首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 663 毫秒
1.
Statistical analyses of global atmospheric concentrations provide evidence that C2Cl4, CHCl3 and CH3CCl3 (methylchloroform) are more abundant in the tropical boundary layer than above it (α ? 0.09) by 27% (±27%), 21% (?21%, +12%) and 6.4% (±6%) respectively. The air samples on which these results are based were collected by cryogenic techniques during the June 1978 project GAMETAG flights and analyzed soon afterwards by gas chromatography (EC/GC and GC/FID), thus providing latitudinal concentrations of CO, CH4, CCl3F, CCl2F2, CH3CCl3 and light C2-hydrocarbons, both in and above the boundary layer. In August 1980, after further development of analytical techniques, the stored air samples were re-analyzed to establish the latitudinal distributions of CH3I, CHCl3, C2Cl4, C2F3Cl3 (F-113) and CHClF2 (F-22) in and above the boundary layer. Stability studies, spanning a year, show that the concentrations of these gases do not change in the flasks.  相似文献   

2.
A collaborative test was conducted to determine the precision of the chemiluminescent method which has been specified for measuring ozone, to determine photochemical oxidant. Ten laboratories participated in a test involving the analysis of an urban atmosphere containing a photochemical smog mixture. Ozone generators were used to increase the O3 level over that naturally occurring, in order to cover an adequate range of concentrations. The range tested was 0 to 0.5 ppm.

A statistical analysis of the data obtained was used to derive equations for within laboratory and between laboratory standard deviations. In order to evaluate sampling data, these equations can be used in various statistical procedures to estimate repeatability, reproducibility, lower detectable limit, and other measures that establish the precision of the method.

Using specific definitions for repeatability and reproducibility, the following approximate estimates were obtained in the range of zero to 0.5 ppm:

Repeatability—0.01 to 0.04 ppm (varies with concentration, linear).

Reproducibility—0.01 to 0.09 ppm (varies with concentration, non-linear).

The lower detectable limit depends on instrumental and other variables, and cannot be specified precisely. Under typical assumptions, this limit can be estimated at between 0.006 and 0.009 ppm.  相似文献   

3.
The research team analyzed the emission characteristics of gaseous pollutants, including volatile organic compounds (VOCs), from biomass combustion in improved stoves in rural China. The research included measurements from five biofuels and two stove types in the months of January, April, and September. The measurements were conducted according to U.S. EPA Method 25 using a collection system with a cooling device and two-level filters. CO, CO2, NOx, CH4 and THC analyzers were used for in-field, real-time emission measurements. The emission data indicate that gaseous pollutants were emitted at higher concentrations in the early combustion stage and lower concentrations in the later stage. CH4 and THC, as well as CO and CO2, presented positive relationships during the whole entire combustion process for all tests. The chemical profiles of flue gas samples were analyzed by GC/MS and GC/FID/ECD. Aromatics, carbonyls, and alkenes & alkynes dominated the VOC emissions, respectively accounting for 37%, 33%, and 23% of total VOC emissions by volume. Benzene was the most abundant VOC species, consisting of 17.3 ± 8.1% of VOCs, followed by propylene (11.3 ± 3.5%), acetone (10.8 ± 8.2%), toluene (7.3 ± 5.7%) and acetaldehyde (6.5 ± 7.3%). Carbon mass balance approach was applied to calculate CO, CO2, CH4, NOx, and VOC species emission factors. This analysis includes a discussion of the differences among VOC emission factors of different biofuel-stove combinations.  相似文献   

4.
Abstract

Title III of the 1990 Clean Air Act Amendments designated methanol as a pollutant to be regulated. The U.S. Environmental Protection Agency (EPA), through a contract with Research Triangle Institute, has developed a method for measuring methanol emissions from stationary sources. The methanol sampling train (MST) consists of a glass-lined heated probe, two condensate knockout traps, and three sorbent cartridges packed with Anasorb® 747. Samples are desorbed with a 1:1 mixture of carbon disulfide (CS2) and N, N-dimethylformamide (DMF). Condensate water and CS2/ DMF samples are analyzed by gas chromatography with flame ionization detection. The MST has a practical quantitation limit of approximately 3 ppm for a 20-L sample. Samples were shown to be stable for at least two weeks after collection.

Field tests of the MST and the National Council of the Paper Industry for Air and Stream Improvement (NCASI) methanol sampling method were conducted at two pulp and paper mills. Sampling and analysis procedures followed EPA Method 301 requirements.

