首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the second largest corn producer in this world, China has abundant corn straw resources. The study assessed the energy balance and global warming potential of corn straw-based bioethanol production and utilization in China from a life cycle perspective. The results revealed that bioethanol used as gasoline and diesel blend fuel could reduce global warming potential by 10%–97% and 4%–96%, respectively, as compared to gasoline and diesel for transport. The total global warming potential, net global warming potential, net energy, and Net Energy Ratio per MJ ethanol generated from corn straw-based bioethanol system are estimated to be 0.20 kg CO2-eq, 0.012 kg CO2-eq, 0.60 MJ, and 1.87, respectively. By using sensitivity analysis, we found that the collected coefficient and compressing density of straw have a more obvious influence on energy balance; transportation distance has a more obvious influence on global warming potential emission factor. The by-products may be utilized as fertilizer, animal feed, cement replacement, or high-value lignin chemicals, which make a contribution to offsetting 0.28 MJ per MJ ethanol of energy consumption.  相似文献   

2.
Climate change and energy security are global challenges requiring concerted attention and action by all of the world’s countries. Under these conditions, energy supplier and exporter countries in the Middle East region are experiencing further challenges, such as increasing domestic energy demand while energy exports have to concurrently be kept at high levels. Middle East countries process the largest proven oil and gas reserves in the world and contribute a large fraction of the world’s CO2 emissions from the use of these as fuels both domestically and internationally. This paper addresses different policies that could dramatically change the future course of the Middle East region toward a zero CO2 emission energy system. To this aim, an integrated energy supply–demand model has been developed to analyze required commitments including renewable energy and energy efficiency targets and the potential of nuclear power, all of which should need to be considered in order to reduce CO2 emissions by 2100. The results indicate that nearly 43% of the global energy of the Middle East region can be supplied from non-fossil fuel resources in 2100.  相似文献   

3.
In this paper, we assess energy demand due to fertilizer consumption in the period 1961–2001. Based on historical trends of gross energy requirements, we calculated that in 2001, global energy embedded in fertilizer consumption amounted to 3660 PJ, which represents about 1% of the global energy demand. Total energy demand has increased at an average rate of 3.8% p.a. Drivers behind the trend are rising fertilizer consumption and a shift towards more energy intensive fertilizers. Our results show that despite significant energy efficiency improvements in fertilizer manufacture (with exception of phosphate fertilizer in the last 20 years) improvements in energy efficiency have not been sufficient to offset growing energy demand due to rising fertilizer consumption. Furthermore, we found that specific energy consumption of ammonia and urea developed in close concordance with the learning curve model, showing progress ratios of 71% for ammonia production and 88% for urea. This suggests an alternative approach for including technological change in energy intensive industries in middle and long-term models dealing with energy consumption and CO2 emissions, while few learning curves exist for energy efficiency of end use technologies.  相似文献   

4.
Reaching the economic, environmental and sustainability objectives of all societies requires overcoming several major energy challenges; it necessitates rapid progress in multiple areas. The scenario pathways presented in this paper describe transformative changes toward these goals, taking a broad view of the four main energy challenges faced by society in the 21st century: providing universal access to modern energy for all; reducing the impacts of energy production on human health and the environment; avoiding dangerous climate change; and enhancing energy security. The overarching objective of the paper is to provide policy guidance on how to facilitate the transformation of the energy system to achieve these multiple energy objectives. Particular focus is given to the required pace of the transformation at both the global and regional levels, and to the types of financial and policy measures that will be needed to ensure a successful transition. Synergies and trade‐offs between the objectives are identified, and co‐benefits quantified. The paper makes an important contribution to the scenario literature by approaching the global transition toward sustainable development in a more integrated, holistic manner than is common in other studies.  相似文献   

