首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Superoxide production by marine microalgae   总被引:5,自引:0,他引:5  
A survey was conducted for production of the reactive oxygen species superoxide by 37 species (65 strains) of microalgae including dinoflagellates, raphidophytes, chlorophytes, prasinophytes, eustigmatophytes and prymnesiophytes. Ichthyotoxic raphidophyte species of Chattonella were found to produce the highest environmental levels of superoxide (177×104 total chemiluminescence units). However, ichthyotoxic dinoflagellates (Karenia, Alexandrium) and the prymnesiophyte Prymnesium were also found to produce significant levels of superoxide (4×104, 3×104 and 5×104 chemiluminescence units, respectively), equivalent to that of other raphidophyte species of Heterosigma and Fibrocapsa (6×104 and 2×104, respectively). A direct relationship between cell size and superoxide production was observed (r2=0.94), with larger cells producing more superoxide per cell. Chattonella produced the most superoxide per cell (expressed as cellular chemiluminescence units), followed by the dinoflagellate species Karenia, Alexandrium, Takayama and Gymnodinium. Small cells, such as the raphidophyte Heterosigma and the prymnesiophyte Prymnesium produced very little superoxide per cell (cellular chemiluminescence units), but potentially could still produce high total levels of superoxide if present at high biomass levels. Species commonly used as aquaculture bivalve feeds such as Dunaliella, Tetraselmis, Nannochloropsis and Pavlova produced negligible levels of superoxide, even at high biomass. We speculate that superoxide, while not the sole ichthyotoxic principle, may play a wider role in algal toxicity than previously considered, and propose a broad classification of microalgae based upon superoxide production.Communicated by M.S. Johnson, Crawley  相似文献   

2.
In August 1988 the US Environmental Protection Agency (EPA) published an ambient water quality criteria document for the protection of aquatic organisms from the toxic effects of aluminum. The EPA water quality criteria were developed utilizing procedures described in theGuidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses, and after careful analysis of the latest toxicological information available to EPA on the adverse effects of aluminum on aquatic vertebrates, invertebrates and plants.The EPA criteria recommend that the four-day average concentration of aluminum not exceed 87 g L–1 more than once every three years on the average when the ambient pH is between 6.5 and 9.0 to provide protection from chronic toxicity. The criteria also recommend that the one-hour average concentration of aluminum not exceed 750 g L–1 more than once every three years on the average when the ambient pH is between 6.5 and 9.0 to provide protection from acute toxicity.Acute toxicity data for 20 species of freshwater aquatic organisms and chronic toxicity data for five species of freshwater aquatic organisms were utilized to develop the EPA water quality criteria. Striped bass and brook trout were observed to be the two most sensitive North American species to the toxic effects of aluminum. Aluminum toxicity was also observed to be increased at lower pH.  相似文献   

3.
Feeding, growth and bioluminescence of the thecate heterotrophic dinoflagellate Protoperidinium huberi were measured as a function of food concentration for laboratory cultures grown on the diatom Ditylum brightwellii. Ingestion of food increased with food concentration. Maximum ingestion rates were measured at food concentrations of 600 g C l-1 and were 0.7 g C individual-1 h-1 (1.8 D. brightwelli cells individual-1 h-1). Clearance rates decreased asymptotically with increasing food concentration. Maximum clearance rates at low food concentration were ca. 23 l ind-1 h-1, which corresponds to a volume-specific clearance rate of 5.9x105 h-1. Cell size of P huberi was highly variable, with a mean diameter of 42 m, but no clear relationship between cell size and food concentration was evident. Specific growth rates increased with food concentration until maximum growth rates of 0.7 d-1 were reached at a food concentration of 400 g C l-1 (1000 cells ml-1). Food concentrations as low as 10 g C l-1 of D. brightwellii (25 cells ml-1) were able to support growth of P. huberi. The bioluminescence of P. huberi varied with its nutritional condition and growth rate. Cells held without food lost their bioluminescence capacity in a matter of days. P. huberi raised at different food concentrations showed increased bioluminescence capacity, up to food concentration that supported maximum growth rates. The bioluminescence of P. huberi varied over a diel cycle, and these rhythmic changes persisted during 48 h of continuous darkness, indicating that the rhythm was under endogenous control.  相似文献   