The sampling location for the first field test was the inlet vent to a softwood bleach plant scrubber, where the methanol concentration was approximately 30 ppm. The mean recovery of spike was 108.3% for the MST method and 81.6% for the NCASI method. Although neither method showed significant bias at the 95% confidence level, the betweenmethods bias was significantly different.

A second field test was conducted at a vent from a black liquor oxidation tank where the methanol concentration was approximately 350 ppm. Mean spike recoveries were 96.6 and 94.2% for the MST and NCASI methods, respectively. The biases of the two methods and the between-methods bias were not significantly different for the second field test.  相似文献   

5.
Abstract

Dichloromethane (DCM, also known as methylene chloride [CH2Cl2]) is often present in industrial waste gas and is a valuable chemical product in the chemical industry. This study addresses the oxidation of airstreams that contain CH2Cl2 by catalytic oxidation in a tubular fixed-bed reactor over perovskite-type oxide catalysts. This work also considers how the concentration of influent CH2Cl2 (Co = 500-1000 ppm), the space velocity (GHSV = 5000-48,000 1/hr), the relative humidity (RH = 10-70%) and the concentration of oxygen (O2 = 5-21%) influence the operational stability and capacity for the removal of CH2Cl2.

The surface area of lanthanum (La)-cobalt (Co) composite catalyst was the greatest of the five perovskite-type catalysts prepared in various composites of La, strontium, and Co metal oxides. Approximately 99.5% CH2Cl2 reduction was achieved by the catalytic oxidation over La-CoO3-based perovskite catalyst at 600 °C. Furthermore, the effect of the initial concentration and reaction temperature on the removal of CH2Cl2 in the gaseous phase was also monitored. This study also provides information that a higher humidity corresponds to a lower conversion. Carbon dioxide and hydrogen chloride were the two main products of the oxidation process at a relative humidity of 70%.  相似文献   

6.
ABSTRACT

U.S. Environmental Protection Agency (EPA) Method 26A is the recommended procedure for capturing and speci-ating halogen (X2) and hydrogen halide (HX) stack emissions from combustion sources. Previous evaluation studies of Method 26A have focused primarily on hydrogen chloride (HCl) speciation. Capture efficiency, bias, and the potential interference of Cl2 at high levels (>20 ppm [u,g/m3]) and NH4Cl in the flue gas stream have been investigated. It has been suggested that precise Cl2 measurement and accuracy in quantifying HX or X2 using Method 26A are difficult to achieve at Cl2 concentrations <5 ppm; however, no performance data exist to support this. Coal contains low levels of Cl, in the range of 5-2000 ppmw, which results in the presence of HCl and Cl2 in the products of combustion. HCl is the predominant Cl compound formed in the high-temperature combustion process, and it persists in the gas as the products of combustion cool. Concentrations of Cl2 in coal combustion flue gas at stack temperatures typically do not exceed 5 ppm. For this research, bench-scale experiments using simulated combustion flue gas were designed to validate the ability of Method 26A to speci-ate low levels of Cl2 accurately. This paper presents the results of the bench-scale tests. The effect of various flue gas components is discussed. The results indicate that SO2 is the only component in coal combustion flue gas that has an appreciable effect on Cl2 distribution in Method 26A impingers, and that Method 26A cannot accurately speciate HCl and Cl2 in coal combustion flue gas without modification.  相似文献   

7.
Continuous monitoring of ambient non-methane hydrocarbons (NMHCs) by automated gas chromatographs equipped with flame ionization detection (termed in-situ GC/FID) with hourly data resolution was instated in ozone non-attainment areas throughout Taiwan. Performance of these on-site in-situ GCs was validated by manual flask sampling, as well as by in-lab gas chromatography/mass spectrometry (GC/MS) analysis. More than 50 VOCs from C2 to C11 were analyzed by both methods. Ninety flask samples were collected in series near an in-situ GC monitoring station in order to closely compare with the in-situ measurements. Both time-series and scatter plots from the two methods are displayed and discussed. It was found that over-simplified, un-humidified single-point calibration leading to surface loss was responsible for the bias in the in-situ method, resulting in greater error in accuracy as VOC volatility decreased. Although this over-estimate of the concentrations was found across all target VOCs, both methods were able to consistently capture the variability of ambient VOCs, with R2 values greater than 0.9 for most of the major VOCs.  相似文献   

