首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Particle light scattering (Bsp) from nephelometers and fine particulate matter (PM2.5) mass determined by filter samplers are compared for summer and winter at 35 locations in and around California's San Joaquin Valley from December 2, 1999 to February 3, 2001. The relationship is described using particle mass scattering efficiency (sigmasp) derived from linear regression of Bsp on PM2.5 that can be applied to estimated PM2.5 from nephelometer data within the 24-hr filter sampling periods and between the every-6th-day sampling frequency. An average of sigmaSp = 4.9 m2/g was found for all of the sites and seasons; however, sigmasp averaged by site type and season provided better PM2.5 estimates. On average, the sigmasp was lower in summer than winter, consistent with lower relative humidities, lower fractions of hygroscopic ammonium nitrate, and higher contributions from fugitive dust. Winter average sigmasp were similar at non-source-dominated sites, ranging from 4.8 m2/g to 5.9 m2/g. The sigmasp was 2.3 m2/g at the roadside, 3.7 m2/g at a dairy farm, and 4.1 m2/g in the Kern County oilfields. Comparison of Bsp from nephelometers with and without a PM2.5 inlet at the Fresno Supersite showed that coarse particles contributed minor amounts to light scattering. This was confirmed by poorer correlations between Bsp and coarse particulate matter measured during a fall sampling period.  相似文献   

2.
A receptor model of positive matrix factorization (PMF) was used to identify the emission sources of fine and coarse particulates in Bandung, a city located at about 150 km south-east of Jakarta. Total of 367 samples were collected at urban mixed site, Tegalega area, in Bandung City during wet and dry season in the period of 2001–2007. The samples of fine and coarse particulate matter were collected simultaneously using dichotomous samplers and mini-volume samplers. The Samples from dichotomous Samplers were analyzed for black carbon and elements while samples from mini-volume samplers were analyzed for ions. The species analyzed in this study were Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Pb, Cl?, NO3?, SO42?, and NH4+. The data were then analyzed using PMF to determine the source factors. Different numbers of source factors were found during dry and wet season. During dry season, the main source factors for fine particles were secondary aerosol (NH4)2SO4, electroplating industry, vehicle emission, and biomass burning, while for coarse particles, the dominant source factors were electroplating industry, followed by aged sea salt, volcanic dust, soil dust, and lime dust. During the wet season, the main source factors for fine particulate matter were vehicle emission and secondary aerosol. Other sources detected were biomass burning, lime dust, soil and volcanic dust. While for coarse particulate matter, the main source factors were sulphate-rich industry, followed by lime dust, soil dust, industrial emission and construction dust.  相似文献   

3.
Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a "whole" year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 microg/m(3) and low in summer days at 456 microg/m(3); however, the spatial PMo0 average exhibited little variation at a level of approximately 325 microg/m(3), and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

4.
The University of Arizona and the Pima County Air Pollution Control District conducted a comparison study of the following aerosol samplers: a standard high-volume sampler, a high-volume sampler fitted with a size selective inlet, and a dichotomous virtual impactor. Over sixty samples were collected with the colocated samplers during the first six months of 1981. The concentration (μg/m3) of suspended particulate matter and of sulfate was determined for all the samples, while the concentration of four lithophilic elements (Ca, Fe, Mg, and K) was determined on one third of the samples. Well-defined linear relationships for suspended particulate matter and sulfate were found to exist between each of the three sample collection methods over the concentrafion range encountered in this study. For these samples, there were significant differences in the particulate mass and large particle lithophilic element concentrations collected by each device. However, sulfate values obtained from the three samplers were in excellent agreement with each other. This suggests that the inlet collection efficiency for large particles differs significantly for these three sampling devices. Since the size selective inlet and the dichotomous virtual impactor samplers are each designed for collection of inhalable particles (particles of 15 μm aerodynamic diameter and smaller), they would have been expected to measure approximately equivalent particle mass concentrations. Thus, these differences are important to those interested in selecting a method for measuring airborne particle mass concentrations.  相似文献   