5.
The imperatives for reducing the world's dependence on fossil and nuclear fuels have multiplied manifold in recent years with the advent of worldwide terrorism. These new dangers come in addition to the imperatives of addressing the dire consequences of global warming and devastating pollution that accompany the use of these fossil fuels. Reducing dependence on these unsafe and unreliable energy resources should be a top global priority. Implementation of proven energy efficiency technologies offers the world the fastest, safest, most economic and most environmentally benign way to alleviate these threats. This article outlines available efficiency measures, their economic advantages and means by which they may be and have been implemented. While examples of efficiency applications from both developed and developing countries are given, the article relies heavily on experience with energy efficiency in the United States, where data on efficiency is particularly abundant.  相似文献   

6.
We used Life Cycle Assessment to scenario model the potential reductions in cumulative energy demand (both fossil and renewable) and global warming, acidifying, and ozone-depleting emissions associated with a hypothetical national transition from conventional to organic production of four major field crops [canola (Brassica rapa), corn (Zea mays), soy (Glycine max), and wheat (Triticum aestivum)] in Canada. Models of these systems were constructed using a combination of census data, published values, and the requirements for organic production described in the Canadian National Organic Standards in order to be broadly representative of the similarities and differences that characterize these disparate production technologies. Our results indicate that organic crop production would consume, on average, 39% as much energy and generate 77% of the global warming emissions, 17% of the ozone-depleting emissions, and 96% of the acidifying emissions associated with current national production of these crops. These differences were almost exclusively due to the differences in fertilizers used in conventional and organic farming and were most strongly influenced by the higher cumulative energy demand and emissions associated with producing conventional nitrogen fertilizers compared to the green manure production used for biological nitrogen fixation in organic agriculture. Overall, we estimate that a total transition to organic production of these crops in Canada would reduce national energy consumption by 0.8%, global warming emissions by 0.6%, and acidifying emissions by 1.0% but have a negligible influence on reducing ozone-depleting emissions.  相似文献   

7.
Abstract

Although intrinsically a global environmental concern, the climate change issue has a number of implications for local authorities. Within the European Union (EU), the remit of local authorities in—‐for abatement policies—the crucial areas of energy and transport policy varies considerably, as does their commitment to environmental action more generally. This paper examines the role of local authorities in climate protection within a framework of global, EU and national action, through examples of local strategies from Germany, Italy, Spain, Sweden and the UK. The paper finds positive instances of action in all countries, but points to unsympathetic policy frameworks both at national and EU level, such as budget constraints imposed on local authorities, the pursuit of low energy prices combined with a resistance to impose carbon taxes, a lack of energy efficiency standards and insufficient support for public transport.  相似文献   

8.
Although intrinsically a global environmental concern, the climate change issue has a number of implications for local authorities. Within the European Union (EU), the remit of local authorities in—-for abatement policies—the crucial areas of energy and transport policy varies considerably, as does their commitment to environmental action more generally. This paper examines the role of local authorities in climate protection within a framework of global, EU and national action, through examples of local strategies from Germany, Italy, Spain, Sweden and the UK. The paper finds positive instances of action in all countries, but points to unsympathetic policy frameworks both at national and EU level, such as budget constraints imposed on local authorities, the pursuit of low energy prices combined with a resistance to impose carbon taxes, a lack of energy efficiency standards and insufficient support for public transport.  相似文献   

9.
This paper summarises the methodology and results of work involved in the investigation of energy demand in six Chinese villages included in the SUCCESS Project. The procedures used to collect data associated with local energy demand are explained and the approach to data analysis is explained. Results are provided in terms for delivered energy consumption, as an indicator of energy demand; primary energy consumption, as an indicator of energy resource depletion; and carbon dioxide emissions, as an indicator of global climate change. Similarities and differences between results for this sample of villages are considered. The important causes of differences in results are investigated.  相似文献   

