首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A practical, inexpensive computer model for estimating the level of blood carboxyhemoglobin (percent COHb) as a function of time for measured carbon monoxide concentrations (ppm CO) was developed from data from published studies on the assimilation of CO into the blood of human subjects. The model was designed to consider more realistically the dynamic characteristics of urban CO concentrations measured continuously at air monitoring stations, and it was applied to a year's CO data measured at the San Jose CA, air monitoring station (8760 hourly values).

The results indicate that the model can be used by local air pollution control agencies to calculate and print out estimated COHb levels alongside continuous CO concentration data. According to the model, the National Ambient Air Quality Standards (NAAQS) for CO sometimes were violated in San Jose without exceeding 2% COHb, as well as the converse: 2% COHb was exceeded without violating the standards. The model's estimated COHb levels also provided an advance warning of impending violation of the 8-hr CO NAAQS, and analysis of the model's response to CO "spikes" suggests that averaging periods as short as 10 or 15 minutes are necessary to preserve completely the dynamic characteristics of ambient CO monitoring data. These findings suggest that the margin of safety included in the current CO NAAQS, would not be the same if the actual time variation of measured CO concentrations is taken into account.  相似文献   

2.
Seventeen non-smoking young men served as subjects to determine the alteration in carboxyhemoglobin (COHb) concentrations during exposure to 0 or 9 ppm carbon monoxide for 8 hours (CO) at sea level or an altitude of 2134 meters (7000 feet) in a hypobaric chamber. Nine subjects rested during the exposure and 8 exercised for 10 minutes of each exposure hour at a mean ventilation of 25 L (BTPS). All subjects performed a maximal aerobic capacity test at the completion of their respective exposures. Carboxyhemoglobin concentrations fell in all subjects during their exposures to 0 ppm CO at sea level or 2134 m. During the 8-h exposures to 9 ppm CO, COHb rose linearly from approximately 0.2 percent to 0.7 percent. No significant differences in uptake were found whether the subjects were resting or intermittently exercising during their 8-h exposures. COHb levels attained were similar at both sea level and 2134 m. Maximal aerobic capacity was reduced approximately 7-10 percent consequent to altitude exposure during 0 ppm CO exposures. These values were not altered following exposure for 8 h to 9 ppm CO in either the resting or exercising subjects.  相似文献   

3.
Exposures to adequate environmental levels of CO will increase COHb concentrations in human subjects. The amount of this increase is reasonably predictable, and must be considered in relation to exposure to CO in inhaled cigarette smoke as well as to occupational and domestic exposures. The increase in body COHb will result in some degree of impairment of tissue oxygenation.

Methods for estimating COHb levels in large populations are relatively simple. The assumption that an exposure to 30 ppm CO for eight hours will produce on the average, an increase in COHb of 5%, has been substantiated by available data.

Exposure for five hours to between 10 and 12 ppm of CO has been shown to increase the COHb levels in nonsmokers by at least 0.5%. Such an increase adds appreciably to the body burden of COHb in those who do not already have such a body burden from cigarette smoking. Longer exposures could have produced a somewhat greater increase.

Apart from increases in COHb, three possible effects have been a source of major consideration in epidemiologic studies. The first is the production of some persistent toxic reaction. This possibility has been examined with respect to occupational exposure, and the evidence for the occurrence of such a condition is insufficient.

The possible contribution of ambient community CO exposure to the mortality of persons hospitalized with myocardial infarction has been investigated. The evidence suggests that daily average CO values in excess of about 10 ppm may be associated with an increase in mortality in hospitalized patients with myocardial infarction. Substantiation of this impression will require a study of the prognosis of myocardial infarction patients in relationship to COHb levels measured at admission to the hospital.

Finally, in two studies, persons driving motor vehicles which were involved in accidents had higher COHb levels than "control" populations. Controls were not ideal, however. Possible mechanisms by which CO might affect the ability to drive a motor vehicle is suggested in the available data on CO effects upon visual sensitivity, psychological test performance and accurate estimation of time intervals. As little as 2 percent COHb can produce these effects in laboratory studies, and the available epidemiologic information confirms that such an increase in COHb levels among drivers might influence the frequency of accidents.

