium, but its tissue reddened. (2) Nitrate additions enhanced the growth of the green seaweeds Enteromorpha spp. and U. lactuca, but not Z. marina or R. maritima. G. tikvahiae, when fertilized in isolation from other plants, showed a marginal response to this nutrient, and the tissue always reddened. (3) Phosphate enhanced growth in Z. marina and R. maritima exposed to moderate current. G. tikvahiae growing alone showed a small growth response to phosphate. The phosphate made no difference in the growth of the green seaweeds. (4) None of the nutrient supplements noticeably altered the species composition of either epiphytic or planktonic algae associated with the beds, although we did detect small increases in their numbers. The rapid and dense growth of green algae in nitrogen-enriched water probably limited growth of adjacent seagrasses and red algae. Because these seaweeds did not use the phosphate, it became available to other plant components. The overall floral response to nutrient addition in seagrass communities depends, therefore, upon the particular nutrient supplied, the ability of alternate species in the area to compete for that nutrient and the velocity of current in the specific area.  相似文献   

10.
As intermediaries, some heterotrophic protists can enhance the content of the long chain n-3 essential fatty acids (LCn-3EFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), of low food quality algae for subsequent use at higher trophic levels. However, the mechanisms that produce LCn-3EFAs are presently unknown, although LCn-3EFA production by heterotrophic protists at the phytoplankton–zooplankton interface may potentially affect the nutritional status of the pelagic system. We investigated whether the heterotrophic protists, Oxyrrhis marina and Gyrodinium dominans, produce LCn-3EFAs via elongation and desaturation of dietary LCn-3EFA precursors and/or synthesize LCn-3EFAs de novo by: (1) feeding the two heterotrophic protists with a prey deficient in n-3 fatty acids, (2) incubating them in medium containing 13C-labeled sodium acetate, and (3) feeding the two protists gelatin acacia microspheres (GAMs) containing a deuterium-labeled LCn-3EFA precursor, linolenic acid [18:3(n-3)-d4]. Both O. marina and G. dominans synthesized EPA and DHA when fed the n-3 fatty acid-deficient prey, Perkinsus marinus, a parasitic protozoan. O. marina, but not G. dominans utilized 13C-labeled acetate from the medium to produce uniformly labeled fatty acids, including DHA. Both heterotroph species consumed GAMs containing 18:3(n-3)-d4 and catabolized 18:3(n-3)-d4 to 16:3(n-3)-d4 and 14:3(n-3)-d4, while no 20 or 22 carbon metabolites of 18:3(n-3)-d4 were detected. These results suggest that O. marina and G. dominans do not elongate and desaturate dietary LCn-3EFA precursors to produce LCn-3EFAs, but rather they produce LCn-3EFAs de novo, possibly via a polyketide synthesis pathway.  相似文献   

11.
Phytoplankton-grazer dynamics are often characterized by long transients relative to the length of the growing season. Using a phytoplankton-grazer model parameterized for Daphnia pulex with either flexible or fixed algal carbon:nutrient stoichiometry, we explored how nutrient and light supply (the latter by varying depth of the mixed water column) affect the transient dynamics of the system starting from low densities. The system goes through an initial oscillation across nearly the entire light-nutrient supply space. With flexible (but not with fixed) algal stoichiometry, duration of the initial algal peak, timing and duration of the subsequent grazer peak, and timing of the algal minimum are consistently accelerated by nutrient enrichment but decelerated by light enrichment (decreasing mixing depth) over the range of intermediate to shallow mixing depths. These contrasting effects of nutrient vs. light enrichment are consequences of their opposing influences on food quality (algal nutrient content): algal productivity and food quality are positively related along a nutrient gradient but inversely related along a light gradient. Light enrichment therefore slows down grazer growth relative to algal growth, decelerating oscillatory dynamics; nutrient enrichment has opposite effects. We manipulated nutrient supply and mixing depth in a field enclosure experiment. The experimental results were qualitatively much more consistent with the flexible than with the fixed stoichiometry model. Nutrient enrichment increased Daphnia peak biomass, decreased algal minimum biomass, decreased the seston C:P ratio, and accelerated transient oscillatory dynamics. Light enrichment (decreasing mixing depth) produced the opposite patterns, except that Daphnia peak biomass increased monotonously with light enrichment, too. Thus, while the model predicts the possibility of the "paradox of energy enrichment" (a decrease in grazer biomass with light enrichment) at high light and low nutrient supply, this phenomenon did not occur in our experiment.  相似文献   