4.
The life-history of the crown-of thorns starfish (Acanthaster planci) includes a planktotrophic larva that is capable of feeding on particulate food. It has been proposed, however, that particulate food (e.g. microalgae) is scarce in tropical water columns relative to the nutritional requirements of the larvae of A. planci, and that periodic shortages of food play an important role in the biology of this species. It has also been proposed that non-particulate sources of nutrition (e.g. dissolved organic matter, DOM) may fuel part of the nutritional requirements of the larval development of A. planci as well. The present study addresses the ability of A. planci larvae to take up several DOM species and compares rates of DOM uptake to the energy requirements of the larvae. Substrates transported in this study have been previously reported to be transported by larval asteroids from temperate and antarctic waters. Transport rates (per larval A. planci) increased steadily during larval development and some substrates had among the highest mass-specific transport rates ever reported for invertebrate larvae. Maximum transport rates (J max in) for alanine increased from 15.5 pmol larva–1 h–1 (13.2 pmol g–1 h–1) for gastrulas (J max in=38.7 pmol larva–1 h–1 or 47.4 pmol g–1 h–1) to 35.0 pmol larva–1 h–1 (13.1 pmol g–1 h–1) for early brachiolaria (J max in just prior to settlement=350.0 pmol larva–1 h–1 or 161.1 pmol g–1 h–1) at 1 M substrate concentrations. The instantaneous metabolic demand for substrates by gastrula, bipinnaria and brachiolaria stage larvae could be completely satisfied by alanine concentrations of 11, 1.6 and 0.8 M, respectively. Similar rates were measured in this study for the essential amino acid leucine, with rates increasing from 11.0 pmol larva–1 h–1 (or 9.4 pmol g–1 h–1) for gastrulas (J max in=110.5 pmol larva–1 h–1 or 94.4 pmol g–1 h–1) to 34.0 pmol larva–1 h–1 (or 13.0 pmol g–1 h–1) for late brachiolaria (J max in=288.9 pmol larva–1 h–1 or 110.3 pmol g–1 h–1) at 1 M substrate concentrations. The essential amino acid histidine was transported at lower rates (1.6 pmol g–1 h–1 at 1 M for late brachiolaria). Calculation of the energy contribution of the transported species revealed that larvae of A. planci can potentially satisfy 0.6, 18.7, 29.9 and 3.3% of their total energy requirements (instantaneous energy demand plus energy added to larvae as biomass) during embryonic and larval development from external concentrations of 1 M of glucose, alanine, leucine and histidine, respectively. These data demonstrate that a relatively minor component of the DOM pool in seawater (dissolved free amino acids, DFAA) can potentially provide significant amounts of energy for the growth and development of A. planci during larval development.  相似文献   

5.
Beryllium and aluminium contents in uncontaminated soils from six countries are reported. The means and ranges of beryllium in the surface soils were as follows: 1.43(0.20–5.50)g g–1 in Thailand (n=28), 0.7 (0.31–1.03) g g–1 in Indonesia (n=12), 0.99(0.82–1.32) g g–1 in New Zealand (n=3), 0.58(0.08-1.68)g g–1 in Brazil (n=16), 3.52(2.49–4.97)g g–1 in the former Yugoslavia (n=10), and 1.56(1.01–2.73) g g–1 in the former USSR (n=8). The mean and range of beryllium contents of the surface soils in Japan (1.17(0.27–1.95)g g–1 n=27) are situated within the values of the soils from these countries except for the Yugoslav soils derived from limestones. The mean of the mean beryllium contents of the surface soils in all these countries is 1.42 g g–1 which will be used as a tentative average content of beryllium in uncontaminated surface soils, except for the soils derived from parent materials high in beryllium content. The beryllium contents of the subsoils were higher than those of the surface soils in New Zealand and Yugoslavia as is the case with Japan. The correlation coefficient between the contents of beryllium and aluminium in all the soil samples (n=113) including surface soils and subsoils was 0.505 (p < 0.001).  相似文献   