5.
ABSTRACT

Road traffic is one of the main sources of particulate matter (PM) in the atmosphere. Despite its importance, there are significant challenges in the quantitative evaluation of its contribution to airborne concentrations. In order to propose effective mitigation scenarios, the proportions of PM traffic emissions, whether they are exhaust or non-exhaust emissions, should be evaluated for any given geographical location. In this work, we report on the first study to evaluate particulate matter emissions from all registered heavy duty diesel vehicles in Qatar. The study was applied to an active traffic zone in urban Doha. Dust samples were collected and characterized for their shape and size distribution. It was found that the particle size ranged from few to 600 μm with the dominance of small size fraction (less than 100 μm). In-situ elemental composition analysis was conducted for side and main roads traffic dust, and compared with non-traffic PM. The results were used for the evaluation of the enrichment factor and preliminary source apportionment. The enrichment factor of anthropogenic elements amounted to 350. The traffic source based on sulfur elemental fingerprint was almost 5 times higher in main roads compared with the samples from non-traffic locations. Moreover, PM exhaust and non-exhaust emissions (tyre wear, brake wear and road dust resuspension) were evaluated. It was found that the majority of the dust was generated from tyre wear with 33% followed by road dust resuspension (31%), brake wear (19%) and then exhaust emissions with 17%. The low contribution of exhaust PM10 emissions was due to the fact that the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies.

Implication: This study reports on the first results related to the evaluation of PM emission from all registered diesel heavy duty vehicles in Qatar. In-situ XRF elemental analysis from main, side roads as well as non-traffic dust samples was conducted. Several characterization techniques were implemented and the results show that the majority of the dust was generated from tyre wear, followed by road dust resuspension and then brake wear; whereas exhaust emissions were tremendously reduced since the majority of the registered vehicle models were recently made and equipped with efficient exhaust PM reduction technologies. This implies that policy makers should place stringent measures on old vehicle license renewals and encourage the use of metro and public transportation.  相似文献   

6.
Abstract

Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a “whole” year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 ~g/m3 and low in summer days at 456 ~g/m3; however, the spatial PM10 average exhibited little variation at a level of approximately 325 ~g/m3, and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

7.
On June 18, 19, and 20, 1970, two aircraft, a rawinsonde, two pibal stations, and four ground stations provided simultaneous samples of total oxidant, temperature, and winds up to 8000 ft in an area extending from Santa Monica, Calif., east to Redlands and north across the San Bernardino Mountains. It was shown that photochemical oxidant formed in the marine layer is vented up the slopes and over the crest of the San Bernardino Mountains during the day. Layers of high oxidant concentrations were detected above the inversion base, suggesting that some pollution is vented up the slopes and subsequently advected back to the south. The diurnal changes in the temperature inversion also contribute to the high concentration found above the inversion base. These processes result in multi-layers of pollution. The study suggests that oxidant air pollution is transported up to 80 mi to forested mountains, where severe damage to conifer species has been documented.  相似文献   

8.
Indoor and outdoor air contaminants have largely been treated separately in studies of their respective effects on respiratory and nonrespiratory health. In this paper, we report the results of a comprehensive study of key contaminants in 10 urban and 10 rural homes in Ottawa, Ontario, Canada. The analyses included house dust mite and cat allergens along with the fungal inflammatory polysaccharide beta1,3-D-glucan in settled dust and fine particulate matter, coarse particulate matter, ergosterol, glucan, and endotoxin from air samples. In addition, black carbon was continuously measured for 7 days. A detailed physical assessment of the house and patterns of use were undertaken, including a careful inspection for mold and water damage, as well as measurements of air leakage. The performance of the houses and the range and distribution of the contaminants measured were largely similar to that of previous Canadian studies. For certain combinations, it is thought that the presence of both allergen and inflammatory materials increases asthma symptoms. House-by-house comparisons of airborne concentrations of inflammatory compounds measured (endotoxin, fine particulate matter, and fungal glucan) with dust mite allergens indicated that certain houses had relatively higher amounts of both kinds of materials.  相似文献   

