首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial state implementation plans concentrated on attainment of the ambient air quality standards in the relatively polluted areas of the country. Many of these plans must now be modified to ensure that the ambient standards will be maintained for the foreseeable future, and to ensure that significant deterioration of air quality in clean areas of the country is prevented.

The existing implementation plans currently contain many measures which are applicable to the maintenance and deterioration efforts, but additional measures must also be developed. Many of these additional measures will involve future planning activities—most common of which will be land use planning activities.

The point is made that, after existing sources have reduced their emissions to the lowest practical level, further air pollution control can only be accomplished by implementing rational planning procedures for management of any new sources of air pollution. This will require extensive cooperation among the air pollution control community; regional, state, and local planning agencies; state and local governments; and the general public in order to ensure that future land use plans include appropriate air quality considerations.  相似文献   

2.
3.
High ozone concentrations, often in excess of the national ambient air quality standard for photochemical oxidants, have been measured simultaneously in urban and rural areas of New York State. Average daily rural ozone concentrations were found to correlate well with daily maximum urban ozone concentrations suggesting a common source. Estimations of the quantity of ozone advectively transported into New York State are more than an order of magnitude greater than estimations of the potential photochemical generation of ozone from hydrocarbon emissions within New York State. It is suggested thai the high rural ozone levels are not primarily due to the transport of ozone and ozone precursors from olher urban areas, but are rather due to natural phenomena such as photochemical generation from naturally occurring precursors or transport of ozone from the stratosphere to the troposphere. The effectiveness of a hydrocarbon control strategy for New York State to meet the ambient air quality standard for photochemical oxidants when background levels themselves may be above the standard is questioned.  相似文献   

4.
Growth of white oak (Quercus alba L.) trees was examined, using tree-ring analysis, at three sites near a small, remote coal-fired power plant in central Pennsylvania, USA. Forests immediately adjacent to the power plant have been subjected to power plant emissions since the power plant initiated operation in 1954. However, localized, ground-level fumigations have been gradually reduced over the years due to a series of construction projects resulting in increased stack heights. Comparisons of growth were made among the white oaks growing at the three close-in sites, as well to the growth of white oak at three control sites located 10-50 km from the power plant, during periods of differing stack heights. White oak exhibited reduced growth at two of the close-in sites during the time period when historical ground-level air pollution exposures were assumed to be greatest due to low stack heights. White oak growth at the third close-in site was not substantially reduced during this time period. In 1976, taller stacks were implemented at the power plant to reduce local, ground-level concentrations of air pollutants. The recovery of tree growth at the two close-in affected sites, and increased synchronous growth responses from 1976-85 among all three close-in sites, indicates that implementation of taller stacks in 1976 reduced ground-level pollutant levels to such dosages that growth was not impaired at any site. Also, growth rates after 1976 were comparable to the growth rates of the white oaks growing on the control sites. A possible interacting factor was a severe drought that occurred in the mid-1960s in central Pennsylvania.  相似文献   

5.
The emissions from combustion of wood residue fuel in an experimental spreader-stoker boiler were measured at the Fairplay Test Facility at Oregon State University. Stack gases were monitored to determine levels of excess air, opacity, and particulate loading. Particulate emissions were measured to determine the effects of underfire air flow rate and fuel bed depth on particulate carry over rate. An experiment conducted at four energy release rates and two fuel bed depths indicated that increased bed depth has the effect of reducing particulate emissions and that the effect increases as energy release rate increases. The experiment also showed increased energy release rate has the effect of increasing particulate emissions. The effects were found to be statistically significant.  相似文献   

6.
Passive air samplers have made it possible to measure long-term average air concentrations of semi-volatile organic contaminants (SVOCs) at a large number of sampling sites. In order to use the results of such measurement networks in the derivation of empirical measures of long-range transport, a method is required that quantitatively expresses the proximity of air sampling sites to spatially distributed emissions. We propose three increasingly sophisticated tiers for quantifying proximity to emissions. The ‘static’ method assumes that a sampling site is only influenced by emission taking place in the same 1° of latitude by 1° of longitude cell in which it is located. The ‘dispersion’ method additionally accounts for the influence of emissions in neighboring cells by adding the emissions into each cell weighted by the distance between the cell’s center and the center of the cell containing the sampling site. The ‘air-shed’ method quantifies proximity to emissions by combining the emissions in each cell with the probability that air arriving at the sampling site passed through each cell. The probability is calculated for each sampling site by aggregating a large number of air mass back-trajectories. These new proximity gauges were contrasted against the remoteness index RI, which is derived from global atmospheric tracer transport modeling. The four methods were used to quantify the proximity of the sampling sites of the Global Atmospheric Passive Sampling (GAPS) study to global Polycyclic Aromatic Hydrocarbon (PAH) emissions. The proximity gauges produce markedly different results primarily for sites located near steep gradients in population, such as occur in coastal areas or at the feet of mountain ranges. The dispersion method produces quite similar results to the air-shed method using drastically less computational power and input data, but application of the air-shed method may be necessary where winds are strongly directional.  相似文献   