6.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   

7.
We studied Na+/K+ ATPase activity and ultrastructure in gills of the hyper-hypo-regulating crab Chasmagnathus granulatus Dana, 1851 acclimated to different salinities: 10, 30 and 45, known to be hypo-, iso-, and hyper-osmotic to the hemolymph, respectively. After centrifugation of homogenates at 11,000 g, Na+/K+–ATPase activity was almost entirely found in the pellets from the posterior (6–8) and anterior (3–5) gills, whereas very little was detected in the supernatant liquid. Specific activity of gill 6 was 41.3, 30.2, and 28.2 µmol Pi h–1 mg prot–1 for crabs acclimated to 10, 30, and 45, respectively, the result for 10 being significantly higher than those at 30 and 45. Although the concentration of sodium at which the reaction rate is half-maximal (K M) was similar in the three acclimation salinities, only the enzyme from crabs acclimated to 10 was inhibited by high sodium concentration. Specific activity of gill 5 increased with the increment in external salinity (10.1, 15, and 18.1 µmol Pi h–1 mg prot–1 for 10, 30, and 45, respectively), the only significant difference being that between the extreme salinities. The epithelium thickness of the dorsal portion of gill 6 showed a variation among salinities: 21.7, 15.8 and 17.2 µm for 10, 30 and 45, respectively. There were significant differences in epithelium thickness between the 10 and the other salinities. In all three salinities, the ultrastructure of gill 6 epithelium showed a high density of mitochondria, estimated by their volume fraction (Vv m=0.307–0.355). These mitochondria were packed between extensive basolateral membrane interdigitations in ionocytes and pillar cells. Gill 5 showed three cell types: pillars which possess mitochondria packed between membrane folds only in their interdigitations with neighbouring cells; type-I cells 8.0 µm thick with low density of mitochondria (Vv m=0.088), and type-II cells, 9.9 µm thick and rich in mitochondria (Vv m=0.423), but lacking basolateral interdigitations. Vv m of type-I cells of gill 5 was significantly lower than those of type-II cells of the same gill and the ionocytes of gill 6. No significant difference in Vv m was detected between the latter cell types.Communicated by P.W. Sammarco, Chauvin  相似文献   

8.
Nyctiphanes australis contained, on a dry weight basis, an average of 52% crude protein and 5.0 to 9.5% lipid. The fatty acid profile of N. australis was markedly unsaturated, with a mean total 3 fatty acid content of 48.6±2.4% of total fatty acids. N. australis contained high levels of the essential long-chain polyunsaturated fatty acids eicosapentaenoic (EPA, 20:53) and docosahexaencic (DHA, 22:63), ranging from 16.6 to 36.5% and 11.1 to 24.8%, respectively. The concentration of total carotenoids ranged from 137 to 302 g g–1 dry wt, with no significant differences in concentrations found with season or life stage. The carotenoids were comprised of 79.5% astaxanthin and 20.5% canthaxanthin. The lipid and pigment compositions of N. australis suggest that the species could serve as a suitable feed source for cultured salmonids. Like other euphausiids, N. australis contained high levels of fluoride, with a seasonal range between 277 and 3507 g g–1 dry wt. The high fluoride levels found in N. australis would not detract from its potential as a feed source for salmonids because ingested fluoride is largely absorbed by the skeleton.  相似文献   

