首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between sulfur in coal, boiler exit gas temperature, and the carbon portion of fly ash have a major effect on the electrical properties of fly ash. Whether effective collection of fly ash is obtained by the electrostatic precipitator installation alone or the precipitator—mechanical combination depends primarily on a knowledge of this relationship. Fly ash electrical properties can range from a highly "resistive" to a highly "conductive" state which can appreciably alter the precipitator collection performance. A correlation of coal sulfur and boiler exit flue gas temperature is given to indicate the probability of expecting an optimum voltage—current relationship with different combinations of these factors. Carbon affects the electrical conditioning of fly ash by providing parallel paths of current leakage through the deposited dust layer. Therefore, removal of the carbon particles in a mechanical collector placed before the precipitator can alter the precipitator electrical characteristics.  相似文献   

2.
This paper presents a detailed review and critical evaluation of current technologies as applied to fine particulate emissions from coal-fired utility boilers. Quantitative assessments of the capabilities of both conventional and novel air pollution control devices to meet three different performance standards—the present New Source Performance Standard (NSPS) of 0.03 Ib particulate/MBtu heat input, and standards of 0.05 and 0.1 Ib particulate/MBtu are included. Each of the three conventional devices (electrostatic precipitator, fabric filter baghouse, and wet scrubber) is compared and rated with respect to eight different performance categories. This information can be used to determine the relative effectiveness and attractiveness of these three control devices. Novel devices are compared and rated in the same manner, the conclusions from which may provide the research administrator with a guide for the selection of those novel devices which offer the best potential for commercialization.

The major conclusions of the investigation are: (1) The use of conventional scrubbers for fine particulate control on coal-fired utility boilers may no longer be feasible at the new NSPS of 0.03 Ib/MBtu. (2) At the old NSPS (0.1 Ib/MBtu) conventional electrostatic precipitators and baghouses were often competitive. For the new stricter standard, however, the baghouse generally is the more attractive alternative. (3) Novel devices appear to offer almost no hope for this particular application (at a commercial level) between now and 1985 and only little hope before 1990.  相似文献   

3.
4.
Economic projections and the growing experience with more diverse baghouse applications indicate that fabric filtration will become an even more popular type of control technology. While the fabric filter market shows signs of great promise now, an especially significant upturn is predicted within the next half dozen years when dry scrubbing becomes the primary process for combined S02 and par-ticulate control. In the interim, with more and more utility and industrial boilers gaining experience with baghouses, this control method can be expected to develop as an even more acceptable technique, especially on low S coal burning units. Nevertheless, the users stress the need for conservative planning and designing, giving extra care to start-up and maintenance procedures.  相似文献   

5.
This paper presents results of a survey of mercury concentrations in coal, ash, water, fly ash, and flue gas discharges from a 5.5 × 106 Ib/hr steam generator serving a 775 MW (net) turbine-generator set. Representative composite or grab samples were obtained for inlet coal and outlet ash and water. Stack samples were obtained for fly ash and mercury vapor emissions while the unit was operated at 660 MW (net) (85% of full load). Samples were analyzed by anodic stripping voltammetry, plasma emission spectroscopy, and neutron activation analysis to determine mercury concentration entering the furnace in the coal and leaving the furnace in the flue gas, fly ash, bottom and hopper ash, and water. Method inter-comparisons are discussed. A material balance for mercury has been calculated from fuel, ash, and stack gas flow rates. About 90% of the mercury in the coal is released and appears as vapor discharged in the stack gas while 10% remains in the residual ash. For a 700 MW (net) unit, about 5 lb/day of mercury vapor is released to the atmosphere.  相似文献   

6.
A long-term field and laboratory program designed to determine and understand the effects of air pollutants on the performance of electric contact materials has reached the one-year mark. An extensive variety of metals has been exposed at six field environments, for periods up to one year (August 1963 to August 1964). These environments were selected to provide a wide range of air pollutants in typical data processing or process control situations. The program undertakes to determine material degradation as a function of time and environment. The important air pollutants at the field sites are measured regularly, and materials are returned periodically to the laboratory for evaluation using techniques developed specifically for this program. The results of the program to date are presented, and preliminary correlations are drawn.  相似文献   