Specific areas where research is indicated to clarify uncertainties relating to health effects of CO are: 1. The increment in COHb which can be produced by exposures to an average of 20 ppm CO for an eight hour period and the increment which can be produced by 15 ppm for such a period and by 10 ppm for up to twenty-four hours.

2. The relationship of ambient CO levels and of COHb levels to the survival of hospitalized patients with myocardial infarction.

3. The prognostic significance with respect to cardiovascular conditions of elevated levels of COHb.

4. The relationship, if any, between ambient CO and COHb levels and the occurrence of motor vehicle accidents when weather and driving conditions, cigarette smoking, alcohol and drug use, and other factors are adjusted and controlled.

  相似文献   

4.
Recent investigations have indicated that ambient air CO measurements may not reflect population exposure to CO. The lack of correlation may be due to improper siting of CO instruments, improper interpretation of air quality data, or both. Studies of population carboxy-hemoglobin levels are evaluated and compared with ambient air data.,

No significant correlation was found between median population COHb levels and reductions in CO concentrations required to meet ambient air standards when calculations used to estimate reductions were based on the second highest 8 hour average. However, calculated reductions based on annual average concentrations and a trend analysis technique correlated significantly with COHb levels in five cities from which both CAMP and COHb data were available.

Studies to determine the nature of the relationship between ambient air CO concentrations and population COHb levels are needed. The differences between the Occupational Safety and Health Act Regulations and the National Ambient Air Standards for carbon monoxide should be scrutinized to determine if a redefinition of the standards or their applicability is warranted. A reevaluation of the controls necessary to make reductions in population COHb burden may be necessary.  相似文献   

5.
The search for ways of reducing vehicular emissions has led to numerous investigations of the relationships between fuel composition and the pollutants discharged from automobiles. The most obvious fuel effects result from evaporation of gasoline components from the fuel tanks and carburetors of vehicles which lack effective mechanical devices (such as those required on all 1971 model cars) to control evaporative losses. Thus, several laboratories and cooperative study groups (Coordinating Research Council and American Petroleum Institute) have investigated the ways in which fuel properties (especially the amounts and types of C4-C5 hydrocarbons) influence both the amount and the potential atmospheric reactivity of evaporative emissions.1–6 But fuel evaporation accounts for only a small portion of the total hydrocarbons emitted by automobiles, and gasoline modifications (such as volatility reductions) that reduce evaporative losses can lead to higher levels of hydrocarbons in automobile exhaust.4–6  相似文献   

6.
The probabilistic National Ambient Air Quality Standards (NAAQS) Exposure Model applied to carbon monoxide (pNEM/CO) was developed by the U.S. Environmental Protection Agency (EPA) to estimate frequency distributions of population exposure to carbon monoxide (CO) and the resulting carboxyhemoglobin (COHb) levels. To evaluate pNEM/CO, the model was set up to simulate CO exposure data collected during a Denver Personal Exposure Monitoring Study (PEM) conducted during the winter of 1982-1983.

This paper compares computer-simulated exposure distributions obtained by pNEM/CO with the observed cumulative

relative frequency distributions of population exposure to CO from 779 people in the Denver PEM study. The subjects were disaggregated into two categories depending upon whether they lived in a home with a gas stove or an electric stove. The observed and predicted population exposure frequency distributions were compared in terms of 1-hr daily maximum exposure (1DME) and 8-hr daily maximum moving average exposure (8DME) for people living in homes with gas stove or an electric stove. For 1DME, the computer-simulated results from pNEM/CO agreed most closely within the range of 6-13 ppm, but overestimated occurrences at low exposure (<6 ppm) and underestimated occurrences at high exposure (>13 ppm). For 8DME, the predicted exposures agreed best with observed exposures in the range of CO concentration between 5.5 and 7 ppm, and over-predicted occurrences below 5.5 ppm and under-predicted occurrences above 7 ppm.  相似文献   