7.
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. In this review the state of scientific understanding in relation to global and regional air quality is outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants across the scales are discussed, in particular the move to quantify the impact of long-range transport on regional air quality. Gaps and research questions that remain intractable are identified. The review concludes with a focus of research and policy questions for the coming decade. In particular, the policy challenges for concerted air quality and climate change policy (co-benefit) are discussed.  相似文献   

8.
Light duty gasoline vehicles account for most of CO, hydrocarbons and NOx emissions to the urban environment in the metropolitan area of Mexico City. In order to ameliorate air pollution, several control measures have been imposed in the last decade, such as: up-grade of gasoline's quality, stringent environmental standards, and catalytic converters. On the other hand and from the beginning of 2001, Tier I emission standards became mandatory for all new model year sold in the country. Car manufacturers in Mexico do not guarantee the performance of their exhaust emissions systems for a given mileage. In this work, we present results on brand new vehicles that indicate that NOx emission factors, though they are within the Tier I standard, deteriorate rapidly with the travelled distance (mileage).  相似文献   

9.
The State of California, because of an acute air pollution problem has been forced to move ahead on a pioneer basis to control motor vehicle emissions. The Golden State’s program, as put into operation by the Motor Vehicle Pollution Control Board, is discussed in detail. Inspection-installation stations, enforcement and legal requirements relating to crankcase control devices and other facets of the program are presented. Of particular importance is the experience gained by the Board in requiring devices on all new vehicles registered in California and its used vehicle program, affecting vehicles back to the 1950 model year. Recent developments in exhaust control, anticipated installation requirements, and scheduling, as well as an indication of staff long-term planning is also outlined. California’s program is based on the principle that the motor vehicle must be controlled and that sewage no longer can be dumped into the air, if the public health is to be preserved.  相似文献   

10.
Open path Fourier transform infrared (OP-FTIR) spectroscopy is a new air monitoring technique that can be used to measure concentrations of air contaminants in real or near-real time. OP-FTIR spectroscopy has been used to monitor workplace gas and vapor exposures, emissions from hazardous waste sites, and to track emissions along fence lines. This paper discusses a statistical process control technique that can be used with air monitoring data collected with an OP-FTIR spectrometer to detect departures from normal operating conditions in the workplace or along a fence line. Time series data, produced by plotting consecutive air sample concentrations in time, were analyzed. Autocorrelation in the time series data was removed by fitting dynamic models. Control charts were used with the residuals of the model fit data to determine if departures from defined normal operating conditions could be rapidly detected. Shewhart and exponentially weighted moving average (EWMA) control charts were evaluated for use with data collected under different room air flow and mixing conditions.

Under rapidly changing conditions the Shewhart control chart was able to detect a leak in a simulated process area. The EWMA control chart was found to be more sensitive to drifts and slowly changing concentrations in air monitoring data. The time series and statistical process control techniques were also applied to data obtained during a field study at a chemical plant. A production area of an acrylonitrile, 1,3-butadiene, and styrene (ABS) polymer process was monitored in near-real time. Decision logics based on the time series and statistical process control technique introduced suggest several applications in workplace and environmental monitoring. These applications might include signaling of an alarm or warning, increasing levels of worker respiratory protection, or evacuation of a community, when gas and vapor concentrations are determined to be out-of-control.  相似文献   

11.
In New York State, the calculation of air contaminant emissions from a variety of sources is an essential part of comprehensive air pollution studies. The tables used to calculate emissions were obtained from an extensive literature search and modified to apply to New York State conditions. For example, sulfur dioxide emission factors for coal were selected to reflect the average sulfur content of the coal sold in New York State. Since the literature contains a wide array of emission factors, it was necessary to evaluate the factors and select those which would be most appropriate for the techniques used in conducting the comprehensive studies in New York State. This paper does not present the emission tables themselves but does outline the development of such tables for use in nonprocess calculations, i.e., combustion for heat and power of bituminous and anthracite coal, distillate and residual oil, natural and bottled gas; combustion of gasoline and diesel in internal combustion engines; burning of refuse in dumps and incinerators; and evaporation of gasoline from marketing operations.  相似文献   