7.
Abstract

To understand the fate of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in a fly ash treatment plant that used the Waelz rotary kiln process (hereafter the Waelz process), the samples of input and output media were collected and analyzed. The most important PCDD/F source in input mass was electric arc furnace (EAF) fly ash, which had a mean PCDD/F content of 18.51 ng/g and contributed more than 99% of PCDD/F input mass, whereas the PCDD/F input mass fractions contributed by the coke, sand, and ambient air were only 0.04%, 0.02%, and 0.000002%, respectively. For the PCDD/F output mass in the Waelz process, the major total PCDD/F contents of 43.73 and 10.78 ng/g were in bag-filter and cyclone ashes, which accounted for approximately 69% and 17%, respectively, whereas those of stack flue gas and slag were 14% and 0.423%, respectively. The Waelz process has a dechlorination mechanism for higher chlorinated congeners, but it is difficult to decompose the aromatic rings of PCDD/Fs. Therefore, this resulted in the accumulation of lower chlorinated congeners. The output/input ratio of total PCDD/F mass and total PCDD/F international toxicity equivalence (I-TEQ) was 0.62 and 1.19, respectively. Thus, the Waelz process for the depletion effect of total PCDD/F mass was positive but minor, whereas the effect for total PCDD/F I-TEQ was adverse overall.  相似文献   

8.
The types and rates of pollutant emissions from a coal-fired power plant depend upon plant design, coal characteristics, and environmental control policy. In the past, air pollution regulations were often promulgated without rigorous analysis of the resulting energy penalties and secondary environmental impacts that occur in other environmental media (air, land, or water), which are counterproductive to overall environmental quality. This paper describes a Comparative Assessment Model that has been developed to consider systematically such tradeoffs for conventional and advanced coal-to-electric technologies. The model is applied to quantify the secondary (“cross-media”) environmental and resource impacts resulting from alternative air pollution control policies that reduce sulfur dioxide emissions from a 1000 MW power plant. Multimedia pollutant burdens are presented, together with the increased requirements for coal, limestone, and water that are incurred in generating a fixed net quantity of electricity. The development of sound public policy requires that environmental regulations be sensitive to adverse effects in all environmental media, and that tradeoffs involved in the regulation of specific pollutants to one medium be rigorously and systematically characterized.  相似文献   

9.
10.
Abstract

Emitted pollutants from the Agios Dimitrios lignite-fired power plant in northern Greece show a very strong linear correlation with the free calcium oxide content of the lignite ash. Dust (fly ash) emissions are positively correlated to free calcium oxide content, whereas sulfur dioxide (SO2) emissions are negatively correlated. As a result, at present, the Agios Dimitrios Power Plant operates very strictly within the legislative limits on atmospheric particulate emission. In the present study, the factors to be considered in assessing the impact of lignite combustion on the environment are presented and evaluated statistically. The ash appears to have a remarkable SO2 natural dry scrubbing capability when the free calcium oxide content ranges between 4 and 7%. Precipitator operating problems attributable to high ash resistivity can be overcome by injecting sulfur trioxide to reduce the ash resistivity, with, of course, a probable increase in operating costs.  相似文献   

11.
Abstract

Increased interest in the health effects of ambient par–ticulate mass (PM) has focused attention on the evaluation of existing mass measurement methodologies and the definition of PM in ambient air. The Rupprecht and Patashnick Tapered Element Oscillating MicroBalance (TEOM®) method for PM is compared with time–integrated gravimetric (manual) PM methods in large urban areas during different seasons. Comparisons are conducted for both PM10 and PM2.5 concentrations.

In urban areas, a substantial fraction of ambient PM can be semi–volatile material. A larger fraction of this component of PM10 may be lost from the TEOM–heated filter than the Federal Reference Method (FRM). The observed relationship between TEOM and FRM methods varied widely among sites and seasons. In East Coast urban areas during the summer, the methods were highly correlated with good agreement. In the winter, correlation was somewhat lower, with TEOM PM concentrations generally lower than the FRM. Rubidoux, CA, and two Mexican sites (Tlalnepantla and Merced) had the highest levels of PM10 and the largest difference between TEOM and manual methods.