7.
The probabilistic National Ambient Air Quality Standards (NAAQS) Exposure Model applied to carbon monoxide (pNEM/CO) was developed by the U.S. Environmental Protection Agency (EPA) to estimate frequency distributions of population exposure to carbon monoxide (CO) and the resulting carboxyhemoglobin (COHb) levels. To evaluate pNEM/CO, the model was set up to simulate CO exposure data collected during a Denver Personal Exposure Monitoring Study (PEM) conducted during the winter of 1982-1983. This paper compares computer-simulated exposure distributions obtained by pNEM/CO with the observed cumulative relative frequency distributions of population exposure to CO from 779 people in the Denver PEM study.

The subjects were disaggregated into two categories depending upon whether they lived in a home with a gas stove or an electric stove. The observed and predicted population exposure frequency distributions were compared in terms of 1-hr daily maximum exposure (1DME) and 8-hr daily maximum moving average exposure (8DME) for people living in homes with gas stove or an electric stove. For 1DME, the

computer-simulated results from pNEM/CO agreed most closely within the range of 6-13 ppm, but overestimated occurrences at low exposure (<6 ppm) and underestimated occurrences at high exposure (>13 ppm). For 8DME, the predicted exposures agreed best with observed exposures in the range of CO concentration between 5.5 and 7 ppm, and over-predicted occurrences below 5.5 ppm and under-predicted occurrences above 7 ppm.  相似文献   

8.
Exhaust emissions from automobiles in a low-altitude city will be compared with emissions from autos in a high-altitude city (Denver, Colorado). The comparison will be based on samples collected from thirty five cars driven under actual road conditions in each city.

Results will be discussed on the basis of CO, CO2 and hydrocarbon concentrations versus average route speeds and on pounds of CO, CO2 and hydrocarbons, emitted per mile, versus average route speed.  相似文献   

9.
During the winter of 1985-86 the authors took 6-h integrated air samples and measured the concentrations of carbon monoxide and other gases at a residential site in Olympia, Washington. The 6-h average concentrations were between about 0.2 and 3.2 ppmv. For each 6-h period the observed concentration of CO was apportioned among its sources which were residential wood burning and automobiles. Small and generally insignificant amounts of CO were also observed from unidentified sources. A chemical mass balance (CMB) was formulated and applied to apportion the observed CO among its sources. Methylchloride (CH3CI), in excess of background levels, was used as a unique tracer of wood burning and excess hydrogen (H2) served as a tracer of CO from automobiles. The source emission factors to carry out the calculations were estimated from other experiments. The results showed that in Olympia, wood burning can often contribute as much CO as automobiles during winter. The maximum 6-h average contribution of CO from wood burning was about 2 ppmv and from automobiles it was 2.2 ppmv, and the average ambient concentration was about 1 ppmv. When pollution from wood burning was present, it contributed 0.5 ppmv on average while automobiles also contributed 0.5 ppmv. Unidentified sources contributed 0.1 ppmv and the background level was 0.15 ppmv. During the winter many times wood burning did not affect CO concentrations, while CO from automobiles was always present. On average, during the winter, automobiles contributed some 50 percent of the CO mass to the lower urban atmosphere and wood burning contributed about 30 percent. Diurnal cycles became evident in the calculated concentrations of CO from wood burning and automobiles even though the measured concentrations did not show strong diurnal variations. Wood burning contributed most during evening and nighttime and very little during the day, while automobiles contributed most during the morning and evening hours and very little at night. These patterns lend support to the accuracy of the model and source emission factors since they are as expected from the diurnal variations of the sources and atmospheric mixing.  相似文献   