12.
To test whether heterotrophic protists modify precursors of long chain n−3 polyunsaturated fatty acids (LCn−3PUFAs) present in the algae they eat, two algae with different fatty acid contents (Rhodomonas salina and Dunaliella tertiolecta) were fed to the heterotrophic protists Oxyrrhis marina Dujardin and Gyrodinium dominans Hulbert. These experiments were conducted in August 2004. Both predators and prey were analyzed for fatty acid composition. To further test the effects of trophic upgrading, the calanoid copepod Acartia tonsa Dana was fed R. salina, D. tertiolecta, or O. marina that had been growing on D. tertiolecta (OM-DT) in March 2005. Our results show that trophic upgrading was species-specific. The presence of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the heterotrophic protists despite the lack of these fatty acids in the algal prey suggests that protists have the ability to elongate and desaturate 18:3 (n−3), a precursor of LCn−3PUFAs, to EPA and/or DHA. A lower content of these fatty acids was detected in protists that were fed good-quality algae. Feeding experiments with A. tonsa showed that copepods fed D. tertiolecta had a significantly lower content of EPA and DHA than those fed OM-DT. The concentration of EPA was low on both diets, while DHA content was highest in A. tonsa fed R. salina and OM-DT. These results suggest that O. marina was able to trophically upgrade the nutritional quality of the poor-quality alga, and efficiently supplied DHA to the next trophic level. The low amount of EPA in A. tonsa suggests EPA may be catabolized by the copepod.  相似文献   

13.
The metabolite exchange in alga–invertebrate symbioses has been the subject of extensive research. A central question is how the biomass of the algal endosymbionts is maintained within defined limits under a given set of environmental conditions despite their tremendous growth potential. Whether algal growth is actively regulated by the animal cells is still an open question. We experimentally evaluated the effect of inorganic nutrient supply and host-animal nutritional status on the biomass composition, growth and cell-cycle kinetics of the endosymbiotic dinoflagellate Symbiodinium pulchrorum (Trench) in the sea anemone Aiptasia pulchella. Dinoflagellates in anemones starved for 14?d exhibited lower growth rates, chlorophyll content and higher C:N ratios than in anemones fed Artemia sp. (San Francisco brand #65034) nauplii every 2 d, indicating N-limitation of the algae during starvation of the host animal. Manipulation of the dissolved inorganic nutrient supply through ammonium and phosphate additions induced a rapid recovery (half time, t ½~ 2?d) in the C:N ratio of the dinoflagellate cells to levels characteristic of N-sufficient cells. The mitotic index and population growth rate of the dinoflagellate symbionts subjected to this enrichment did not recover to the levels exhibited in fed associations. Flow cytometric analysis of dinoflagellate cell size and DNA content revealed that the duration of the G1 phase (first peak of DNA content: 70 to 100 relative fluorescence units, rfu) of their cell cycle lengthened dramatically in the symbiotic state, and that the majority of algal biomass increase occurred during this phase. Covariate analysis of dinoflagellate cell size and DNA-content distributions indicated that the symbiotic state is associated with a nutrient-independent constraint on cell progression from G1 through the S phase (intermediate DNA content: 101 to 139?rfu). This analysis suggests that the host-cell environment may set the upper limit on the rate of dinoflagellate cell-cycle progression and thereby coordinate the relative growth rates of the autotrophic and heterotrophic partners in this symbiotic association.  相似文献   

