首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Marcellus Shale is one of the largest natural gas reserves in the United States; it has recently been the focus of intense drilling and leasing activity. This paper describes an air emissions inventory for the development, production, and processing of natural gas in the Marcellus Shale region for 2009 and 2020. It includes estimates of the emissions of oxides of nitrogen (NOx), volatile organic compounds (VOCs), and primary fine particulate matter (≤2.5 µm aerodynamic diameter; PM2.5) from major activities such as drilling, hydraulic fracturing, compressor stations, and completion venting. The inventory is constructed using a process-level approach; a Monte Carlo analysis is used to explicitly account for the uncertainty. Emissions were estimated for 2009 and projected to 2020, accounting for the effects of existing and potential additional regulations. In 2020, Marcellus activities are predicted to contribute 6–18% (95% confidence interval) of the NOx emissions in the Marcellus region, with an average contribution of 12% (129 tons/day). In 2020, the predicted contribution of Marcellus activities to the regional anthropogenic VOC emissions ranged between 7% and 28% (95% confidence interval), with an average contribution of 12% (100 tons/day). These estimates account for the implementation of recently promulgated regulations such as the Tier 4 off-road diesel engine regulation and the U.S. Environmental Protection Agency's (EPA) Oil and Gas Rule. These regulations significantly reduce the Marcellus VOC and NOx emissions, but there are significant opportunities for further reduction in these emissions using existing technologies.

Implications: The Marcellus Shale is one of the largest natural gas reserves in United States. The development and production of this gas may emit substantial amounts of oxides of nitrogen and volatile organic compounds. These emissions may have special significance because Marcellus development is occurring close to areas that have been designated nonattainment for the ozone standard. Control technologies exist to substantially reduce these impacts. PM2.5 emissions are predicted to be negligible in a regional context, but elemental carbon emissions from diesel powered equipment may be important.  相似文献   


2.
Currently available information suggests a substantial environmental impact from residential wood combustion emissions. Air pollution from this source is widespread and increasing. Current ambient measurements, surveys, and model predictions indicate winter respirable (<2 μm) emissions from residential wood combustion can easily exceed all other sources. Both the chemical potency and deliverability of the emissions from this source are of concern. The emissions are almost entirely in the inhalable size range and contain toxic and priority pollutants, carcinogens, co-carcinogens, cilia toxic, mucus coagulating agents, and other respiratory irritants such as phenols, aldehydes, etc. This source is contributing substantially to the nonattainment of current particulate, carbon monoxide, and hydrocarbon ambient air quality standards and will almost certainly have a significant impact on potential future standards such as inhalable particulates, visibility, and other chemically specific standards. Emission from this growing source is likely to require additional expenditures by industry for air pollution control equipment in nonattainment areas.  相似文献   

3.
Abstract

Interest in regulations to control solvent emissions from automotive painting systems is increasing, especially in ozone nonattainment areas. Therefore, an accurate measurement method for VOC emissions from paint spray booths used in the automotive industry is needed to ascertain the efficiency of the spray booth capture and the total emissions. This paper presents the results of a laboratory study evaluating potential VOC sampling and analytical methods used in estimating paint spray booth emissions, and discusses these results relative to other published data. Eight test methods were selected for evaluation. The accuracy of each sampling and analytical method was determined using test atmospheres of known concentration and composition that closely matched the actual exhaust air from paint spray booths. The solvent mixture to generate the test atmospheres contained a large proportion of polar, oxygenated hydrocarbons such as ketones and alcohols. A series of identical tests was performed for each sampling/analytical method with each test atmosphere to assess the precision of the methods. The study identified significant differences among the test methods in terms of accuracy, precision, cost, and complexity.  相似文献   