10.
This paper investigates the prediction of solar radiation model and actual solar energy in Osmaniye, Turkey. Four models were used to estimate using the parameters of sunshine duration and average temperature. In order to obtain the statistical performance analysis of models, the coefficient of determination (R2), mean absolute percentage error (MAPE), mean absolute bias error (MABE), and root mean square error (RMSE) were used. Results obtained from the linear regression using the parameters of sunshine duration and average temperature showed a good prediction of the monthly average daily global solar radiation on a horizontal surface. In order to obtain solar energy, daily and monthly average solar radiation values were calculated from the five minute average recorded values by using meteorological measuring device. As a result of this measurement, the highest monthly and yearly mean solar radiation values were 698 (April in 2013) and 549 (2014 year) W/m2 respectively. On an annual scale the maximum global solar radiation changes from 26.38 MJ/m2/day by June to 19.19 MJ/m2/day by September in 2013. Minimum global solar radiation changes from 14.05 MJ/m2/day by October to 7.20 MJ/m2/day by January in 2013. Yearly average energy potential during the measurement period was 16.53 MJ/m2/day (in 2013). The results show that Osmaniye has a considerable solar energy potential to produce electricity.  相似文献   

11.
The present research examines whether collective guilt for an ingroup's collective greenhouse gas emissions mediates the effects of beliefs about the causes and effects of global warming on willingness to engage in mitigation behavior. In Study 1, we manipulate the causes and effects of global warming and then measure collective guilt. Results demonstrate that collective guilt for Americans' greenhouse gas emissions is stronger when participants believe that global warming is caused by humans and will have minor effects. Study 2 employs the same manipulations and then measures collective guilt and collective anxiety, as well as willingness to conserve energy and pay green taxes. This study replicates the effect from Study 1 and rules out collective anxiety as a plausible alternative mediator. Collective guilt for Americans' greenhouse emissions was the only reliable mediator of the effect of beliefs about global warming on willingness to engage in mitigation behaviors. The importance of collective guilt as a tool for promoting global warming mitigation is discussed.  相似文献   

12.
Towards a grand deal on subsidies and climate change   总被引:3,自引:0,他引:3  
Recent studies have identified public subsidies as a principal cause of unsustainable development. Worldwide, governments are spending up to $U950 billion a year on subsidies. Many of these public subsidies fail to serve their purpose and in fact, often turn out as policy failures as they further distort trade and cause environmental harm. The energy sector is among the most subsidized sectors in the world, receiving over $U240 billion per annum of public subsidies. This article highlights current energy subsidies and their implications. The article examines: (i) the global size and distribution of energy subsidies in industrialized and developing countries; (ii) the impact of these subsidies on the economy, equity and the environment and their role as barriers for sustainable development; (iii) the political economy behind public subsidies and the various political and institutional barriers and lock-in mechanisms that cause subsidies to become entrenched in economic and public structures; and (iv) proposals for effective subsidy reform in energy policies, suggesting a global strategy to eliminate energy subsidies. OECD governments are in a position to take the lead, and the UN Framework Convention on Climate Change presents an excellent opportunity of striking a political grand deal and linking the reform of energy subsidies to a meaningful participation of developing countries to the Kyoto Protocol. Moreover, if sinks are to be included in the clean development mechanism (CDM), it is crucial to include the removal of forestry subsidies in the grand deal.  相似文献   

13.
Global climate change is an important cause of biodiversity loss. The conservation, sustainable management and use of biodiversity resources are key factors that can be effectively used to minimize the adverse impacts of global climate change. Efforts to understand and address the linkages between global climate change and biodiversity loss are both urgent and timely. Integrating responses related to these two global environmental challenges is especially relevant for small island developing States (SIDS) because the adverse impacts of climate change can impose severe stresses on biodiversity resources that are fragile, vulnerable and already under stress and the people who depend upon them. This paper argues that comprehensive assessments of adverse impacts of global climate change on the biodiversity resources of SIDS, and an improved understanding of relevant climate change related adaptation measures and sustainable energy policies (that are based on the principles of conservation, sustainable management and use of biodiversity resources) will enable SIDS to become more resilient and to develop better response capacities.  相似文献   