9.
Fine particulate matter (PM2.5) samples were simultaneously collected on Teflon and quartz filters between February 2010 and February 2011 at an urban monitoring site (CAMS2) in Dhaka, Bangladesh. The samples were collected using AirMetrics MiniVol samplers. The samples on Teflon filters were analyzed for their elemental composition by PIXE and PESA. Particulate carbon on quartz filters was analyzed using the IMPROVE thermal optical reflectance (TOR) method that divides carbon into four organic carbons (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. The data were analyzed by positive matrix factorization using the PMF2 program. Initially, only total OC and total EC were included in the analysis and five sources, including road dust, sea salt and Zn, soil dust, motor vehicles, and brick kilns, were obtained. In the second analysis, the eight carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, EC3) were included in order to ascertain whether additional source information could be extracted from the data. In this case, it is possible to identify more sources than with only total OC and EC. The motor vehicle source was separated into gasoline and diesel emissions and a fugitive Pb source was identified. Brick kilns contribute 7.9 μg/m3 and 6.0 μg/m3 of OC and EC, respectively, to the fine particulate matter based on the two results. From the estimated mass extinction coefficients and the apportioned source contributions, soil dust, brick kiln, diesel, gasoline, and the Pb sources were found to contribute most strongly to visibility degradation, particularly in the winter.

Implications: Fine particle concentrations in Dhaka, Bangladesh, are very high and cause significant degradation of urban visibility. This work shows that using carbon fraction data from the IMPROVE OC/EC protocol provides improved source apportionment. Soil dust, brick kiln, diesel, gasoline, and the Pb sources contribute strongly to haze, particularly in the winter.  相似文献   

10.
In this study, the chemical composition of fine particulate matter samples collected at U.S. Environmental Protection Agency Speciation Trends Network sites in San Jose, CA, from February 2000 to February 2005 were analyzed. A San Jose site was initially established at 4th Street and then subsequently moved to Jackson Street in mid-2002. These sites are approximately 1 km apart. There were no known major changes in the nature of the sources in the area over this period. The study used positive matrix factorization model to extract the source profiles and their mass contributions and to compare the results for the congruence of the source apportionments between these two nearby sites. In the case of the 4th Street site, the average mass was apportioned to wood combustion (32.1 +/- 2.5%), secondary nitrate (22.3 +/- 2%), secondary sulfate (10.7 +/- 0.6%), fresh sea salt (7.7 +/- 0.9%), gasoline vehicles (7.3 +/- 0.5%), aged sea salt (6.8 +/- 0.4%), road dust (6.7 +/- 0.7%), diesel emissions (3.9 +/- 0.3%), and a Ni-related industrial source (2.5 +/- 0.4%). At the Jackson Street site, the average mass was apportioned to wood combustion (33.6 +/- 2.6%), secondary nitrate (20.3 +/- 1.9%), secondary sulfate (13.9 +/- 0.9%), aged sea salt (12.4 +/- 0.7%), gasoline vehicle (8.3 +/- 0.6%), fresh sea salt (5.3 +/- 0.5%), diesel emission (3.2 +/- 0.3%), road dust (1.9 +/- 0.1%), and Ni-related industrial source (1.3 +/- 0.1%). Conditional probability function analysis was used to help identify local sources. These results suggested that moving the sampling site a short distance had little effect on the nature of the resolved source types although some differences in their quantitative impacts were obtained in the positive matrix factorization analyses.  相似文献   

11.
Elemental carbon (EC) particles have been found in the lungs of dolphins. The question arose as to whether these particles originated over land or water. This project determined the amount of EC particulate found in terrestrial air. Portions of paniculate filters and associated data collected during the period from January 1990 through December 1991 were provided by the Florida Department of Environmental Regulation. Using reflectance spectroscopy and laboratory-generated standards, atmospheric concentrations of EC and TSP were determined. This paper addresses the data from those counties which surround Tampa Bay.

In the spring of 1992, a television news station reported that researchers at Mote Marine Institute had found black carbon particulates in the lungs of dolphins (reported as “...dolphins with Black Lung Disease..."). The dolphins were found in the Gulf of Mexico off the coast of Florida.1 In discussions with a principal investigator of the dolphin study, the question arose as to whether these particulates came from urban or marine sources. No comprehensive investigation of soot concentrations in the air over Florida had been made. This study reports the elemental carbon (EC) content of urban particulate matter in the Tampa Bay region, where the affected dolphins were discovered between 1988 and 1990 (Sarasota County). This is the first step toward answering whether urban concentrations of EC were sufficient to contribute measurably to the EC found in the marine environment. Future efforts will address marine concentrations and sources of EC.