10.
ABSTRACT

A colorimetxic method for the quantitative determination of CO by diffuse reflectance is described. This method is based on the reduction by CO of Mo (VI) from the indicator reagent molybdosilicic acid (H8Si[Mo2O7]6). The reduction yielded a change of color from clear yellow to dark green on white disk filter chart paper wetted with reagent indicator solution. The gaseous mixture containing CO was forced to pass through this chart paper, initiating the reaction. The intensity of the color produced, measured by diffuse reflectance, was proportional to the CO concentration present in exhaust gases in the range from 0.02 to 12% volume/volume (v/v). A 650-nm light-emitting diode was used as a light source. A two-fiber-optic system carried the light from the source to the detection system, which was composed of a photodiode, an amplification circuit, and a digital display. The method was applied with success in field measurements for automobiles in the Otto cycle. In a previous paper, this method was used for the quantitative determination of exhaust emissions from diesel-fueled vehicles.1  相似文献   

11.
Experiments have been conducted to measure vehicle sulfate emissions, by vehicle type, at two tunnels on the Pennsylvania Turnpike. A satisfactory balance between estimated fuel sulfur consumption and observed emissions of sulfur compounds corrected for ambient-air contributions was obtained. This work started in 1974 before the introduction of catalyst-equipped automobiles and continued into 1976. The sulfate contributed by vehicles even in the tunnels was found to be generally modest relative to rural ambient sulfate levels. Average sulfate emission rates were found to be ~30 mg/km (50 mg/mi) from heavy-duty Diesel trucks, <15 mg/km from catalyst-equipped cars (probably in the range 4 to 7 mg/km), and probably <1 mg/km from non-catalyst cars. The overall SO2 —* SO4 -2 conversion of the vehicle emissions was 2 %.  相似文献   

12.
Motor vehicles are one of the largest sources of air pollutants worldwide. Despite their importance, motor vehicle emissions are inadequately understood and quantified, esp. in developing countries. In this study, the real-world emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) were measured using an on-road remote sensing system at five sites in Hangzhou, China in 2004 and 2005. Average emission factors of CO, HC and NOx for petrol vehicles of different model year, technology class and vehicle type were calculated in grams of pollutant per unit of fuel use (g l−1) from approximately 32,260 petrol vehicles. Because the availability of data used in traditional on-road mobile source estimation methodologies is limited in China, fuel-based approach was implemented to estimate motor vehicle emissions using fuel sales as a measure of vehicle activity, and exhaust emissions factors from remote sensing measurements. The fuel-based exhaust emission inventories were also compared with the results from the recent international vehicle emission (IVE) model. Results show that petrol vehicle fleet in Hangzhou has significantly high CO emissions, relatively high HC and low NOx, with the average emission factors of 193.07±15.63, 9.51±2.40 and 5.53±0.48 g l−1, respectively. For year 2005 petrol vehicles exhaust emissions contributed with 182,013±16,936, 9107±2255 and 5050±480 metric ton yr−1 of CO, HC and NOx, respectively. The inventories are 45.5% higher, 6.6% higher and 53.7% lower for CO, HC and NOx, respectively, than the estimates using IVE travel-based model. In addition, a number of insights about the emission distributions and formation mechanisms have been obtained from an in-depth analysis of these results.  相似文献   

13.
Abstract

The possibility of decreasing the Nordic countries’ contribution to global warming in the future is examined. Anthropogenic carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions are considered. Global average radiative forcing is used as a measure of the greenhouse impact caused by the emissions. Past emissions are included in the study because they have impact far into the future. The calculation method utilized in this study can be applied to any other country.

Two hypothetical future emission development cases are presented, and the radiative forcing caused by them is calculated. In the higher emission (case A) CO2 emissions remain above current level, while N2O and CH4 emissions decrease. In the lower emission (case B) the emissions decrease to about one–tenth of the current emissions by the year 2100.