12.
The Metropolitan Washington Council of Governments (COG) is responsible for developing an Air Quality Plan which will produce attainment of the O3 and 8 h CO standards in the Washington area by 1987. In order to define as precisely as possible the sources of emissions in the area, a disaggregated emissions inventory was prepared. For mobile sources, this included classification of vehicle type, portion of the trip cycle, and purpose of trip. For nonhighway sources, individual source types were identified. All emissions were assigned to 5 km × 5 km grids and summed to obtain local, state, and/or regional totals. The inventory, although expensive and time-consuming, is a useful tool for decision makers who are responsible for implementing measures to control emissions.  相似文献   

13.
Urban trees can produce a number of benefits, among them improved air quality. Biogenic volatile organic compounds (BVOCs) emitted by some species are ozone precursors. Modifying future tree planting to favor lower-emitting species can reduce these emissions and aid air management districts in meeting federally mandated emissions reductions for these compounds. Changes in BVOC emissions are calculated as the result of transitioning to a lower-emitting species mix in future planting. A simplified method for calculating the emissions reduction and a Tree BVOC index based on the calculated reduction is described. An example illustrates the use of the index as a tool for implementation and monitoring of a tree program designed to reduce BVOC emissions as a control measure being developed as part of the State Implementation Plan (SIP) for the Sacramento Federal Nonattainment Area.  相似文献   

14.
The observed ranges in nonmethane organic compound (NMOC) concentrations, NMOC composition and nitrogen oxides (NOX) concentrations have been evaluated for urban and nonurban areas at ground level and aloft of the contiguous United States. The ranges in NMOC to NOX ratios also are considered. The NMOC composition consistently shifts towards less reactive compounds, especially the alkanes, in air parcels over nonurban areas compared to the NMOC composition near ground level within urban areas. The values for the NMOC to NOX ratios, 1.2 to 4.2, in air aloft over nonurban areas are lower than in air at ground level urban sites, ≥8, and much lower than in air at ground level nonurban sites, ≥20.

The layers of air aloft over a number of nonurban areas of the United States tend to accumulate NOX emissions from the tall stacks of large fossil fuel power plants located at nonurban sites. During the night into the morning hours, the air aloft is isolated from any fresh NMOC emissions predominately coming from near surface sources. Conversely, during this extended period of restricted vertical mixing, air near the surface accumulates NMOC emissions while this air is isolated from the major NOX sources emitting aloft. These differences in the distribution of NMOC and NOX sources appear to account for the much larger NMOC to NOX ratios reported near ground level compared to aloft over nonurban areas.

Two types of experimental results are consistent with these conclusions: (1) observed increases in surface rural NOX concentrations during the morning hours during which the mixing depth increases to reach the altitude at which NOX from the stacks of fossil fuel power plants is being transported downwind; (2) high correlations of total nitrate at rural locations with Se, which is a tracer for coal-fired power plant NOX emissions.

The implications of these conclusions from the standpoint of air quality strategies are suggested by use of appropriate scenarios applied to both urban and regional scale photochemical air quality models. The predictions from urban model scenarios with NMOC to NOX ratios up to 20 are that NOX control will result in the need for the control of more NMOC emissions than necessary in the absence of NOX control, in order to meet the O3 standard. On a regional scale, control of NOX emissions from fossil fuel power plants has little overall effect regionally but does result on a more local scale in both small decreases and increases in O3 concentrations compared to the baseline scenario without NOX control. The regional modeling results obtained to date suggest that NOX control may be effective in reducing O3 concentrations only for a very limited set of conditions in rural areas.  相似文献   

15.
The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.  相似文献   

16.
Air pollution caused by ship exhaust emission is receiving more and more attention. The physical and chemical properties of fuels, such as sulfur content and PAHs content, potentially had a significant influence on air pollutant emissions from inland vessels. In order to investigate the effects of fuel qualities on atmospheric pollutant emissions systematically, a series of experiments was conducted based on the method of actual ship testing. As a result, SO2, PM and NOx emission rates all increased with the increase of main engine rotating speed under cruise mode, while PM and NOx emission factors were inversely proportional to the main engine rotating speed. Moreover, SO2 emission factor changed little with the increase of the main engine rotating speed. In summary, the fuel-dependent specific emission of SO2 was a direct reflection of the sulfur content in fuel. The PM emission increased with the increase of sulfur content and PAHs content in fuel. However, fuel qualities impacted little on NOx emissions from inland vessels because of NOx formation mechanisms and conditions.