14.
E. A. Caine 《Marine Biology》1980,56(4):327-335
Ecology of 2 littoral species of caprellid amphipods is compared. Populations of Caprella laeviuscula, a periphyton scraper/filter-feeder, are most dense on eelgrass Zostera marina L. In the absence of C. laeviuscula, periphyton biomass increases 411% in protected Z. marina beds. The light absorption spectra of periphyton and Z. marina are similar, and C. laeviuscula, by its periphyton removal, may allow Z. marina to grow in areas where it would otherwise be excluded. C. laeviuscula is aggressively dominant over sympatric caprellids, and seasonal predators of C. laeviuscula are absent during winter, the period when periphyton would be most limiting to Z. marina. Populations of Deutella californica, a predator, are most dense on the hydroid Obelia dichotoma (L.). In the O. dichotoma epibiotic community, D. californica is the primary predator, but removal did not change the composition of the community structure. In the absence of other macropredators, the structure of the O. dichotoma epibiotic community depends more on the seasonality of O. dichotoma occurrence than on organismal interactions.  相似文献   

15.
We investigated the possible drivers of the N:P stoichiometric shift and its relationship with micro-algal production of transparent exopolymeric particles (TEP) along a 35?km gradient of the Ganga River. The objective was to evaluate if the trade-off between N:P stoichiometry and production of TEP helps in maintaining water quality of the river. Mesocosm experiments were conducted to examine N:P-TEP linkages and its role in turbidity removal. In situ measurements did not show Si to be a limiting nutrient (N:Si?Aulacosira granulata and Fragilaria intermedia. Settling efficiency, turbidity removal and sedimentation of TEP, biogenic silica (BSi) and biomass all increased with decreasing N:P ratio proportionately to the amount of TEP produced in the mesocosm. The study demonstrates that trade-off between N:P stoichiometry and the production of TEP generates feedback to buffer the ecological impacts of nutrient pollution.  相似文献   

16.
In social insects, the decision to exploit a food source is made both at the individual (e.g., a worker collecting a food item) and colony level (e.g., several workers communicating the existence of a food patch). In group recruitment, the recruiter lays a temporary chemical trail while returning from the food source to the nest and returns to the food guiding a small group of nestmates. We studied how food characteristics influence the decision-making process of workers changing from individual retrieving to group recruitment in the gypsy ant Aphaenogaster senilis. We offered field colonies three types of prey: crickets (cooperatively transportable), shrimps (non-transportable), and different quantities of sesame seeds (individually transportable). Colonies used group recruitment to collect crickets and shrimps, as well as seeds when they were available in large piles, while small seed piles rarely led to recruitment. Foragers were able to “measure” food characteristics (quality, quantity, transportability), deciding whether or not to recruit, accordingly. Social integration of individual information about food emerged as a colony decision to initiate or to continue recruitment when the food patch was rich. In addition, group recruitment allowed a fast colony response over a wide thermal range (up to 45°C ground temperature). Therefore, by combining both advantages of social foraging (group recruitment) and thermal tolerance, A. senilis accurately exploited different types of food sources which procured an advantage against mass-recruiting and behaviorally dominant species such as Tapinoma nigerrimum and Lasius niger.  相似文献   

17.
We show in this study that intersexuality can occur in the estuarine copepod Eurytemora affinis, and we reported the presence of three intersexual copepod individuals from a laboratory culture of this species from the Seine estuary conducted at low temperature (7°C). These individuals presented both female and male characteristics. The prosome size and antennules of intersex individuals were similar to those of normal females, but all the other morphological details were more similar to normal males. The appearance of the three intersex individuals in the culture at low temperature coincided with a decrease in food quality due to a feeding with Rhodomonas marina at its stationary phase. This induced a significant decrease in the mean clutch size and skewed sex-ratio in favor of males. The reduction in food quality in addition to low temperature of 7°C (which induced slow development) is suspected to be responsible of the appearance of intersex individuals. This stressful situation seems to propagate to the following two generations at low temperature in contrast to the case of the experiment at higher temperature 20°C where no intersex individual was observed. These results confirmed the role of food quality in sex determination of copepods. Moreover, the role of early developmental stages and also the consequences of stressful conditions throughout different generations were discussed.  相似文献   