PM2.5 data from collocation of 24–hour manual samples with the TEOM are also presented. As most of the semi–volatile PM is in the fine fraction, differences between these methods are larger for PM2.5 than for PM10.  相似文献   

12.
13.
Abstract

The possibility in converting coal ?y ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m2/g. Optimal crystallization temperature and time were 90 °C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50–72%.  相似文献   

14.
The body of information contained in this paper is directed towards individuals concerned with the toxicology and physical state of airborne effluents from pulverized coal-fired stationary sources. A flotation/sedimentation technique was used to separate fly ash from power plant clean-up devices into light, medium, and high density fractions. Large spherical particles were selected from each fraction and examined by optical and scanning electron microscopy. Attempts were made to identify pleurospheres (filled hollow spheres) by crushing the spheres in situ under the optical microscope. In no cases were filled spheres observed, suggesting that they are not a common structure in fly ash. Several phenomena which generate hollow spheres are discussed.  相似文献   

15.
Electric generating plants burning medium-sulfur coal need a way to predict when ESP performance will be limited by high electrical resistivity of the collected fly ash. The main uncertainty in mathematical predictions of fly ash resistivity lies in the marginal effect of naturally occurring SO3 vapor in the flue gas. This paper results from a project to expand the data base of SO3/SO2 concentrations and fly ash resistivities measured in utility fly ash precipitators. Complete data sets are presented from three plants in the Southern Company electric system. In situ resistivity data are compared with laboratory measurements and with two different mathematical predictions of resistivity based on coal and ash analyses. The revised version of the resistivity predictor gives results in good agreement with resistivity values measured both in situ and in the laboratory.  相似文献   

16.
Abstract

The batch reaction between fly ash and hydrated lime in water to produce high surface area calcium silicates for flue gas desulfurization has been examined extensively. This paper examines the reaction in a flow reactor using two low-calcium fly ashes and introducing gypsum, calcium sulf ite hemihydrate, and calcium chloride as additives to the reaction. The flow system is compared to the batch reaction at similar operating conditions and a segregated flow model is used to approximate flow reactor behavior.

Experiments with calcium chloride and gypsum additives were modeled fairly well by the segregated flow approximation at residence times less than 12 hours. The flow reactor produced low surface area material at longer residence times when gypsum was present. Because the changing solution chemistry affected the batch reaction rate the fly ash and hydrated lime system without gypsum or calcium chloride could not be approximated using batch reaction data. In this case, the flow reactor produced higher surface area product than the batch reactor for a given residence time due to the increased calcium hydroxide availability.  相似文献   

17.
18.
The Public Health Service and the Bureau of Mines are conducting a joint study to evaluate a number of flue-gas-stream components from coal-burning power plants. Emissions of fly ash, sulfur oxides, nitrogen oxides, polynuclear hydrocarbons, total gaseous hydrocarbons, formaldehyde, certain metals, and carbon dioxide are determined. A previous paper covered air pollutant emissions from vertical-fired and front-wall-fired power plant boilers. This paper includes a comparative evaluation of emissions from a tangential-fired and a turbo-fired power plant boiler.  相似文献   

19.
粉煤灰在环境工程中的应用   总被引:10,自引:0,他引:10  
结合改性粉煤灰处理含铅废水的研究成果,系统地阐述了粉煤灰在环境工程领域中的应用,总结了用粉煤灰处理废水的工艺流程和工艺参数,指出了应用中存在的问题和今后研究的重点。  相似文献   

20.
This is the sixth and last part in a series of papers discussing the experience of electric utilities in applying baghouse technology for the collection of particulate matter at coal-fired electric power generating plants. The series presents new data obtained in research sponsored by the Electric Power Research Institute (EPRI) on reverse-gas and shake/deflate cleaned baghouses, and specifically addresses a number of unresolved issues in the design and operation of these units. This paper discusses research, development and demonstration activities now underway or planned to further understand baghouse technology to ensure efficient, economic and reliable service in utility applications. In addition, it summarizes the major findings reported in Parts I through V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号