首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deposition of sulfur dioxide on growing vegetation is affected by diverse environmental factors, many of which undergo large diurnal and spatial variations. The aerodynamic resistance to vertical transfer in the surface boundary layer can be formulated in terms of the friction velocity, height of observation, vertical heat flux, and surface roughness. Also important are the resistance in the air layer closest to the surface elements and, in dry vegetation, the average stomatal resistance of the plants. The latter variable is among the most difficult to estimate, but over many agricultural field crops like those in the midwestern U.S., a typical minimum value of average stomatal resistance to SO2 transfer is about 0.7 s cm-1, as is indicated by various experimental data. The deposition velocity can be estimated as the inverse of the sum of the resistances of the layers, necessarily down to where the concentrations are zero; in the surface boundary layer, any of the various resistances might be dominant. Above the surface layer, the micrometeorological relationships are known with less certainty, but reasonable approximations indicate that during unstable conditions the resistance to transfer is very small at heights of several tens of meters and during stable conditions the aerodynamic resistance is very large aloft.  相似文献   

2.
A gaseous deposition model, based on a realistic canopy stomatal resistance submodel, is described, analyzed and tested. This model is designed as one of a hierarchy of simulations, leading up to a “big-leaf” model of the processes contributing to the exchange of trace gases between the atmosphere and vegetated surfaces. Computations show that differences in plant species and environmental and physiological conditions can affect the canopy stomatal resistance by a factor of four. Canopy stomatal resistances to water vapor transfer computed with the present model are compared against values measured with a porometer and computed with the Penman-Monteith equation. Computed stomatal resistances from a soybean canopy in both well-watered and water-stressed conditions yield good agreement with test data. The stomatal resistance submodel responds well to changing environmental and physiological conditions. Model predictions of deposition velocities are evaluated for the case of ozone, transferred to maize. Calculated deposition velocities of O3 overestimate measured values on the average by about 30%, probably largely as a consequence of uncertainties in leaf area index, soil and cuticle resistances, and other modeling parameters, but also partially due to imperfect measurement of O3 deposition velocities.  相似文献   

3.
Applications of a parameterised Jarvis-type multiplicative stomatal conductance model with data collated from open-top chamber experiments on field grown wheat and potato were used to derive relationships between relative yield and stomatal ozone uptake. The relationships were based on thirteen experiments from four European countries for wheat and seven experiments from four European countries for potato. The parameterisation of the conductance model was based both on an extensive literature review and primary data. Application of the stomatal conductance models to the open-top chamber experiments resulted in improved linear regressions between relative yield and ozone uptake compared to earlier stomatal conductance models, both for wheat (r2=0.83) and potato (r2=0.76). The improvement was largest for potato. The relationships with the highest correlation were obtained using a stomatal ozone flux threshold. For both wheat and potato the best performing exposure index was AFst6 (accumulated stomatal flux of ozone above a flux rate threshold of 6 nmol ozone m−2 projected sunlit leaf area, based on hourly values of ozone flux). The results demonstrate that flux-based models are now sufficiently well calibrated to be used with confidence to predict the effects of ozone on yield loss of major arable crops across Europe. Further studies, using innovations in stomatal conductance modelling and plant exposure experimentation, are needed if these models are to be further improved.  相似文献   

4.
Poplar shoots were exposed for 3–4 weeks to filtered air, ambient (maximum values 50–60 nl -1) or two times ambient O3-concentrations under controlled environmental conditions in fumigation chambers. A sensitive (Populus nigra ‘Brandaris’) and a tolerant (P. euramericana ‘Robusta’) cultivar were used. At regular intervals the uptake of O3, transpiration and CO2 assimilation rate (Pn) of full-grown leaves were measured with leaf cuvettes. For unaffected leaves, the measured flux of O3 into the leaves appeared to be larger than can be calculated using the stomatal conductance for O3 (gs,o) estimated from the transpiration rates of the same leaves. Resistance analysis revealed that the difference was partly a result of a reaction with the external leaf surface. However, when the O3 flux into the leaf was corrected for this reaction, it was still larger than can be estimated using gs,o. As a consequence, negative residual or internal resistances (ri) for O3 transport into the leaves were assessed. It is postulated that O3 molecules moving into the leaf follow a shorter pathway than effluxing H2O-molecules. P. ‘Brandaris’ leaves showed a reduction in Pn after 12 days of exposure to ambient O3-concentrations, whereas for P. ‘Robusta’ a reduction in Pn was only observed at two times ambient concentrations. A simultaneous decline in the O3-flux was found in both cases. The decline occurred before a decrease in gs,o was observed suggesting that the O3 flux into the affected leaves was first hindered by internal factors. The measured flux of the affected leaves became smaller than the flux estimated using gs,o and, consequently, positive ri-values were estimated. The change in ri suggests that O3 molecules not only penetrated deeper into the leaf, but also were accumulating at a prolonged exposure. Our results indicate that ri may be a potentially important component of the overall resistance for O3-uptake, which may have important consequences for estimating O3 uptake from water vapour flux data.  相似文献   