8.
An automatic process gas chromatograph has been developed for use on the recovery furnace stack of a Kraft pulp mill. The instrument analyzes for widely varying concentrations of H2S, SO2, CH3SH and higher order sulfur compounds. It is insensitive to the fixed gases and water vapor, and performs its analysis in approximately ten minutes. The instrument features a microcoulometric detector giving it sensitivity to H2S as low as 0.1 ppm, and SO2 and CH3SH as low as 0.5 ppm. The major limit to even higher sensitivity at this stage of development lies with two problems: the background noise level in the detector and the sulfur compound absorption in the Porapak Q chromatograph column. At the reported sensitivity, a 40-ml gas sample was used. The instrument also contains a data analysis system supplementary to the usual strip chart recorder. This system is made up of a digital voltmeter, a digital translator, and a teletype and hence allows the transfer of the output data to a digital computer for processing. The processed data are usually presented in the form of ppm quantities of the component gases in the stack gas. The instrument has worked successfully on small furnace effluent for periods of 25 hr but has not been tried on recovery furnace stacks. It has also run on prepared samples for periods of up to seven days with no maintenance or attendance necessary.  相似文献   

9.
A new field sampler has been developed for measuring the particulate matter (PM) and carbon monoxide emissions of woodburning stoves. Particulate matter is determined by carbon balance and the workup of a sample train which is similar to a room-temperature EPA Method 5G train. A steel tank, initially evacuated, serves as the motive force for sampling and also accumulates a gas sample for post-test analysis of time-averaged stack CO and CO2 concentrations. Workup procedures can be completed, within 72 hours of sampler retrieval. The system has been compared to reference methods in two laboratory test series involving six different woodburning appliances and two independent laboratories. The correlation of field sampler emission rates and reference method rates is strong.  相似文献   

10.
This paper focuses the application of a measurement technique for determining atmospheric C2–C6 hydrocarbons after canister sampling and analysis by gas chromatography/flame ionisation detection (GC/FID), as well of an adsorption-sampling technique for C6–C11 compounds and GC/FID analysis after thermal desorption and cryogenic concentration. Tens of samples collected at Giesta, a rural area located 20 km to the SE of the coastal Portuguese city of Aveiro, were analysed. The characterisation of C2 C11 hydrocarbons is presented, considering seasonal variations, diurnal cycles, the influence of air masses and different photochemical conditions. Ratios between hydrocarbons and principal components analysis were applied to differentiate between biogenic and anthropogenic sources.  相似文献   

11.
An automated timed exposure diffusive sampler (TEDS) for sampling nitrogen dioxide (NO2) was developed for use in epidemiological studies. The TEDS sequentially exposes four passive sampling devices (PSD) by microprocessor controlled valves while a pump and air flow guide prevent sampler "starvation." Two TEDS units and two portable, real-time NO2 monitors were tested for accuracy, precision, sensitivity, and linearity of response. The accuracy of the TEDS was within 10 percent of the calibrated NO2 values, and precision was within 10 percent of the means of the measured values. The TEDS sensitivity was 20 to 30 ppb-hour for NO2. Co-location of the TEDS with a chemiluminescent NOX monitor (EPA reference method) showed similar responses to ambient NO2 (R2 = 0.9991). TEDS allows better time resolution than traditional diffusive samplers (i.e., Palmes tube) while sharing their ability to sample a variety of gases.  相似文献   

12.
An analytical method for measuring atmospheric methyl halides was established based on canister sampling and capillary GC/MS. Stability tests for air samples collected in two kinds of canisters (electro-chemical buffing and fused-silica lined) with smooth inner surfaces, showed that both provided stable storage for CH3Cl, CH3Br, and CH3I. The method was applied to the measurement of methyl halides at a remote island (Okinawa, Japan) in August 1996, where nocturnal ozone depletion had been observed in summer. We found that atmospheric CH3Cl increased during stable nights and was negatively correlated with surface ozone concentration. The highest CH3Cl concentration amounted to as high as 1400 pptv and indicated that CH3Cl emitted from the surrounding coastal areas had accumulated in the boundary layer under a stable atmosphere at that time. A positive correlation was observed between CH3Br and CH3I, suggesting a common source in the area.  相似文献   

13.
Rates of CO2 production in the reaction CO + OH and CO + OH + halocarbon have been used to determine rate constants for some OH + halocarbon reactions at 29.5°C relative to that of k(CO + OH) = 2.69 × 10?13 cm3 molecule?1 sec?1. The following rate constants were obtained: k(OH + CH3Cl) = 3.1 ± 0.8, k(OH + CH2Cl2) = 2.7 ± 1.0, k(OH + C2H5Cl) = 44.0 ± 25, k(OH + CICH2CH2CI) = 6.5, (<29) and k(OH + CH3CCl3) = 2.1 (<5.7) cm3 molecule?1 sec?1 × 10?14. The k values, CH2Cl2 excepted, are in substantial agreement with determinations made in nonoxygen environments. The present results for CH2Cl2 are almost certainly in error due to difficulties with the competitive approach used.  相似文献   