9.
An icebreaker cruise into the Beaufort Sea in the fall of 1986 provided a unique opportunity for studying planktonic bioluminescence in ice fields and in the marginal ice zone. Bathyphotometer casts (bioluminescence intensity, seawater temperature, beam attenuation coefficient, and salinity) and biological collections were made to a depth of 100 m. A light budget, which describes the planktonic species responsible for the measured bioluminescence, and a dinoflagellate species budget were constructed from the mean light output from luminescent plankton and plankton counts. The vertical distribution of bioluminescence among the ice stations was similar. The maximum intensities were 2 to 8×106 photons s-1 cm-3 in the upper 50 m of the sea-ice interface. The marginal ice zone station (MIZ) exhibited a maximum intensity of 2 to 3×108 photons s-1 cm-3 between 5 and 30 m depth. At Ice Station 2, Metridia longa and their nauplii contributed approximately 80% of stimulable bioluminescence in the upper 10 m but, overall, Protoperidinium spp. dinoflagellates contributed most of the light to a depth of 100 m. In the MIZ, Protoperidinium spp. dinoflagellates contributed 90% of the light within the upper 10 m, decreasing to 43% of the contributed light at a depth of 40 m. Below 40 m, dinoflagellate bioluminescence decreased to a few percent of the total to a depth of 90 m. Metridia spp. copepods contributed more than 50% of the light at depths from 40 to 90 m. Ostracods, larvaceans, and euphausiid furcilia contributed <1% of all bioluminescence at all depths sampled. Correlation analyses between measured bioluminescence (photons s-1 cm-3), the number of bioluminescent dinoflagellates and the light budget for the MIZ indicated highly significant associations: r=0.919, p=0.001, and r=0.912, p<0.001, respectively (Student's two-tailed t-tests). Bioluminescence was negatively correlated with seawater salinity at all stations (p=0.001). Maximum bioluminescence was measured in the less saline surface waters at all stations.  相似文献   

10.
In a shallow, subtidal, siliceous sediment, benthic microalgal biomass (g chlorophyll a cm-3) is influenced by light and physical sediment dynamics. The microalgal community is relatively dense, despite adverse conditions (7.0 g chlorophyll a cm-3), and is able to respond rapidly to favorable conditions. Productivity of this community is significantly correlated (P0.05) with benthic light. In addition, productivity is influenced by temperature and bottom water NH4 + and PO4 -3 concentrations, especially as the concentrations fall to levels approaching the K s (halfsaturation constant) of the microalgal community. Metabolic activity in this environment is dependent upon a continuous supply of organic carbon. Temperature is significantly correlated with respiration rate, but other factors (e.g. biomass and organic matter supply) are important also. Community respiration responds to overlying phytoplankton productivity in the same manner as deep-water benthic environments. Bacterial enumeration using CFU (colony-forming units) does not measure accurately the number of in situ metabolically active bacteria.This research was supported by Energy Research and Development Administration Contract AT (11-1) 3279, US AEC Contract AT (11-1) GEN 10, P.A. 20 and NOAA Sea Grant No. 04-3-158-22.  相似文献   

11.
The possible modification of mercury toxicity by selenium in embryos of the Pacific oyster Crassostrea gigas and the larvae of the crab Cancer magister was investigated. Mercury concentration eliciting abnormal development in 50% of the oyster embryos (EC50) was 5.7 g l-1 (48 h) and mortality in 50% of the crab larvae (LC50) occurred with 6.6 g l-1 (96 h). The 48 h EC50 for selenium was greater than 10,000 g l-1 for oyster embryos and the 96 h LC50 for crab zoeae was 1040 g l-1. The response from each species, when exposed to both toxicants, revealed, that a high level of selenium (5,000 g l-1) increased mercury toxicity. Moderate selenium concentrations (10 to 1,000 g l-1) tended to decrease mercury toxicity, although no statistical verification could be made. The order of administration of toxicants had no effect on the response of Crassostrea gigas embryos. Early developmental stages (8 h) of C. gigas embryos were most sensitive to dissolved Hg; toxicant administration 24 h after fertilization resulted in no apparent abnormalities in development.  相似文献   

12.
Characterisation of the leachate originating from the Ano Liosia landfill (situated in Attica region, Greece) as well as assessment on the quality of the local aquifer were carried out. The experimental results showed that most of the parameters examined in the leachate samples such as colour, conductivity, TS, COD, NH3–N, PO4–P, SO4 2–, Cl, K+, Fe and Pb were found in high levels. The organic load was quite high since the COD concentrations were in the range of 3250–6125mgL–1. In addition, the low BOD/COD ratio (0.096–0.195), confirmed that the majority of this organic matter is not easily biodegradable. The groundwater near the landfill site was characterised as not potable and not suitable for irrigation water, since most of the physical and chemical parameters examined – such as colour, conductivity, DS, hardness, Cl, NH3–N, COD, K+, Na+, Ca2+, Fe, Ni and Pb exceeded the permissible limits given by EE, EPA and the Greek Ministry of Agriculture. Furthermore, this study presents the application of the hydrologic evaluation of landfill performance (HELP) model for the determination of the yearly leakage from the base of the landfill after the final capping.  相似文献   