Elemental carbon, commonly termed “soot,” is a product of incomplete combustion. Common urban sources of EC in particulate matter include both mobile sources (diesel-powered buses, cars, and trucks) and point sources (incinerators, power plants and home heating units). The State of Florida operates environmental monitoring stations in selected municipalities around the state. At these stations, which were sited according to EPA requirements2, Total Suspended Particulate (TSP) samples were collected using the accepted methods.3 These samples were suitable for EC analysis. Samples collected in the Tampa Bay region in 199b and 1991 were analyzed for EC content using reflectance spectroscopy. EC concentrations were calculated in micrograms per cubic meter (μg/m3).  相似文献   

12.
Experimental relationships between the mass concentration of suspended particulate matter and the optical density of particulates collected on paper tape have been determined for the atmospheric aerosol and for aerosols of constant optical properties. Simultaneous samples were obtained on membrane filters (for gravimetric analysis) and on Whatman No. 4 paper tape (for optical evaluation). Sampling procedures were adopted which ensured that the efficiency of sampling was the same in both cases.

Consistent relationships between mass concentrations of suspended particulate matter and optical density expressed in terms of per cent transmittance or per cent reflectance were found for dispersions of coal, limestone, fly ash, and a coal-limestone mixture.

For atmospheric aerosol samples collected on the roof of the Graduate School of Public Health, University of Pittsburgh, the relationship between mass concentration and per cent transmittance or per cent reflectance was found to be linear over the range of values observed. The correlation coefficients were ?0.93 (for concentration versus per cent transmittance) and ?0.89 (for concentration versus per cent reflectance).  相似文献   

13.
This paper describes the results of a study to determine the total mass and the mass distribution of atmospheric aerosols, especially that mass associated with particles greater than 10 μm diameter. This study also determined what fraction of the total aerosol mass a standard high-volume air sampler collects and what fraction and size interval settle out on a dust fall plate. A special aerosol sampling system was designed for this study to obtain representative samples of large airborne particles. A suburban sampling site was selected because no local point sources of aerosols existed nearby. Samples were collected under various conditions of wind velocity and direction to obtain measurements on different types of aerosols.

Study measurements show that atmospheric particulate matter has a bimodal mass distribution. Mass associated with large particles mainly ranged from 5 to 100 μm in size, while mass associated with small particles ranged from an estimated 0.03 to 5 μm in size. Combined, these two distributions produced a bimodal mass distribution with a minimum around 5 μm diameter. The high-volume air sampler was found to collect most of the total aerosol mass, not just that fraction normally considered suspended particulate. Dust fall plates did not provide a good or very useful measure of total aerosol mass. The two fundamental processes of aerosol formation, condensation and dispersion appear to account for the formation of a bimodal mass distribution in both natural and anthropogenic aerosols. Particle size distribution measurements frequently are in error because representative samples of large airborne particles are not obtained. Considering this descrepancy, air pollution regulations should specify or be based upon an upper particle size limit.  相似文献   

14.
The potential adverse health effects of PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) and vapor samples from three communities that neighbor railyards, Commerce (CM), Long Beach (LB), and San Bernardino (SB), were assessed by determination of chemical reactivities attributed to the induction of oxidative stress by air pollutants. The assays used were dithiothreitol (DTT)- and dihydrobenzoic acid (DHBA)-based procedures for prooxidant content and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) assay for electrophiles. Prooxidants and electrophiles have been proposed as the reactive chemical species responsible for the induction of oxidative stress by air pollution mixtures. The PM2.5 samples from CM and LB sites showed seasonal differences in reactivities, with higher levels in the winter, whereas the SB sample differences were reversed. The reactivities in the vapor samples were all very similar, except for the summer SB samples, which contained higher levels of both prooxidants and electrophiles. The results suggest that the observed reactivities reflect general geographical differences rather than direct effects of the railyards. Distributional differences in reactivities were also observed, with PM2.5 fractions containing most of the prooxidants (74–81%) and the vapor phase most of the electrophiles (82–96%). The high levels of the vapor-phase electrophiles and their potential for adverse biological effects point out the importance of the vapor phase in assessing the potential health effects of ambient air.