5.
Data from the literature on dry deposition of SO2 to various common materials in outdoor atmospheres are reviewed and presented in the context of a theoretical model. The model postulates two resistances to deposition: the aerodynamic resistance, controlled by atmospheric properties; and the surface resistance, controlled by the chemistry of the surface and its moisture layer. Since the dissolution of SO2 is sensitive to pH, buffering of the moisture layer by corrosion products is essential for SO2 deposition to continue. Thus, it is hypothesized that SO2 deposits preferentially on those surfaces that are sensitive to SO2 attack. Based on extant data, estimates of aerodynamic and surface resistances are derived from the literature and maximum "dry" deposition rates for SO2 are estimated. Such information could be used to formulate SO2 dose-response or "damage" functions for certain materials, based on short-term laboratory tests.  相似文献   

6.
Abstract

Ozone dry deposition fluxes and velocities were measured in 1994 in a semi–arid steppe of central Spain and in a forest in southern France during the period of photochemical activity using the gradient method. Downward fluxes were systematically obtained in both sites, with lower values at nighttime and maximum values during the central period of the day, which showed the important role of stomata in ozone uptake. The range of deposition velocities was –0.005 to 1.160 in the forested site and 0.001 to 1.430 cm s–1 in the semi–arid steppe. The nocturnal deposition velocities observed in the semi–arid steppe were considerably higher than in the forest, with values up to 0.35 cm s–1.

A single layer canopy model was applied and validated at both sites. The model fitted the daily patterns well but underestimated the observed values by 34% in the forest and by 10% in the semi–arid steppe. To improve the accuracy of the model, both soil and internal stomatal resistances, Rsoil and Ri, were estimated using a least square technique. The interdependence of both parameters and the relative humidity, rH, was evaluated through a statistical analysis of the residual between the observed deposition velocity and the aerodynamic, sub–layer, and stomatal resistances. The comparison between the parameter estimates under wet and dry conditions in both sites showed (1) the influence of rH on stomatal parameter and soil resistance, (2) the large contribution of stomatal conductance to ozone uptake during the daytime, and (3) the importance of soil as an additional pathway for ozone exchange, especially in the steppe. Taking into account the parameter estimates, the underestimate of the modeled results was 3% in the forest and 5% in the semi–arid steppe.  相似文献   

7.
The body of information presented in this paper is directed to investigators using inertial samplers for precise and accurate studies of respirable aerosols. The conventions commonly used for aerodynamic size for aerosol particles are discussed including the definition popularized by the "Task Group on Lung Dynamics" of the ICRP, and the "Lovelace" definition. To emphasize the distinction, the Task Group definition (unit density sphere equivalent) is called the aerodynamic equivalent diameter, Dae, and the Lovelace definition (characteristic expression based upon viscous resistance) is called the aerodynamic resistance diameter, Dar. The implications and efficacy of these conventions are related to procedures for calibration of cascade impactors, cyclones, and spiral centrifuges. The calibration of a spiral centrifuge at different altitudes is used as an example of the potential problems associated with the use of the different conventions for describing aerodynamic size. The aerodynamic resistance diameter is recommended for calibration of inertial samplers to be used to collect aerosols in the respirable size range.  相似文献   

8.
We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (gwv), foliar injury, and leaf nitrogen concentration (NL) to tropospheric ozone (O3) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, gwv, foliar injury, and NL (P < 0.05) among O3 treatments. Seedlings in AA showed the highest A and gwv due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, gwv, NL, and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, gwv, and foliar injury to O3. Both VPD and NL had a strong influence on leaf gas exchange. Foliar O3-induced injury appeared when cumulative O3 uptake reached 8-12 mmol m−2, depending on soil water availability. The mechanistic assessment of O3-induced injury is a valuable approach for a biologically relevant O3 risk assessment for forest trees.  相似文献   