Implications: Ship activity is considered to be the third largest source of air pollution in China. In particular, air pollutants emitted from ships in river ports and waterways have a direct impact on regional air quality and pose threat on the health of local residents owing to high pollutants concentration and poor air diffusion. The study on the relationship between air pollutant emissions and fuel quality of inland vessels can provide foundational data for local authority to formulate reasonable and appropriate policies for reducing atmospheric pollution due to inland vessels.  相似文献   


17.
Rapid economic growth in China has resulted in a significant increase in particulate matter (PM2.5) and sulfur dioxide (SO2), the reduction of which has become a primary government focus. However, as the energy consumption and air pollutant emissions in Chinese cities have very significant regional characteristics, individual governance measures are necessary. This study used 2013 to 2016 energy consumption data from 31 Chinese cities to evaluate the dynamic efficiency of the urban environments. Labor, fixed assets, and energy consumption were taken as the inputs, gross domestic product (GDP) was taken as the output, and particulate matter (PM2.5) and sulfur dioxide (SO2) were taken as the carry-over variable indicators. Using a meta-frontier dynamic DEA model, the 31 cities were classified into high-income and upper-middle-income cities, the overall 2013–2016 energy consumption and air pollutant efficiency scores were analyzed, and improvements and changes were recommended to increase the efficiencies. Large differences were found in the energy consumption and air pollution emissions efficiency scores and the needed improvements, with the hig-income cities performing better overall than the upper-middle-income cities. While there have been some significant improvements in SO2 emissions, PM2.5 improvements have been far slower. Therefore, in most cities, more control measures are needed to control PM2.5 emissions. However, in addition to improving PM2.5 in the upper-middle-income cities, SO2treatments are also needed.

Implications: There are big differences in the expectation of improvement of the two pollutants in all cities. In many Western cities, the expectation of PM2.5 improvement in the past years has not been reduced, but has been expanding. This shows that the central government has unified the air pollution control policies and the existing air pollution control measures formulated and implemented by the local governments.  相似文献   


18.
The types and rates of pollutant emissions from a coal-fired power plant depend upon plant design, coal characteristics, and environmental control policy. In the past, air pollution regulations were often promulgated without rigorous analysis of the resulting energy penalties and secondary environmental impacts that occur in other environmental media (air, land, or water), which are counterproductive to overall environmental quality. This paper describes a Comparative Assessment Model that has been developed to consider systematically such tradeoffs for conventional and advanced coal-to-electric technologies. The model is applied to quantify the secondary (“cross-media”) environmental and resource impacts resulting from alternative air pollution control policies that reduce sulfur dioxide emissions from a 1000 MW power plant. Multimedia pollutant burdens are presented, together with the increased requirements for coal, limestone, and water that are incurred in generating a fixed net quantity of electricity. The development of sound public policy requires that environmental regulations be sensitive to adverse effects in all environmental media, and that tradeoffs involved in the regulation of specific pollutants to one medium be rigorously and systematically characterized.  相似文献   

19.
China's national government and Beijing city authorities have adopted additional control measures to reduce the negative impact of vehicle emissions on Beijing's air quality. An evaluation of the effectiveness of these measures may provide guidance for future vehicle emission control strategy development. In-use emissions from light-duty gasoline vehicles (LDGVs) were investigated at five sites in Beijing with remote sensing instrumentation. Distance-based mass emission factors were derived with fuel consumption modeled on real world data. The results show that the recently implemented aggressive control strategies are significantly reducing the emissions of on-road vehicles. Older vehicles are contributing substantially to the total fleet emissions. An earlier program to retrofit pre-Euro cars with three-way catalysts produced little emission reduction. The impact of model year and driving conditions on the average mass emission factors indicates that the durability of vehicles emission controls may be inadequate in Beijing.  相似文献   

20.
The Traffic Air Quality (TAQ) model is a simple tool to estimate traffic fine particulate emissions on roadways (g/km) and can be used for both real-time analysis and for localized conformity analysis ("hot-spot" analysis for nonattainment areas) as defined by 40 CFR 93.123. This paper is a follow-up to a study published earlier regarding the development of the TAQ model. This paper shows how local air quality levels can be a factor in traffic management in nonattainment areas. Similar to the industrial source quotas measured in tons per year, it is proposed that road segments are to be assigned emission quotas (or TAQ indices) measured in pollutant mass emitted per road length (g/km) above which traffic-measures have to be taken to reduce the fine-particulates emissions on such road links. The TAQ model as well as traffic-rerouting measures along with the Intelligent Transportation System (ITS) protocols can be used to have a real-time control of the traffic conditions along expressways to maintain the fine-particulates emissions below the quota assigned per road link and consequently improving the over all local air quality in nonattainment areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号