4.
The U.S. Environmental Protection Agency (EPA), state and local agencies have focused their efforts in assessing secondary fine particulate matter (aerodynamic diameter ≤2.5 µm; PM2.5) formation in prevention of significant deterioration (PSD) air dispersion modeling. The National Association of Clean Air Agencies (NACAA) developed a method to account for secondary PM2.5 formation by using sulfur dioxide (SO2) and nitrogen oxides (NOx) offset ratios. These ratios are used to estimate the secondary formation of sulfate and nitrate PM2.5. These ratios were first introduced by the EPA for nonattainment areas in the Implementation of the New Source Review (NSR) Program for Particulate Matter Less than 2.5 Micrometers (PM2.5), 73 FR 28321, to offset emission increases of direct PM2.5 emissions with reductions of PM2.5 precursors and vice versa. Some regulatory agencies such as the Minnesota Pollution Control Agency (MPCA) have developed area-specific offset ratios for SO2 and NOx based on Comprehensive Air Quality Model with Extensions (CAMx) evaluations for air dispersion modeling analyses. The current study evaluates the effect on American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) predicted concentrations from the use of EPA and MPCA developed ratios. The study assesses the effect of these ratios on an electric generating utility (EGU), taconite mine, food processing plant, and a pulp and paper mill. The inputs used for these four scenarios are based on common stack parameters and emissions based on available data. The effect of background concentrations also evaluates these scenarios by presenting results based on uniform annual PM2.5 background values. This evaluation study helps assess the viability of the offset ratio method developed by NACAA in estimating primary and secondary PM2.5 concentrations. An alternative Tier 2 approach to combine modeled and monitored concentrations is also presented.

Implications:

On January 4, 2012, the EPA committed to engage in rulemaking to evaluate updates to the Guideline on Air Quality Models (Appendix W of 40 CFR 51) and, as appropriate, incorporate new analytical techniques or models for secondary PM2.5. As a result, the National Association of Clean Air Agencies (NACAA) developed a screening method involving offset ratios to account for secondary PM2.5 formation. The use of this method is promising to evaluate total (direct and indirect) PM2.5 impacts for permitting purposes. Therefore, the evaluation of this method is important to determine its viability for widespread use.  相似文献   


5.
The Clean Air Act (and proposed Clean Air Act Amendments in H.R. 5252) are addressed relative to quantification of emission data. Six case studies performed for the National Commission on Air Quality (NCAQ) are reviewed. The models used to quantify the amount of emissions needed to meet air quality standards for O3, particulates, and SO2 are reviewed for each case study city. Technical and resource limitations in meeting the Act’s emission inventory requirements for nonattainment plans.and PSD permitting are outlined.  相似文献   

6.
The purpose of this paper is to present a discussion of the latest developments in continuous gaseous emissions measurement. Subject areas include extractive and in-situ measurement. An exhaustive discussion of all instrumental methods currently available for use is neither appropriate nor productive in that several reviews have already been published in this area. Current needs for the development of new instrumentation in support of pending EPA regulations will be noted.  相似文献   

7.
Abstract

Reformulated gasoline (RFG) contains oxygen additives such as methyl tertiary butyl ether or ethanol. The additives enable vehicles to burn fuel with a higher air/fuel ratio, thereby lowering the emission of carbon monoxide (CO) and volatile organic compounds (VOCs). Because VOCs react with sunlight to form ozone (O3), the Clean Air Act requires severe O3 nonattainment areas such as southeastern Wisconsin to use RFG. On July 17, 2001, the U.S. Environmental Protection Agency (EPA) granted Milwaukee, WI, and Chicago, IL, a waiver from the VOC reduction requirement of Phase II RFG. The VOC reduction requirement was lowered from 27.4% of the 1990 baseline fuel to 25.4%. The assumption was that ethanol-blended RFG would lower summertime CO concentrations sufficiently to offset the increased VOC emissions. The waiver is estimated to increase VOC emissions by ~0.8%, or 0.4 t of VOC on a hot summer weekday. This study evaluates whether RFG has been effective in lowering southeastern Wisconsin ambient CO concentrations. Three years of ambient CO data before RFG was introduced were compared with the first three years of ambient CO data after RFG was introduced. This paper also evaluates how the meteorology, vehicle inspection/maintenance program, vehicle miles traveled, and stationary source emissions influence CO concentrations. The winter decrease in ambient CO concentrations was found to be statistically significant, while the summer data showed no statistically significant change, indicating that RFG is most effective lowering ambient CO concentrations in cold weather.  相似文献   