13.
The EPA lead model predicts mean blood lead levels and risk of elevated blood lead levels in children based on lead uptake from multiple sources. In the latest model versions, environmental data from individual homes within a community can be used to predict the overall blood lead distribution and percent risk of exceeding a specific blood lead level (i.e. 10 g dl–1). Recent criteria used by the EPA to evaluate this information include no more than 5% of houses with a greater than 5% lead risk, and a community weighted-average risk below 5%. Environmental (primarily soil) and blood lead data from a residential community near a smelter were used to illustrate recent uses of the model. Scheduled remediation in the community will remove soil for approximately 60% of the houses (i.e. those with lead levels > 1000 mg kg–1). After remediation, the model results indicate a relatively low community risk (0.5–1.9%), although the percentage of houses with lead risks above 5% ranged from 3 to as high as 13%, depending on the variation in blood lead and assuming the model's 7 g dl–1 increase in blood lead with each 1000 mg kg–1 increase in soil lead level. A comparison of the limited blood lead data with soil lead levels below 1000 mg kg–1, however, indicated no apparent relationship. Given these uncertainties, less invasive actions than additional soil removal (e.g. exposure intervention, monitoring conditions, and follow-up as necessary) may be appropriate under the new EPA guidance for lead in soil.  相似文献   

14.
The distribution of phytoplankton primary production into four size fractions (>10 m, 10-3 m, 3-0.2 m and <0.2 m), the utilization of algal exudates by bacteria and the bacterial production were studied in a eutrophication gradient in the northern Baltic proper. The polluted area exhibits substantially increased nutrient, especially nitrogen, levels while only minor differences occur in salinity and temperature regimes. Total primary production was 160 g C · m-2 · yr-1 at the control station and about 275 g C · m-2 · yr-1 at the eutrophicated stations. The estimated total exudate release was 16% of the totally fixed 14CO2 in the control area and 12% in the eutrophicated area (including the estimated bacterial uptake of exudates). The difference in14CO2 uptake rates between incubation of previously filtered water (<3, <2, <1 m) and unfiltered water was used to estimate bacterial uptake of phytoplankton exudates which were found to contribute about half of the estimated bacterial carbon requirement in both areas. Bacterial production was estimated by the frequency of dividing cells (FDC) method as being 38 g C · m-2 · yr-1 at the control station and 50 g C · m-2 · yr-1 at the eutrophicated stations. To estimate the mean in situ bacterial cell volume a correlation between FDC and cell volume was used. The increased annual primary production in the eutrophicated area was due mainly to higher production during spring and autumn, largely by phytoplankton cells (mainly diatoms) retained by a 10 m filter. Primary production duringsummer was similarin the two areas, as was the distribution on different size fractions. This could possibly explain the similar bacterial production in the trophic layers at all stations since the bulk of bacterial production occurs during summer. It was demonstrated that selective filtration does not quantitatively separate photoautotrophs and bacteria. A substantial fraction of the primary production occurs in the size fraction <3 m. The primary production encountered in the 3-0.2 m fraction was due to abundant picoplankton (0.5 to 8 · 107 ind · l-1), easily passing a 3 m filter. The picoplankton was estimated to constitute up to 25% of the total phytoplankton biomass in the control area and up to 10% in the eutrophicated area.  相似文献   