9.
Stomatal ozone uptake, determined with the Jarvis' approach, was related to photosynthetic efficiency assessed by chlorophyll fluorescence and reflectance measurements in open-top chamber experiments on Phaseolus vulgaris. The effects of O3 exposure were also evaluated in terms of visible and microscopical leaf injury and plant productivity. Results showed that microscopical leaf symptoms, assessed as cell death and H2O2 accumulation, preceded by 3-4 days the appearance of visible symptoms. An effective dose of ozone stomatal flux for visible leaf damages was found around 1.33 mmol O3 m−2. Significant linear dose-response relationships were obtained between accumulated fluxes and optical indices (PRI, NDI, ΔF/Fm). The negative effects on photosynthesis reduced plant productivity, affecting the number of pods and seeds, but not seed weight. These results, besides contributing to the development of a flux-based ozone risk assessment for crops in Europe, highlight the potentiality of reflectance measurements for the early detection of ozone stress.  相似文献   

10.
The effects of elevated O3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced δ13C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O3 detoxification and repair was suggested under elevated O3 owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O3, this effect being accompanied by lowered Fv/Fm. These results suggest that chronic O3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O3 sensitivity of photosynthesis and accelerated senescence in shade leaves.  相似文献   

11.
12.
In order to investigate the chemical characteristics of atmospheric aerosol measured during a severe winter haze event, 12-hr PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) samples were collected at an urban site in Ulaanbaatar, Mongolia, from January 9 to February 17, 2008. On average, 12-hr PM2.5 mass concentration was 105.1 ± 34.9 μg/m3. Low PM2.5 mass concentrations were measured when low pressure developed over central Mongolia. The 12-hr average organic mass by carbon (OMC) varied from 6.4 to 132.3 μg/m3, with a mean of 54.9 ± 25.4 μg/m3, whereas elemental carbon (EC) concentration ranged from 0.1 to 3.6 μgC/m3, with a mean of 1.5 ± 0.8 μgC/m3. Ammonium sulfate was found to be the most abundant water-soluble ionic component in Ulaanbaatar during the sampling period, with an average concentration of 11.3 ± 5.0 μg/m3. In order to characterize the effect of air mass pathway on fine particulate matter characteristics, 5-day back-trajectory analysis was conducted, using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The haze level was classified into three categories, based on the 5-day air mass back trajectories, as Stagnant (ST), Continental (CT), and Low Pressure (LP) cases. PM2.5 mass concentration during the Stagnant condition was approximately 2.5 times higher than that during the Low Pressure condition, mainly due to increased pollutant concentration of OMC and secondary ammonium sulfate.

Implications: Mongolia is experiencing rapid rates of urbanization similar to other Asian countries, resulting in air pollution problems by the growing number of automobiles and industrialization. Ulaanbaatar, capital of Mongolia, is inherently vulnerable to air pollution because of its emission sources, topography, and meteorological characteristics. Very limited measurements on chemical characteristics of particulate matter have been carried out in Ulaanbaatar, Mongolia.  相似文献   

13.
This paper summarises some of the main results of a two-year experiment carried out in an Open-Top Chambers facility in Northern Italy. Seedlings of Populus nigra, Fagus sylvatica, Quercus robur and Fraxinus excelsior have been subjected to different ozone treatments (charcoal-filtered and non-filtered air) and soil moisture regimes (irrigated and non-irrigated plots). Stomatal conductance models were applied and parameterised under South Alpine environmental conditions and stomatal ozone fluxes have been calculated.The flux-based approach provided a better performance than AOT40 in predicting the onset of foliar visible injuries. Critical flux levels, related to visible leaf injury, are proposed for P. nigra and F. sylvatica (ranging between 30 and 33 mmol O3 m−2). Soil water stress delayed visible injury appearance and development by limiting ozone uptake. Data from charcoal-filtered treatments suggest the existence of an hourly flux threshold, below which may occur a complete ozone detoxification.  相似文献   