14.
改进GC/FID法连续观测大气中CO浓度   总被引:1,自引:0,他引:1  
改进装配有氢火焰离子化检测器(即FID)的气相色谱仪(GC),可连续监测大气中痕量气体CO浓度.本系统采用单阀双柱反吹进样技术,优选前置柱能更有效地剔除杂质,提高了分析柱效率,保持色谱基线平稳,提高分辨率和定量分析的准确率.优化后的气路设计与色谱柱的改进,使GC/FID对CO的最低检出限达到10×10-9、精密度误差小于2%,准确度在±2%之内.将气相色谱与动态气体稀释仪耦合使系统能够自动进行工作曲线校准,系统自动采样、分析和标定,无需人员职守.对北京大气CO连续观测结果表明,北京大气CO浓度变化受气象要素与排放源双重控制.  相似文献   

15.
Abstract

Levels of acephate (OrtheneR) and its principle metabolite, methamidophos, in/on greenhouse‐grown pepper and cucumber fruits and leaves in relation to the applied methamidophos were monitored. Dislodgeable and total residues of acephate and methamidophos were determined by gas‐liquid chromatography equipped with a flame ionization detector (GC‐FID) and were confirmed by nitrogen phosphorus detector (GC‐NPD). The dissipation curves of the residues followed first‐order kinetics (R2> 0.96). Initial residues of acephate on fruits varied between pepper (15.12 ppm) and cucumber (2.16 ppm) . Total residues in fruits and leaves determined at intervals following application revealed the greater persistence of acephate on pepper fruits (half‐life [t1/2] of 6 d) than on cucumber fruits (t1/2 was 3.7 d) . T1/2 values for the applied methamidophos were 4.7 and 5.3 d on pepper and cucumber fruits, respectively. Deacety‐lation of acephate (formation of its metabolite) was detectable 1 d following acephate treatment and reached a maximum of 2.05% of initial acephate residues 3 d after application on pepper fruits. On cucumber fruits, acephate metabolite reached a maximum of 2.12% one wk following application. No acephate residues were detected above the limit of detection of 0.001 ppm in pepper fruits 50 d following acephate application while its metabolite was detectable at that time (detectability limit was 0.0001 ppm).  相似文献   

16.
Size-classified ice crystal samples were collected during the Spring of 1998, at the Jungfraujoch High-Alpine Research Station (3454 m), located in Switzerland. A procedure modified from the Guttalgor method, originally developed for size-selective sampling of raindrops by Bächmann et al. (Atmos. Environ. 26A (1992) 1795) was used to sample ice crystals during precipitation events. The size-classified ice crystal samples were analyzed using ion chromatography to determine the concentrations of Na+, NH4+, K+, Ca2+, Mg2+, Cl, NO3, and SO42− in each size class. For ions associated with coarse mode aerosol, Na+, K+, Ca2+, Mg2+, and Cl, concentration increased with decreasing ice crystal size, suggesting scavenging by nucleation. For the remaining ions, mixed behavior was observed suggesting a combination of gas phase scavenging and scavenging via riming.  相似文献   

17.
Precipitation and throughfall samples were collected over a period of 4 years (1 January 1996–31 December 1999) at three different sites in Poland: one on moraine hills, one in the lowlands and one in a mountainous region. The aim of this project was to study the chemical composition of the samples, ionic correlations and fluctuations of selected variables with time in relation to geographical location, type of tree cover and climatic conditions. The samples were characterized by determining the values of pH, electrolytic conductivity and concentrations levels of SO42−, NO3, Cl, Ca2+, K+, Na+ and Mg2+. Statistical analysis revealed significant differences between the results obtained for different sampling site locations and characteristics (region of Poland, open area vs. throughfall) in four cases. The results obtained for precipitation samples were similar to those for throughfall samples only for acidic anions (SO42− and Cl). For open areas, pH fluctuations were observed in 12-month cycles. Differences between the concentration levels of ions in the samples from the three sites could be explained by different amounts of precipitation at these sites. Concentrations of ions in precipitation and throughfall samples followed similar trends, the concentration levels being dependent on the kind of trees in the area, their age, and acidity of the precipitation. Significant differences were found for the concentration factors of the individual ions in throughfall between the sampling sites. Ionic correlations were examined to determine which salts contributed to the observed ion levels.  相似文献   