Only if very strict emission reductions (case B) take place will the greenhouse impact of the Nordic countries return to current levels during next century. Likewise, the per capita radiative forcing of Nordic countries will remain above global average unless the emissions decrease drastically (case B) and the current population levels are used in per capita calculation.  相似文献   

14.
The General Motors Research Laboratories and the Sloan-Kettering Institue for Cancer Research are collaborating to determine the contribution by automotive vehicles to the polynuclear aromatic hydrocarbons in city air. Sampling of particulate matter at the rate of 140 M3/min (5000 cfm) was carried out at two heavily-trafficked sites in Detroit and one suburban site in Warren, Michigan. Carbon monoxide was determined continuously, and particulate matter was analyzed for “tar,” polynuclear aromatic hydrocarbons, lead, vanadium, and sulfates. Polynuclear aromatic hydrocarbons in automobile exhaust gas are assumed to be dispersed in air along with carbon monoxide or lead from automobiles. It is further assumed that automobiles are the sole source of carbon monoxide and lead in the atmosphere. Concentrations of carbon monoxide and lead in exhaust gas and in the air are utilized to estimate the percentage of polynuclear aromatic hydrocarbons in the air attributable to automobiles. The mean automobile contributions to benzo(a)pyrene in the air, based on lead concentrations, were 18% at a Freeway Interchange, 5% in a downtown commercial area, and 42% in suburban Warren. The average concentrations of benzo(a)pyrene at the sites were 6 μg/103 M3, 7 μg/103 M3 and 1 μg/103 M3, respectively. Mean contributions based on carbon monoxide concentrations were approximately twice the levels based on lead concentrations. Benzo(a)pyrene and benz(a)anthracene in air were not statistically related to carbon monoxide or lead in air, but were higher in winter than in summer, probably because of the higher levels of these materials emitted in space heating combustion in winter.  相似文献   

15.
Carbon monoxide, the most abundant air pollutant found in the atmosphere generally exceeds that of all other pollutants combined (excluding C02). An estimated tonnage of >87 X 106 of CO was emitted in the United States from major technological sources alone during 1966. More than 90% of the total CO emitted from fossil fuels is derived from gasoline powered motor vehicles. Other sources of CO include emissions from coal and fuel oil burning, aircraft and open burning. Some CO is also formed by certain vegetation and marine invertebrates (siphonophores). Chemical reactions of CO in the upper and lower atmosphere are discussed. Chemical oxidation of CO in the lower atmosphere by molecular oxygen is very slow. The exact duration of CO in the lower atmosphere is not known with certainty; however, the mean residence time has been variously estimated to be between 0.3 and 5.0 years. In the absence of scavenging processes the estimated world-wide CO emission would be sufficient to raise the’atmospheric level by 0.03 ppm per year, yet the background levels of CO in clean air do not appear to be increasing. Several potential sinks are discussed. Knowledge of the mechanism of process of removal of CO from the lower atmosphere is unsatisfactory; the process, at the present time, cannot be identified with certainty.  相似文献   

16.
We have used a global version of the Regional Air Pollution Information and Simulation (RAINS) model to estimate anthropogenic emissions of the air pollution precursors sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), primary carbonaceous particles of black carbon (BC), organic carbon (OC) and methane (CH4). We developed two scenarios to constrain the possible range of future emissions. As a baseline, we investigated the future emission levels that would result from the implementation of the already adopted emission control legislation in each country, based on the current national expectations of economic development. Alternatively, we explored the lowest emission levels that could be achieved with the most advanced emission control technologies that are on the market today. This paper describes data sources and our assumptions on activity data, emission factors and the penetration of pollution control measures. We estimate that, with current expectations on future economic development and with the present air quality legislation, global anthropogenic emissions of SO2 and NOx would slightly decrease between 2000 and 2030. For carbonaceous particles and CO, reductions between 20% and 35% are computed, while for CH4 an increase of about 50% is calculated. Full application of currently available emission control technologies, however, could achieve substantially lower emissions levels, with decreases up to 30% for CH4, 40% for CO and BC, and nearly 80% for SO2.  相似文献   

17.
Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min?1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly.For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NOx and NO2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NOx emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.  相似文献   