14.
We evaluated the Danish AirGIS air quality and exposure model system using air quality measurement data from New York City in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Measurements were used from three US EPA Air Quality System (AQS) monitoring stations and a comprehensive MESA Air measurement campaign including about 150 different locations and about 650 samples of about 2 week measurements of NOx, NO2 and PM2.5. AirGIS is a deterministic exposure model system based on the dispersion models Operational Street Pollution Model (OSPM) and the Urban Background Model (UBM). The UBM model reproduced the annual levels within 1–26% depending on station and pollutant at the three urban background EPA monitor stations, and generally reproduced well the seasonal and diurnal variation. The full model with OSPM and UBM reproduced the MESA Air measurements with a correlation coefficient of r2 = 0.51 for NOx, r2 = 0.28 for NO2 and r2 = 0.73 for PM2.5.  相似文献   

15.
Dhaka, the capital of Bangladesh, is among the most polluted cities in the world. This research evaluates seasonal patterns, day-of-week patterns, spatial gradients, and trends in PM2.5 (<2.5 µm in aerodynamic diameter), PM10 (<10 µm in aerodynamic diameter), and gaseous pollutants concentrations (SO2, NO2, CO, and O3) monitored in Dhaka from 2013 to 2017. It expands on past work by considering multiple monitoring sites and air pollutants. Except for ozone, the average concentrations of these pollutants showed strong seasonal variation, with maximum during winter and minimum during monsoon, with the pollution concentration of PM2.5 and PM10 being roughly five- to sixfold higher during winter versus monsoon. Our comparisons of the pollutant concentrations with Bangladesh NAAQS and U.S. NAAQS limits analysis indicate particulate matter (PM2.5 and PM10) as the air pollutants of greatest concern, as they frequently exceeded the Bangladesh NAAQS and U.S. NAAQS, especially during nonmonsoon time. In contrast, gaseous pollutants reported far fewer exceedances throughout the study period. During the study period, the highest number of exceedances of NAAQS limits in Dhaka City (Darus-Salam site) were found for PM2.5 (72% of total study days), followed by PM10 (40% of total study days), O3 (1.7% of total study days), SO2 (0.38% of total study days), and CO (0.25% of total study days). The trend analyses results showed statistically significant positive slopes over time for SO2 (5.6 ppb yr?1, 95% confidence interval [CI]: 0.7, 10.5) and CO (0.32 ppm yr?1, 95% CI: 0.01, 0.56), which suggest increase in brick kilns operation and high-sulfur diesel use. Though statistically nonsignificant annual decreasing slopes for PM2.5 (?4.6 µg/m3 yr?1, 95% CI: ?12.7, 3.6) and PM10 (?2.7 µg/m3 yr?1, 95% CI: ?7.9, 2.5) were observed during this study period, the PM2.5 concentration is still too high (~ 82.0 µg/m3) and can cause severe impact on human health.

Implications: This study revealed key insights into air quality challenges across Dhaka, Bangladesh, indicating particulate matter (PM) as Dhaka’s most serious air pollutant threat to human health. The results of these analyses indicate that there is a need for immediate further investigations, and action based on those investigations, including the conduct local epidemiological PM exposure-human health effects studies for this city, in order to determine the most public health effective interventions.  相似文献   


16.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples (n = 58) collected every sixth day in Xi’an, China, from 5 July 2008 to 27 June 2009 are analyzed for levoglucosan (1,6-anhydro-β-d-glucopyranose) to evaluate the impacts of biomass combustion on ambient concentrations. Twenty-four-hour levoglucosan concentrations displayed clear summer minima and winter maxima that ranged from 46 to 1889 ng m?3, with an average of 428 ± 399 ng m?3. Besides agricultural burning, biomass/biofuel combustion for household heating with straws and branches appears to be of regional importance during the heating season in northwestern China. Good correlations (0.70 < R < 0.91) were found between levoglucosan relative to water-soluble K+, Cl?, organic carbon (OC), elemental carbon (EC), and glyoxal. The highest levoglucosan/OC ratio of 2.3% was found in winter, followed by autumn (1.5%). Biomass burning contributed to 5.1–43.8% of OC (with an average of 17.6 ± 8.4%).

Implications:?PM2.5 levoglucosan concentrations and the correlation between levoglucosan relative to other compounds during four seasons in Xi’an showed that the influence of biomass burning is maximum during the residential heating season (winter), although some important influences may be detected in spring (field preparation burnings) and autumn (corn stalks and wheat straw burning, fallen dead leaves burning) at Xi’an and surrounding areas. Household heating with biomass during winter was quite widespread in Guanzhong Plain. Therefore, the control of biomass/biofuel combustion could be an effective method to reduce pollutant emission on a regional scale.  相似文献   

17.
Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM2.5 concentration (13.2 ± 13.7 µg/m3) was similar to the average measured Grimm 11-R PM2.5 concentration (11.3 ± 15.1 µg/m3). The overall correlation (r2) for PM2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m3) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m3) with an r2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM2.5.