8.
Two integrated sampling and analysis methods for determining NOx emissions in electric utility plants were developed and field tested. The collection systems consist of: a 4.0% potassium permanganate-2.0% sodium hydroxide solution in restricted-orifice impingers, and a 5A° molecular sieve in midget impingers. Sample analysis is accomplished by a colorimetric or ion-chromatographic procedure with the alkaline-permanganate method and by a colorimetric procedure with the molecular sieve method. The alkalinepermanganate method gives excellent agreement with the EPA reference method, Method 7, for NO x measurements. The molecular sieve method shows a significant negative bias relative to Method 7. It is anticipated that the permanganate methods will be proposed as alternates to Method 7, for NO x determinations, under the EPA New Source Performance Standards.  相似文献   

9.
Abstract

The Traffic Air Quality (TAQ) model is a simple tool to estimate traffic fine particulate emissions on roadways (g/km) and can be used for both real-time analysis and for localized conformity analysis (“hot-spot” analysis for nonattainment areas) as defined by 40 CFR 93.123. This paper is a follow-up to a study published earlier regarding the development of the TAQ model. This paper shows how local air quality levels can be a factor in traffic management in nonattainment areas. Similar to the industrial source quotas measured in tons per year, it is proposed that road segments are to be assigned emission quotas (or TAQ indices) measured in pollutant mass emitted per road length (g/km) above which traffic-measures have to be taken to reduce the fine-particulates emissions on such road links. The TAQ model as well as traffic-rerouting measures along with the Intelligent Transportation System (ITS) protocols can be used to have a real-time control of the traffic conditions along expressways to maintain the fine-particulates emissions below the quota assigned per road link and consequently improving the over all local air quality in nonattainment areas.  相似文献   

10.
Interest in regulations to control solvent emissions from automotive painting systems is increasing, especially in ozone nonattainment areas. Therefore, an accurate measurement method for VOC emissions from paint spray booths used in the automotive industry is needed to ascertain the efficiency of the spray booth capture and the total emissions. This paper presents the results of a laboratory study evaluating potential VOC sampling and analytical methods used in estimating paint spray booth emissions, and discusses these results relative to other published data. Eight test methods were selected for evaluation. The accuracy of each sampling and analytical method was determined using test atmospheres of known concentration and composition that closely matched the actual exhaust air from paint spray booths. The solvent mixture to generate the test atmospheres contained a large proportion of polar, oxygenated hydrocarbons such as ketones and alcohols. A series of identical tests was performed for each sampling/analytical method with each test atmosphere to assess the precision of the methods. The study identified significant differences among the test methods in terms of accuracy, precision, cost, and complexity.  相似文献   

11.
ABSTRACT

Because the U. S. Environmental Protection Agency (EPA) has changed the National Ambient Air Quality Standards (NAAQS) for ambient particulate matter (PM), there is a great deal of interest in determining recent PM trends. This paper examines trends in PM10 (i.e., particulate matter less than 10 micrometers in diameter) for areas of the United States based on their attainment status—for PM10 and ozone nonattainment and attainment areas. The analysis also focuses on urban, suburban, and rural areas, and eastern and western areas. The time period of evaluation is from 1988 through 1995. To shed further light on the ambient PM10 trends, trends in ambient SO2, NO2, and volatile organic compounds (VOCs) are also analyzed. Finally, trends in emission inventories of SO2, NOx, VOCs, and PM10 are evaluated. Results of the analysis show that widespread and similar reductions in PM10 levels have occurred over the last seven years. Annual reductions range from 3.0% to 3.8%, with the greatest reductions coming in PM10 nonattainment areas, but with very significant reductions also in PM10 attainment areas, ozone attainment areas, and rural areas. The widespread reductions appear to be due to a set of controls or common factors that are having a fairly uniform effect in all of the areas. The consistency of the reductions in different areas suggests that the reductions may also be primarily in the fine particles (i.e., those less than 2.5 micrometers in diameter, or PM2.5), which are more readily transported than coarse particles.  相似文献   