18.
As part of the 2010 Van Nuys tunnel study, researchers from the University of Denver measured on-road fuel-specific light-duty vehicle emissions from nearly 13,000 vehicles on Sherman Way (0.4 miles west of the tunnel) in Van Nuys, California, with its multispecies Fuel Efficiency Automobile Test (FEAT) remote sensor a week ahead of the tunnel measurements. The remote sensing mean gram per kilogram carbon monoxide (CO), hydrocarbon (HC), and oxide of nitrogen (NOx) measurements are 8.9% lower, 41% higher, and 24% higher than the tunnel measurements, respectively. The remote sensing CO/NOx and HC/NOx mass ratios are 28% lower and 20% higher than the comparable tunnel ratios. Comparisons with the historical tunnel measurements show large reductions in CO, HC, and NOx over the past 23 yr, but little change in the HC/NOx mass ratio since 1995. The fleet CO and HC emissions are increasingly dominated by a few gross emitters, with more than a third of the total emissions being contributed by less than 1% of the fleet. An example of this is a 1995 vehicle measured three times with an average HC emission of 419 g/kg fuel (two-stroke snowmobiles average 475 g/kg fuel), responsible for 4% of the total HC emissions. The 2008 economic downturn dramatically reduced the number of new vehicles entering the fleet, leading to an age increase (>1 model year) of the Sherman Way fleet that has increased the fleet's ammonia (NH3) emissions. The mean NH3 levels appear little changed from previous measurements collected in the Van Nuys tunnel in 1993. Comparisons between weekday and weekend data show few fleet differences, although the fraction of light-duty diesel vehicles decreased from the weekday (1.7%) to Saturday (1.2%) and Sunday (0.6%).

Implications: On-road remote sensing emission measurements of light-duty vehicles on Sherman Way in Van Nuys, California, show large historical emission reductions for CO and HC emissions despite an older fleet arising from the 2008 economic downturn. Fleet CO and HC emissions are increasingly dominated by a few gross emitters, with a single 1995 vehicle measured being responsible for 4% of the entire fleet's HC emissions. Finding and repairing and/or scrapping as little as 2% of the fleet would reduce on-road tailpipe emissions by as much as 50%. Ammonia emissions have locally increased with the increasing fleet age.  相似文献   

19.
On-road vehicle tests of nine heavy-duty diesel trucks were conducted using SEMTECH-D, an emissions measuring instrument provided by Sensors, Inc. The total length of roads for the tests was 186 km. Data were obtained for 37,255 effective driving cycles, including 17,216 on arterial roads, 15,444 on residential roads, and 4595 on highways. The impacts of speed and acceleration on fuel consumption and emissions were analyzed. Results show that trucks spend an average of 16.5% of the time in idling mode, 25.5% in acceleration mode, 27.9% in deceleration mode, and only 30.0% at cruise speed. The average emission factors of CO, total hydrocarbons (THC), and NOx for the selected vehicles are (4.96±2.90), (1.88±1.03) and (6.54±1.90) g km−1, respectively. The vehicle emission rates vary significantly with factors like speed and acceleration. The test results reflect the actual traffic situation and the current emission status of diesel trucks in Shanghai. The measurements show that low-speed conditions with frequent acceleration and deceleration, particularly in congestion conditions, are the main factors that aggravate vehicle emissions and cause high emissions of CO and THC. Alleviating congestion would significantly improve vehicle fuel economy and reduce CO and THC emissions.  相似文献   

20.
On-road comparisons were made between a mobile emissions laboratory (MEL) meeting federal standards and a portable emissions measurement system (PEMS). These comparisons were made over different conditions; including road grade, vibration, altitude, electric fields, and humidity with the PEMS mounted inside and outside of the tractor's cab. Brake-specific emissions were calculated to explore error differences between the MEL and PEMS during the Not-To-Exceed (NTE) engine operating zone. The PEMS brake-specific NOx (bsNOx) NTE emissions were biased high relative to the MEL and, in general, were about 8% of the 2007 in-use NTE NOx standard of 2.68 g kW?1 h?1 (2.0 g hp?1 h?1). The bsCO2 emissions for the PEMS were also consistently biased high relative to the MEL, with an average deviation of +4% ± 2%. NMHC and CO emissions were very low and typically less than 1% of the NTE threshold. This research was part of a comprehensive program to determine the “allowance” when PEMS are used for in-use compliance testing of heavy-duty diesel vehicles (HDDVs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号