Implications: The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM2.5 and coarse PM (PM10-2.5) mass concentrations were estimated using a DC1700 PM sensor. The calculated PM mass concentrations from the number concentrations of DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM2.5.  相似文献   


18.
Primary fine particulate matters with a diameter of less than 10 µm (PM10) are important air emissions causing human health damage. PM10 concentration forecast is important and necessary to perform in order to assess the impact of air on the health of living beings. To better understand the PM10 pollution health risk in Taiyuan City, China, this paper forecasted the temporal and spatial distribution of PM10 yearly average concentration, using Back Propagation Artificial Neural Network (BPANN) model with various air quality parameters. The predicted results of the models were consistent with the observations with a correlation coefficient of 0.72. The PM10 yearly average concentrations combined with the population data from 2002 to 2008 were given into the Intake Fraction (IF) model to calculate the IFs, which are defined as the integrated incremental intake of a pollutant released from a source category or a region over all exposed individuals. The results in this study are only for main stationary sources of the research area, and the traffic sources have not been included. The computed IFs results are therefore under-estimations. The IFs of PM10 from Taiyuan with a mean of 8.5 per million were relatively high compared with other IFs of the United States, Northern Europe and other cities in China. The results of this study indicate that the artificial neural network is an effective method for PM10 pollution modeling, and the Intake Fraction model provides a rapid population risk estimate for pollutant emission reduction strategies and policies.

Implications The PM10 (particulate matter with an aerodynamic diameter ≤10 μm) yearly average concentration of Taiyuan, with a mean of 0.176 mg/m3, was higher than the 65 μg/m3 recommended by the U.S. Environmental Protection Agency (EPA). The spatial distribution of PM10 yearly average concentrations showed that wind direction and wind speed played an important role, whereas temperature and humidity had a lower effect than expected. Intake fraction estimates of Taiyuan were relatively high compared with those observed in other cities. Population density was the major factor influencing PM10 spatial distribution. The results indicated that the artificial neural network was an effective method for PM10 pollution modeling.  相似文献   

19.
The possibility of vegetation being an important sink for gaseous air pollutants was investigated. Plant pollutant uptake measurements were made utilizing a typical vegetation canopy and chambers that were designed specifically for gaseous exchange studies. The data indicate that an alfalfa canopy removed gases from the atmosphere in the following order: hydrogen fluoride (HF) > sulfur dioxide (SO2) > chlorine (Cl2) > nitrogen dioxide (NO2) > ozone (O3) > peroxyacetyl nitrate (PAN) > nitric oxide (NO) > carbon monoxide (CO). The absorption rate of NO was low, and no absorption of CO could be detected with the methods used. In the typical ambient concentration range uptake increased linearly with increasing concentration except for O3 and Cl2 which caused partial stomatal closure at the higher concentrations. Wind velocity above the plants, height of the canopy, and light intensity were shown to affect the pollutant removal rate. A relationship between the absorption rate and solubility of the pollutant in water was also shown. It was concluded that vegetation may be an important sink for many gaseous air pollutants.  相似文献   

20.
Direct emissions and emission of precursor compounds of acetic and formic acid from higher plants are a significant source of these acids in the atmosphere. To travel from the plant cell to the atmosphere, a gas molecule must first leave the liquid phase and then enter the internal leaf gas phase. The apoplast (cell wall) is the last barrier before the molecule can escape through the stomata. During field experiments we monitored the gas exchange (H2O, CO2, organic acids) of Quercus ilex L. leaves. The exchange rates of acetic and formic acid under field conditions followed a typical diurnal pattern and ranged between −10 (uptake) and 52 (emission) nmol m-2 leaf area min-1 with the maximum around noon. Growth chamber experiments indicate that the emission is related to the stomatal conductance. We discussed the exchange rate of organic acids between the cell wall and the atmosphere in connection with Henry’s law, and the physicochemical conditions in the cell wall. The evaluation showed that for apoplastic pH values between 4 and 5, 26–130% of the measured acetic acid emission based on leaf area could be predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号