18.
Abstract

The uptake and distribution of phenanthrene, a typical polycyclic aromatic hydrocarbon, in plant tissues of Aegiceras corniculatum and Avicennia marina and the relationship with nutrient (nitrate, ammonium, and soluble reactive phosphorus) availability were investigated. After 12?h of exposure, enhancements in the concentration of nitrate and soluble reactive phosphorus markedly decreased the residual level of phenanthrene in roots, while the addition of ammonium significantly increased the residual concentration. Due to the similar enzymatic degradation potential between treatment groups, the variation of phenanthrene concentration in mangrove roots may result from the H+/phenanthrene cotransport at the root surface that was influenced by nutrient uptake. Moreover, both nitrate and soluble reactive phosphorus amendments significantly increased translocation of phenanthrene from roots to leaves, which likely resulted from the change of hydraulic conductivity in mangrove plants triggered by different nutrient availability.  相似文献   

19.
Nitrogen inputs to coastal environments can considerably alter the abundance of primary producers. However, how herbivores modify their trophic signatures and adjust to changes in food resource conditions remains controversial. Here, we assess the effect of nutrient availability on the diet shifts of the two main Mediterranean herbivores, the Sparid fish Sarpa salpa L. and the sea urchin Paracentrotus lividus (Lmk.) that feed mostly on the seagrass Posidonia oceanica L. (Delile), epiphytes and benthic macroalgae. To do this, we (1) investigate the patterns of isotopic composition (δ13C and δ15N signatures) of the two herbivores and their potential food sources in three areas of contrasting nutrient conditions and, (2) we assess the diet shift along this nutrient gradient by estimating the isotopic nutrient enrichment (i.e., the contribution of δ13C and δ15N signatures in consumers’ tissues relative to potential food sources). Food web signatures of δ13C were similar among the three study sites, and no patterns of δ13C shift were observed in their diets. In contrast, there was a consistent increase in N contents and δ15N along the nutrient gradient for all primary producers and their consumers. The rate of δ15N enrichment was also clearly distinctive between the two herbivores: in P. lividus it increased by 61% along the nutrient gradient, while in S. salpa it remained constant. Our results suggest that sea urchins behave as facultative omnivores and feed on vegetable or mixed diets depending on the trophic status of the system. It is unclear, however, if this modification is behavioral or the consequence of mere changes in the availability of food items, as animal epiphytes (e.g., hydrozoans, bryozoans and ascidians) can also became more abundant on seagrass leaves under increased nutrient conditions. In contrast, adult fish appear to feed on vegetal material independent of nutrient availability in the ecosystem.  相似文献   

20.
Accurate prediction of the biodiversity–ecosystem functioning relationship requires adequate understanding of the interactions among species in a community. Effects of species diversity on ecosystem functioning are usually considered more pronounced with increasing functional dissimilarity, although species within functional groups may also perform non-identical functions and interact with each other. Here we present results of a laboratory experimental study aimed at elucidating whether interspecific interactions among species within a single nematode trophic group, bacterivores, (1) affect population development and community structure, and (2) depend on food availability. We studied the population growth of Rhabditis (Pellioditis) marina, a rhabditid nematode known to favour very high food densities when in monoculture, and of Diplolaimelloides meyli and D. oschei, congeneric Monhysteridae known to perform better in monocultures at intermediate food availability. Both Diplolaimelloides species showed significantly different patterns of food-density dependence in combination culture compared to monoculture. At very high food availability, the rhabditid nematode facilitated growth of both monhysterid species, probably as a result of down-regulation of bacterial density. At the lowest food availabilities, the presence of even low numbers of monhysterid nematodes lead to exclusion of the rhabditid, which at such low food availability has a very inefficient food uptake. At intermediate food availabilities, abundances of both Diplolaimelloides species were strongly depressed in the combination culture, as a result of food depletion by the rhabditid, indirect inhibitory interactions between the two congeneric species, or both. The complexity of the species interactions render predictions on the outcome and functional consequences of changes in within-trophic-group diversity highly problematic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号