Implications:?PM2.5 and its corresponding vapor phase, containing semivolatile organics, were collected in three communities in the Los Angeles Basin and examined with toxicologically relevant chemical assays. The PM2.5 phase contained most of the prooxidants and the vapor phase contained most of the electrophiles, whose content was highest in summer samples from a receptor site that reflected greater photochemical processing of the air parcel during its transport. As electrophiles initiate both adverse and adaptive responses to foreign substances by biological systems, their presence in the vapor phase emphasizes the importance of this phase in the overall health effects of ambient air.  相似文献   

15.
It is important to characterize the chemical properties of particulate matter in order to understand how low doses, inhaled by a susceptible population, might cause human health effects. The formation of reactive oxygen species catalyzed by neutral, aqueous extracts of two ambient particulate samples, National Institute of Standards & Technology (NIST) Standard Reference Materials (SRM) 1648 and 1649, and two diesel particulate samples, NIST SRM 1650 and SRM 2975, were measured. The formation of reactive oxygen species was estimated by measuring the formation of malondialdehyde from 2-deoxyribose in the presence of ascorbic acid; H2O2 was not added to this assay. SRM 1649, ambient particulate matter collected from Washington, DC, generated the most malondialdehyde, while SRM 2975, diesel particulate matter collected from a forklift, yielded the least amount. Desferrioxamine inhibited the formation of malondialdehyde from the particulate samples providing additional data to support the observation that transition metals were involved in the generation of reactive oxygen species. Six transition metal sulfates (iron sulfate, copper sulfate, vanadyl sulfate, cobalt sulfate, nickel sulfate, and zinc sulfate) were assayed for their ability to generate reactive oxygen species under the same conditions used for the particulate samples in order to facilitate comparisons between particles and these transition metals. The concentration of transition metals was measured in aqueous extracts of these particulate samples using ion-coupled plasma mass spectrometry (ICP-MS) analysis. There was qualitative agreement between the concentrations of Fe, Cu, and V and the amount of malondialdehyde produced from extracts of these particulate samples. These data suggest that transition metals can be dissolved from particles in neutral, aqueous solutions and that these metals are capable of catalyzing the formation of reactive oxygen species.  相似文献   

16.
Sharma H  Jain VK  Khan ZH 《Chemosphere》2007,66(2):302-310
This paper reports on polycyclic aromatic hydrocarbons (PAHs) in the atmospheric particulate matter of Jawaharlal Nehru University campus, an urbanized site of New Delhi, India. Suspended particulate matter samples of 24h duration were collected on glass-fiber filter paper for four representative days in each month during January 2002 to December 2003. PAHs were extracted from filter papers using toluene with ultrasonication method and analysed. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the gas chromatography technique. The annual average concentration of total PAHs were found to be 668+/-399 and 672+/-388 ng/m3 in the years 2002 and 2003, respectively. The seasonal average concentrations were found to be maximum in winter and minimum during in the monsoon. The results of principal component analysis (PCA) indicate that diesel and gasoline driven vehicles are the principal sources of PAHs in all the seasons. In winter coal and wood combustion also significantly contribute to the PAH levels.  相似文献   

17.
Mexico City frequently experiences high levels of air pollution. This is due mainly to its topography and meteorology that suppress pollutant diffusion and dispersion. The atmospheric mixing is extremely poor, especially during the dry winter months. The levels of certain pollutants, such as particulate matter, are of concern since they have severe effects on public health. Visibility deterioration

is one of the most noticeable effects in large cities. Biological effects of particulate matter on man and animals, ranging from mild eye irritation to death, have been reported. The effects depend on the size of the particles, their solubility, and toxicity. The main objective of this paper is to present the results of a chemical mass balance receptor model applied to a well-characterized data set of particulate matter collected in the Mexico City Metropolitan Area (MCMA). Samples of particulate matter were collected using a denuder and a Hi-Vol system for the respirable fraction and total suspended particles, respectively.