12.
Although the fugitive dust associated with construction mud/dirt carryout can represent a substantial portion of the particulate matter (PM) emissions inventory in nonattainment areas, it has not been well characterized by direct sampling methods. In this paper, a research program is described that directly determined both PM10 and PM2.5 (particles < or =10 and 2.5 microm in classical aerodynamic diameter, respectively) emission factors for mud/dirt carryout from a major construction project located in metropolitan Kansas City, MO. The program also assessed the contribution of automotive emissions to the total PM2.5 burden and determined the baseline emissions from the test road. As part of the study, both time-integrated and continuous exposure-profiling methods were used to assess the PM emissions, including particle size and elemental composition. This research resulted in overall PM10 and PM2.5 emission factors of 6 and 0.2 g/vehicle, respectively. Although PM10 is within the range of prior U.S. Environmental Protection Agency (EPA) guidance, the PM2.5 emission factor is far lower than previous estimates published by EPA. In addition, based on both the particle size and chemical data obtained in the study, a major portion of the PM2.5 emissions appears to be attributable to automotive exhaust from light-duty, gasoline-powered vehicles and not to the fugitive dust associated with reentrained mud/dirt carryout.  相似文献   

13.
ABSTRACT

This article describes an effort to re-examine the scientific bases of the existing, more than two decades-old U.S. Environmental Protection Agency (EPA) policy on volatile organic compound reactivity in light of recent scientific knowledge and understanding. The existing policy allows “negligibly reactive” organic emissions, that is, emissions with ambient ozone production potential lower than that of ethane, to be exempted from all ozone regulations. It relies on use of kOH and incremental reactivity data for determining whether an organic compound is negligibly reactive. Recent scientific evidence suggests that (1) exempting the negligibly reactive organic emissions from all regulations is unjustifiable, (2) the choice of ethane as the benchmark organic species for distinguishing reactive from negligibly reactive organics may be inappropriate, (3) the assumptions and methods used for classifying organic compounds as “reactive” and “negligibly reactive” should be reconsidered, and (4) the volatility factor should be considered, more appropriately, in much the same way as the reactivity factor.  相似文献   

14.
The body of information presented in this paper is directed towards engineers in the field of environmental sciences involved in measuring and/or evaluating the emissions from a variety of diesel engines or vehicles. This paper summarizes recent data obtained by EPA on identification and quantification of different emissions (i.e. characterization) from a variety of diesel engines.

Extensive work has been done comparing emissions from some light duty diesel and gasoline passenger cars. The work on the diesel vehicles was expanded to include tests with five different diesel fuels to determine how fuel composition affects emissions. This work showed that use of a poorer quality fuel frequently made emissions worse. The investigation of fuel composition continued with a project in which specific fuel parameters were systematically varied to determine their effect on emissions. EPA is presently testing a variety of fuels derived from coal and oil shale to determine their effects on emissions.

EPA has also tested a heavy duty Volvo diesel bus engine designed to run on methanol and diesel fuel, each injected through its own injection system. The use of the dual fuel resulted in a reduction in particulates and NO x but an increase in HC and CO compared to a baseline Volvo diesel engine running on pure diesel fuel.

Finally, some Ames bioassay tests have been performed on samples from the diesel passenger cars operated on various fuels and blends. An increase in Ames test response (mutagenicity) was seen when the higher aromatic blend was used and also when a commercial cetane improver was used. Samples from the Volvo diesel bus engine fueled with methanol and diesel fuel showed that use of a catalyst increased the Ames response.  相似文献   