14.
The environmental impacts of food waste management strategies and the effects of energy mix were evaluated using a life cycle assessment model, EASEWASTE. Three different strategies involving landfill, composting and combined digestion and composting as core technologies were investigated. The results indicate that the landfilling of food waste has an obvious impact on global warming, although the power recovery from landfill gas counteracts some of this. Food waste composting causes serious acidification (68.0 PE) and nutrient enrichment (76.9 PE) because of NH3 and SO2 emissions during decomposition. Using compost on farmland, which can marginally reduce global warming (−1.7 PE), acidification (−0.8 PE), and ecotoxicity and human toxicity through fertilizer substitution, also leads to nutrient enrichment as neutralization of emissions from N loss (27.6 PE) and substitution (−12.8 PE). A combined digestion and composting technology lessens the effects of acidification (−12.2 PE), nutrient enrichment (−5.7 PE), and global warming (−7.9 PE) mainly because energy is recovered efficiently, which decreases emissions including SO2, Hg, NOx, and fossil CO2 during normal energy production. The change of energy mix by introducing more clean energy, which has marginal effects on the performance of composting strategy, results in apparently more loading to acidification and nutrient enrichment in the other two strategies. These are mainly because the recovered energy can avoid fewer emissions than before due to the lower background values in power generation. These results provide quantitative evidence for technical selection and pollution control in food waste management.  相似文献   

15.
There is a proactive interest in recovering water, nutrients and energy from waste streams with the increase in municipal wastewater volumes and innovations in resource recovery. Based on the synthesis of wastewater data, this study provides insights into the global and regional “potential” of wastewater as water, nutrient and energy sources while acknowledging the limitations of current resource recovery opportunities and promoting efforts to fast-track high-efficiency returns. The study estimates suggest that, currently, 380 billion m3 (m3 = 1,000 L) of wastewater are produced annually across the world which is a volume five-fold the volume of water passing through Niagara Falls annually. Wastewater production globally is expected to increase by 24% by 2030 and 51% by 2050 over the current level. Among major nutrients, 16.6 Tg (Tg = million metric ton) of nitrogen are embedded in wastewater produced worldwide annually; phosphorus stands at 3.0 Tg and potassium at 6.3 Tg. The full nutrient recovery from wastewater would offset 13.4% of the global demand for these nutrients in agriculture. Beyond nutrient recovery and economic gains, there are critical environmental benefits, such as minimizing eutrophication. At the energy front, the energy embedded in wastewater would be enough to provide electricity to 158 million households. These estimates and projections are based on the maximum theoretical amounts of water, nutrients and energy that exist in the reported municipal wastewater produced worldwide annually. Supporting resource recovery from wastewater will need a step-wise approach to address a range of constraints to deliver a high rate of return in direct support of Sustainable Development Goals (SDG) 6, 7 and 12, but also other Goals, including adaptation to climate change and efforts in advancing “net-zero” energy processes towards a green economy.  相似文献   

16.
The achievement possibilities of the EU 2 °C climate target have been assessed with the ETSAP TIAM global energy systems model. Cost-effective global and regional mitigation scenarios of carbon dioxide, methane, nitrous oxide and F-gases were calculated with alternative assumptions on emissions trading. In the mitigation scenarios, an 85% reduction in CO2 emissions is needed from the baseline, and very significant changes in the energy system towards emission-free sources take place during this century. The largest new technology groups are carbon-capture and storage (CCS), nuclear power, wind power, advanced bioenergy technologies and energy efficiency measures. CCS technologies contributed a 5.5-Pg CO2 annual emission reduction by 2050 and 12 Pg CO2 reduction by 2100. Also large-scale forestation measures were found cost-efficient. Forestation measures reached their maximum impact of 7.7 Pg CO2 annual emission reduction in 2080. The effects of uncertainties in the climate sensitivity have been analysed with stochastic scenarios.  相似文献   