18.
In this study, fine particulate matter (PM2.5) emitted from a municipal solid waste incinerator (MSWI) was collected using dilution sampling method. Chemical compositions of the collected PM2.5 samples, including carbon content, metal elements, and water-soluble ions, were analyzed. Traditional in-stack hot sampling was simultaneously conducted to compare the influences of dilution on PM2.5 emissions and the characteristics of the bonded chemical species. The results, established by a dilution sampling method, show that PM2.5 and total particulate matter (TPM) emission factors were 61.6 ± 4.52 and 66.1 ± 5.27 g ton-waste?1, respectively. The average ratio of PM2.5/TPM is 0.93, indicating that more than 90% of PM emission from the MSWI was fine particulate. The major chemical species in PM2.5 included organic carbon (OC), Cl?, NH4+, elemental carbon (EC) and Si, which account for 69.7% of PM2.5 mass. OC was from the unburned carbon in the exhaust, which adsorbed onto the particulate during the cooling process. High Cl? emission is primarily attributable to wastes containing plastic bags made of polyvinyl chloride, salt in kitchen refuse and waste biomass, and so on. Minor species that account for 0.01–1% of PM2.5 mass included SO42-, K+, Na, K, NO3?, Al, Ca2+, Zn, Ca, Cu, Fe, Pb, and Mg. The mean ratio of dilution method/in-stack hot method was 0.454. The contents of water-soluble ions (Cl?, SO42-, NO3?) were significantly enriched in PM2.5 via gas-to-particle conversion in the dilution process. Results indicate that in-stack hot sampling would underestimate levels of these species in PM2.5.

Implications: PM2.5 samples from a municipal solid waste incinerator (MSWI) were collected simultaneously by a dilution sampling technique and a traditional in-stack method. PM2.5 emission factors and chemical speciation profiles were established. Dilution sampling provides more reliable data than in-stack hot sampling. The results can be applied to estimate the PM2.5 emission inventories of MSWI, and the source profile can be used for contribution estimate of chemical mass balance modeling.  相似文献   

19.
Abstract

The evaluation of emissions of volatile organic compounds (VOCs) during processing of resins is of interest to resin manufacturers and resin processors. An accurate estimate of the VOCs emitted from resin processing has been difficult due to the wide variation in processing facilities. This study was designed to estimate the emissions in terms of mass of emitted VOC per mass of resin processed.

A collection and analysis method was developed and validated for the determination of VOCs present in the emissions of thermally processed acrylonitrile butadiene styrene (ABS) resins. Four composite resins were blended from automotive, general molding, pipe, and refrigeration grade ABS resins obtained from the manufacturers. Emission samples were collected in evacuated 6-L Summa canisters and then analyzed using gas chromatography/flame ionization detection/mass selective detection (GC/FID/MSD). Levels were determined for nine target analytes detected in canister samples, and for total VOCs detected by an inline GC/FID. The emissions evolved from the extrusion of each composite resin were expressed in terms of mass of VOCs per mass of processed resin. Styrene was the principal volatile emission from all the composite resins. VOCs analyzed from the pipe resin sample contained the highest level of styrene at 402 μg/g. An additional collection and detection method was used to determine the presence of aerosols in the emissions. This method involved collecting particulates on glass fiber filters, extracting them with solvents, and analyzing them using gas chromatography/mass spectrometry (GC/MS). No significant levels of any of the target analytes were detected on the filters.  相似文献   

20.
《Environmental Forensics》2002,3(3-4):263-278
The existing Nordtest methodology for oil spill Identification has over the past 10 years formed an important “platform” for solving oil spill identification cases both in the Scandinavian countries as well as other countries in Europe, the USA and Canada. “Revision of the Nordtest Methodology for Oil Spill Identification” is a cooperative project between the National Oil Spill Identification laboratories in Norway, Sweden, Finland, Denmark and the Battelle Memorial Institute (Duxbury) in the USA. The goals of the project are: (1) to refine the existing Nordtest methodology into a technically more robust and defensible oil spill identification methodology with focus on determination of quantitative diagnostic indices (ratios) and (2) to adjust the revised Nordtest methodology into guidelines for the European Committee for Standardization (CEN). This paper presents the recommended methodology for the analytical oil spill identification part. The sampling techniques and handling of oil samples and background (reference) samples prior to their arrival at the environmental forensic laboratory is not covered in this paper. The recommended methodology approach is a result of documented analytical improvements and a more quantitative treatment of analytical data from gas chromatographic-flame ionization detector (GC/FID) and gas chromatographic-mass spectrometer methods (GC/MS-SIM) and the operational experiences over past few years among the participating forensic laboratories. The experience and literature in the field of oil exploration and production geochemistry have also played an important role for the recommended methodology. The results from a recent Round Robin test carried out among 12 laboratories using this new methodology are presented in a separate paper in this issue (8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号