15.
Landfills throughout the world are contributing to the global warming problem. This is due to the existence of the most important greenhouse gases (GHG) in landfill gas (LFG); namely, methane (CH4) and carbon dioxide (CO2). The aim of this paper is quantifying the total potential emissions, as well as the variation in production with time of CH4 from a proposed landfill (El Fukhary landfill) in the Gaza Strip, Palestine. Two different methods were adopted in order to quantify the total potential CH4 emissions; the Default methodology based on the intergovernmental panel on climate change (IPCC) 1996 revised guidelines and the Landfill Gas Emissions model (LandGEM V3.02) provided by the United States Environmental Protection Agency (EPA). The second objective of the study has been accomplished using the Triangle gas production model. The results obtained from both Default and LandGEM methods were found to be nearly the same. For 25 years of disposing MSW, El Fukhary landfill expected to have potential CH4 emissions of 1.9542 ± 0.0037 ×109 m3. Triangle model showed that the peak production in term of CH4 would occur in 2043; 28 years beyond the open year. Moreover, the model shows that 50 % of the gas will be produced approximately at the middle of the total duration of gas production. Proper control of Methane emissions from El Fukhary landfill is highly suggested in order to reduce the harmful effects on the environment.

Implications: Although, GHG emissions are extensively discussed in the developed countries throughout the world, it has gained little concern in the developing countries because they are forced most of the time to put environmental concerns at the end of their priority list. The paper shows that developing countries have to start recognizing their fault and change their way of dealing with environmental issues especially GHG emissions (mainly Methane and carbon dioxide). The authors estimated the potential methane emissions from a proposed central landfill that has been approved to be built in Palestine, a country that is classified as a developing country.  相似文献   


16.
This paper presents an examination of industrial coal-fired boiler waste products. Presently the atmospheric emissions from all new boilers larger than 250 × 106 Btu/hr are controlled by existing New Source Performance Standards, and boilers smaller than 250 × 106 Btu/hr are controlled to levels required by the regulations of the particular state in which the facility is located. The 1977 Clean Air Act Amendments, however, specify categories of sources for which EPA must develop revised New Source Performance Standards. Industrial coal-fired boilers are included as one of these categories, and a relevant issue concerns the potential amount of solid waste generated as a result of tightened emission standards that require flue gas desulfurization. This paper examines the air quality and solid waste impacts of moderate and stringent emission controls for particulate and SO2 emissions from industrial coal-fired boilers.

Comparisons are presented of physical and chemical characterizations of the emissions and solid wastes produced when boilers are equipped with particulate and SO2 control equipment. The SO2 systems examined are lime spray drying, lime/limestone, double alkali, sodium throwaway, physically cleaned coal, and fluidized-bed combustion. The solid waste disposal alternatives and the disposal costs are discussed. The most common disposal methods used are landfill for dry wastes and impoundment for sludges, with special wastewater treatment requirements for the sodium throwaway aqueous wastes.  相似文献   

17.
Abstract

Environmental agencies are currently in the process of implementing a new air management program, which includes the improvement of fuel quality. In this work, exhaust emissions data and estimated relative risk for various fuels testing in-use vehicles, equipped with three different exhaust emission control technologies, are presented. Aromatics, sulfur, and olefins contents; type of oxygenated compound; and Reid vapor pressure were varied. The aim also includes calculating the ozone (O3)of forming potential and a relative cancer risk of emissions from current and formulated gasoline blends in Mexico. The proposed gasoline decreases carbon monoxide, total hydrocarbons (THC), and nitrogen oxides emissions by 18 and 14%, respectively, when compared with gasoline sold in the rest of the country and within ozone nonattainment metropolitan areas in Mexico, respectively.  相似文献   