17.
Renewable energy as well as nuclear energy are low carbon power that presents the life cycle emissions of greenhouse gases than fossil fuel energy. However, analyzing the relationship between the consumption of renewable energy, consumption of nuclear energy, CO2 emissions and economic growth is crucial for the economic and energy policy decision; we address this question for developed countries. This paper deals with the relationships between nuclear energy, environmental degradation, real GDP and renewable energy. We apply a panel data model for a global panel consisting of nine developed countries during the period 1990–2013. The group studied consists of Canada, France, Japan, Netherlands, Spain, Sweden, Switzerland, UK and the USA. The empirical findings suggest that: (1) a causal link between emissions and real income, (2) a unidirectional causality running from renewable energy to nuclear energy, (3) a unidirectional causal relationship running from capital to environmental degradation, (4) a unidirectional causal relationship running from income to nuclear energy consumption, since the growth hypothesis is valid, (5) a unidirectional causality running from capital to income, (6) no an outstanding role of renewable energy use in the contribution of CO2 emissions.  相似文献   

18.
This article does not focus on adaptation or mitigation policy directly but on an allied opportunity that exists for the Pacific Islands via the auspices of the Climate Convention, because the existing very costly energy systems used in the Pacific Island region are fossil-fuel dependent. It is argued here that efforts can be made towards the development of energy systems that are ecologically sustainable because Pacific Island nations are eligible to receive assistance to introduce renewable energy technology and pursue energy conservation via implementation mechanisms of the Climate Convention and, in particular, through transfer of technology and via joint implementation. It is contended that assistance in the form of finance, technology, and human resource development from developed countries and international organizations would provide sustainable benefits in improving the local Pacific Island environments. It is also emphasized that mitigation of greenhouse gas emissions is not the responsibility of the Pacific Islands as they contribute very little on a per capita global scale and a tiny proportion of total global greenhouse gas emissions.  相似文献   

19.
Selenium plays an important role in emerging thin film solar energy technologies. As solar energy is expected to have a larger share in the world's future energy portfolio, the long-term availability of selenium becomes a potential concern, yet no global cycles have ever been generated. In this work, the global cycles, stocks, and flows of selenium are characterized for the entire time period 1940–2010 by using principles of material flow analysis (MFA). The cycles present information on the production, fabrication and manufacturing, use, and resource management stages during that period. The results of the analysis show that during 1940–2010 approximately 90 Gg of refined selenium was produced and entered into fabrication and manufacturing worldwide. 60 Gg of this amount (two-thirds!) was dissipated into the environment through end-uses such as chemicals, pigments, glass manufacturing, metallurgical additives, and fertilizer and feed additives. The in-use stock of selenium is estimated at 2.7 Gg as of 2010. Because of data limitations such as proprietary and withheld information, these figures represent informed estimates rather than exact values. Selenium can be recovered from end-of-life electrical and electronic equipment, while for other end-uses recycling is difficult or impossible. One of the ways to buttress supplies of selenium for future technologies would be to deploy recycling schemes for photovoltaics as well as other electronics applications.  相似文献   

20.
In assessing and deciding the prediction schemes of solar irradiation countrywide, better the accuracy means better the management of energy transition toward renewables. Consequently, the present study is on the development of new models to make the most accurate possible estimations of the global and diffuse solar irradiation based on ground measurements. Such analysis produces the most accurate estimations for the input of solar energy systems. This is utmost significant for deciding the investments on solar energy systems and their design periods. Turkey is a high-potent country whose solar energy market has been growing rapidly. She doesn’t have adequate reliable measurement network and there is no estimation methodology developed for each and every point within its territory. Moreover, installing such a measurement system network doesn’t seem to be economically feasible and technically possible, inter alia. Accordingly, this study defines a methodology to make the most accurate estimations of monthly mean daily solar irradiation on horizontal surface and its diffuse and beam components. For the global and diffuse estimations, new methodologies in linear and quadratic forms are developed, compared, and discussed. The comparison is applied by using mean bias error and root mean square error statistical comparison methods. The measured data values used for modeling and comparisons are provided from the State Meteorological Service of Turkey responsible authority for solar irradiation measurements. The results revealed that the methodologies explained in this study give very high accurate values of total solar irradiation on a horizontal surface and its diffuse component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号