15.
The effect of solar UV radiation (UVR: 290–400 nm) on the 32P-phosphate uptake rates of natural phytoplankton from a southern Atlantic Ocean coastal lagoon was studied during two consecutive summers at one station located in the marine-influenced area. Due to the shallowness of this lagoon and also to the generally high UV water transparency in this area, phytoplankton are exposed to high UV irradiances. The 32P-phosphate uptake rates measured at several phosphate concentrations were inhibited up to 59.2% by UVR, although uptake stimulation was also observed in four of nine experiments (up to 28%). The effect of UVR on the apparent maximum velocity of 32P-phosphate uptake (V uptake) ranged from an inhibition of 49% to a stimulation of 31%. Although the highest inhibition values were associated with the maximum registered incident UV irradiance, a significant correlation between these two parameters was not observed. Changes in microalgal community structure were not related to the observed UV effect; however, a significant relationship was found between the inhibition of 32P-phosphate uptake rates and V uptake used as a proxy for phosphate deficiency. This relationship suggests that the phytoplankton phosphorus nutritional status modulates their sensitivity to UV exposure. Overall, our results suggest that solar UVR has the potential to affect phosphorus cycling.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

16.
The European seabass is an active euryhaline teleost that migrates and forages in waters of widely differing salinities. Oxygen uptake (MO2) was measured in seabass (average mass and forklength 510 g and 34 cm, respectively) during exercise at incremental swimming speeds in a tunnel respirometer in seawater (SW) at a salinity of 30 and temperature of 14°C, and their maximal sustainable (critical) swimming speed (Ucrit) determined. Cardiac output (Q) was measured via an ultrasound flow probe on their ventral aorta. The fish were then exposed to acute reductions in water salinity, to either SW (control), 10, 5, or freshwater (FW, 0), and their exercise and cardiac performance measured again, 18 h later. Seabass were also acclimated to FW for 3 weeks, and then their exercise performance measured before and at 18 h after acute exposure to SW at 30. In SW, seabass exhibited an exponential increase in MO2 and Q with increasing swimming speed, to a maximum MO2 of 339±17 mg kg–1 h–1 and maximum Q of 52.0±1.9 ml min–1 kg–1 (mean±1 SEM; n=19). Both MO2 and Q exhibited signs of a plateau as the fish approached a Ucrit of 2.25±0.08 bodylengths s–1. Increases in Q during exercise were almost exclusively due to increased heart rate rather than ventricular stroke volume. There were no significant effects of the changes in salinity upon MO2 during exercise, Ucrit or cardiac performance. This was linked to an exceptional capacity to maintain plasma osmolality and tissue water content unchanged following all salinity challenges. This extraordinary adaptation would allow the seabass to maintain skeletal and cardiac muscle function while migrating through waters of widely differing salinities.Communicated by S.A. Poulet, Roscoff  相似文献   

17.
Nannochloris atomus was maintained in exponential growth at photon flux densities (PFD) from 400 to 700 nm, ranging from 10 to 200 mol m-2 s-1. Growth was lightsaturated at PFDs in excess of 100 mol m-2 s-1, with a mean light-saturated growth rate at 23 °C of 1.5×10-5s-1 (1.2 d-1). The light-limited growth rates extrapolated to a compensation PFD for growth that was not significantly different from zero, although no changes in cell numbers were observed in a single culture incubated at a PFD of 1.0 mol m-2s-1. Dark-respiration rates were independent of PFD, averaging 1.7×10-6 mol O2 mol-1 C s-1 (0.14 mol O2 mol-1 C d-1). The maximum photon (quantum) efficiency of photosynthesis was also independent of PFD, with a mean value of 0.12 mol O2 mol-1 photon. The chlorophyll a-specific light absorption cross-section ranged from 3 to 6×10-3 m2 mg-1 chl a and was lowest at low PFDs due to intracellular self-shading of pigments associated with high cell-chlorophyll a contents. The C:chl a ratio increased from 10 to 40 mg C mg-1 chl a between PFDs of 14 and 200 mol m-2 s-1. These new observations for N. atomus are compared with our previous observations for the diatom Phaeodactylum tricornutum in terms of an energy budget for microalgal growth.  相似文献   