18.
This paper investigates the impact of light duty diesels on California visibility in the early 1990s. It is found that, without increased dieselization, there will be little change in statewide visibility levels from the late 1970s to the early 1990s. Visibility impacts from diesels are calculated for various scenarios of diesel use and particulate control. The likely dieselization (20%), do nothing particulate control (0.4 g/ml) scenario will change projected statewide emissions slightly for HC ( –2 % ) , NO x (+1%), SO x (+5%), and TSP (+1%) but will increase statewide emissions of elemental carbon (soot) by about 80%. Simplistic haze budget calculations indicate that this increase In soot emissions should reduce visibility about 10 to 25% in California. More precise and geographically detailed visibility calculations are performed by applying a lead tracer model to data for 86 California locations. The lead tracer model indicates that the likely dieselization, do nothing control scenario will reduce visibility by about 10 to 35%, with the greatest impacts occurring in and near urban areas. Actual visibility decreases for this scenario may even be much greater, 20 to 50%, because the analysis does not address two other significant factors: (1) increased SO4 –2 levels due to catalytic SO2 oxidation by soot and to higher SO2 emissions, and (2) increased soot emissions due to dieselization of the medium and heavy duty fleets.  相似文献   

19.
Flares are important safety devices for pressure relief; at the same time, flares are a significant point source for soot and highly reactive volatile organic compounds (HRVOCs). Currently, simple guidelines for flare operations to maintain high combustion efficiency (CE) remain elusive. This paper fills the gap by investigating the characteristics of the incipient smoke point (ISP), which is widely recognized as the condition for good combustion. This study characterizes the ISP in terms of 100–% combustion inefficiency (CE), percent opacity, absorbance, air assist, steam assist, air equivalence ratio, steam equivalence ratio, exit velocity, vent gas net heating value, and combustion zone net heating value. Flame lengths were calculated for buoyant and momentum-dominated plumes under calm and windy conditions at stable and neutral atmosphere. Opacity was calculated using the Beer–Lambert law based on soot concentration, flame diameter, and mass-specific extinction cross section of soot. The calculated opacity and absorbance were found to be lognormally distributed. Linear relations were established for soot yield versus absorptivity with R2 > 0.99 and power-law relations for opacity versus soot emission rate with R2 ≥ 0.97 for steam-assisted, air-assisted, and nonassisted flares. The characterized steam/air assists, combustion zone/vent gas heating values, exit velocity, steam, and air equivalence ratios for the incipient smoke point will serve as a useful guideline for efficient flare operations.

Implications: A Recent EPA rule requires an evaluation of visible emissions in terms of opacity in compliance with the standards. In this paper, visible emissions such as soot particles are characterized in terms of opacity at ISP. Since ISP is widely recognized as most efficient flare operation for high combustion efficiency (CE)/destruction efficiency (DE) with initial soot particles formed in the flame, this characterization provides a useful guideline for flare operators in the refinery, oil and gas, and chemical industries to sustain smokeless and high combustion efficiency flaring in compliance with recent EPA regulations, in addition to protecting the environment.  相似文献   


20.
Reformulated gasoline (RFG) contains oxygen additives such as methyl tertiary butyl ether or ethanol. The additives enable vehicles to burn fuel with a higher air/fuel ratio, thereby lowering the emission of carbon monoxide (CO) and volatile organic compounds (VOCs). Because VOCs react with sunlight to form ozone (O3), the Clean Air Act requires severe O3 nonattainment areas such as southeastern Wisconsin to use RFG. On July 17, 2001, the U.S. Environmental Protection Agency (EPA) granted Milwaukee, WI, and Chicago, IL, a waiver from the VOC reduction requirement of Phase II RFG. The VOC reduction requirement was lowered from 27.4% of the 1990 baseline fuel to 25.4%. The assumption was that ethanol-blended RFG would lower summertime CO concentrations sufficiently to offset the increased VOC emissions. The waiver is estimated to increase VOC emissions by approximately 0.8%, or 0.4 t of VOC on a hot summer weekday. This study evaluates whether RFG has been effective in lowering southeastern Wisconsin ambient CO concentrations. Three years of ambient CO data before RFG was introduced were compared with the first three years of ambient CO data after RFG was introduced. This paper also evaluates how the meteorology, vehicle inspection/maintenance program, vehicle miles traveled, and stationary source emissions influence CO concentrations. The winter decrease in ambient CO concentrations was found to be statistically significant, while the summer data showed no statistically significant change, indicating that RFG is most effective lowering ambient CO concentrations in cold weather.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号