18.
Measurements of routine swimming speed, tail-flip escape responses, and oxygen consumptions were made of the deep-sea shrimp Acanthephyra eximia using autonomous landers in the Rhodos Basin at depths of up to 4,400 m and temperatures of 13–14.5°C. Routine swimming speeds at 4,200 m averaged 0.18 m s–1 or 3.09 body lengths s–1, approximately double those of functionally similar oceanic scavengers. During escape responses peak accelerations of 23 m s–2 or 630.6 body lengths s–2 were recorded, with animals reaching speeds of 1.61 m s–1 or 34.8 body lengths s–2. When compared to shallow-water decapods at similar temperatures these values are low for a lightly calcified shrimp such as A. eximia despite a maximum muscle mass specific power output of 90.0 W kg–1. A preliminary oxygen consumption measurement indicated similar rates to those of oceanic crustacean scavengers and shallower-living Mediterranean crustaceans once size and temperature had been taken into account. These animals appear to have high routine swimming speeds but low burst muscle performances. This suite of traits can be accounted for by high competition for limited resources in the eastern Mediterranean, but low selective pressure for burst swimming due to reductions in predator pressure.Communicated by J.P. Thorpe, Port Erin  相似文献   

19.
Captan did not affect the survival of Dungeness crab (Cancer magister Dana) zoea exposed to 30 g l-1 during a chronic toxicity test lasting 69 days, but larvae were quickly killed (mean survival time = 9 days) in the same test by exposure to 450 g l-1 of the fungicide. Delay of molting occurred, however, for later stages at 30 g l-1. Survival of juvenile crabs was not reduced by exposure to captan for 36 days at 510 g l-1 or, in a second test, for 80 days at 290 g l-1. No deaths of adults exposed for 75 days to 340 g l-1 of captan were observed. Captan appeared to accelerate hatching of eggs at all concentrations tested from 100 to 10,000 g l-1. The development from prezoeae during a 24-h period was not inhibited by the fungicide, but at 3,300 and 10,00 g l-1, the two highest concentrations tested, developing zoeae exhibited a morphological deformity and were largely inactive. Under the prevailing conditions in the toxicity tests, the half-life of captan was estimated to be from 23 to 54 h. Because of the relatively low toxicity of captan to crab stages and its high rate of degradation in sewater, it is suggested that the agricultural application of captan near marine waters is not likely to affect natural crab populations or crabs in laboratory culture. Further-more, the prophylactic use of captan as a fungicidal treatment for Lagenidium sp. in larval crab cultures is considered safe when used at recommended dosages.Technical Paper No. 4131, Oregon Agricultural Experiment Station.  相似文献   

20.
E. E. Deason 《Marine Biology》1980,60(2-3):101-113
Grazing experiments were performed with temperatureacclimated Acartia hudsonica fed the diatom Skeletonema costatum in concentrations ranging from 50 to 3×104 cell ml-1 at 5°, 10° and 15°C. The ingestion data were best fit by an Ivlev equation. Feeding threshold values of 39 and 59 cells ml-1 were not significantly different from zero; however, filtration rates were depressed at low food concentrations. Maximum filtration rates increased exponentially with temperature, reaching a maximum with copepods collected at 14°–15°C, and then declining. Both the increase in ingestion rate with increasing food concentration and the maximum ingestion rate were significantly greater as experimental temperature was increased. Maximum ingestion rates were reached at concentrations greater than 6×103 cells ml-1. Percent of body carbon ingested per day at 5 g C L-1 increased from 1.5% at 5°C to 6.7% at 15°C. At 500 g C L-1, the ingestion increased from 84% (5°C) to 660% (15°C). Percent of body nitrogen at 0.5 g N L-1 increased from 0.6% per day at 5°C to 2.5% per day at 15°C. At 50 g N L-1, the ingestion was 42% body nitrogen at 5°C and 250% at 15°C. The influence of grazing by A. hudsonica on phytoplankton in Narragansett Bay, USA was estimated for 1972–1977. The percent of standing stock removed by grazing rarely exceeded 5% per day except during the late spring when S. costatum growth becomes nutrient limited and higher temperatures favor the rapid population growth of A. hudsonica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号