In this paper the analysis of a database consisting of the chemical composition of 33 samples of respirable particulate matter (aerosols with diameter less than 2.5 μm) is presented. The 12-hour samples were acquired during day and night periods in a typical medium-income neighborhood from December 19, 1989 through February 5, 1990.

The results show that the main contributors to suspended particles are vehicles without catalytic converters and heavy-duty diesel vehicles. The contribution of refineries, smelters, cement plants, resuspended dust, natural sources, and secondary aerosols were taken into account. In particular, the vehicles without catalytic converters represent the major contribution to PM2.5. They contribute with 50% during the day and 38% at night. Most of the source profiles were taken from the model library SPECIATE EPA. However, native profiles for soil, vehicles, and refinery were designed.  相似文献   

18.
Hourly ambient ozone exposure data and crown injury measurements were gathered in the Sierra Nevada and San Bernardino Mountains of California to develop relationships between the Ozone Injury Index (OII), the Forest Pest Management Index (FPM), chlorotic mottle, fascicle retention (OII index components) and cumulative ambient ozone indices for Pinus ponderosa Dougl. ex Laws and Pinus jeffreyi Grev. and Balf. Eleven sites located in the mixed conifer forest near ambient ozone monitoring sites were evaluated annually for 4 years. Four other sites in the San Bernardino Mountains were evaluated for 1 year. Analyses showed OII to be functionally equivalent (r2 = 0.96) to the FPM, and to depend only on fascicle retention and chlorotic mottle (R2 = 0.95) of the fourth whorl (or if four whorls are not present at the site, then the last whorl present for the majority of trees). Significant associations were found between OII and 4-year 24-h. summer SUM0, SUM06, W126 and HRS80 ozone indices. Three sites had higher levels of cumulative chlorotic mottle for individual whorls and larger numbers of trees with visible crown injury than other sites with similar cumulative ambient ozone levels. Including an indicator variable to discriminate between these two groups of sites increased R2 and decreased root mean square (RMSE) for all indices, especially SUM0 (R2 = 0.93, RMSE reduced by 46%).  相似文献   

19.
Daily particle samples were collected in Chillán, Chile, at six urban locations from September 1, 2001, through September 30, 2003. Aerosol samples were collected using monitors equipped with a Sierra Andersen 246-b cyclone inlet on Teflon filters. Average concentrations of coarse particulate matter (PM10) for the 2001-2003 period ranged from 43.4 microg/m3 to 81.8 microg/m3 across the six sites. Annual PM10 concentration levels exceeded the European Union concentration limits. Mean PM10 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March). Average contributions to PM10 from organic matter, soil dust, nitrate (NO3-), elemental carbon, ammonium (NH4+), and sulfate (SO4(2-)) were 31%, 27%, 11%, 8%, 7%, and 5%, respectively. The chemical analyses indicated that carbonaceous substances were the most abundant components of PM10 in cold months, whereas crustal material was the most abundant component of PM10 during warm months. Higher concentration levels were observed in the downtown area suggesting a clear anthropogenic origin, whereas in the rural sites the source was mainly natural, such as resuspended soil dust associated with traffic on unpaved roads and agricultural activities.  相似文献   

20.
Chemicals in air were characterized for potential interference with signaling of estrogen, androgen, and arylhydrocarbon (AhR) receptors, which are known to play an important role in endocrine-disruptive changes in vivo. Previously, effects of this type have been studied mainly in particulate matter in the ambient air from various localities. In this study, both volatile and particulate fractions of air from three sites in Banja Luka region (Bosnia and Herzegovina) were investigated to describe the distribution of endocrine-disrupting contaminants on a small spatial scale. Circadian variability of air pollution was investigated by collecting samples during both day and night. Air samples collected from urban localities at night were more potent in producing the AhR-mediated effects than those collected during daytime. This trend was not observed at the reference rural location. None of the samples showed significant estrogenic or androgenic activity. On the other hand, anti-androgenicity was detected in both particulate and vapor phases, while anti-estrogenicity was detected only in the particulate fraction of air from all localities. The AhR-mediated potencies of samples were associated primarily with non-persistent compounds. Based on the concentrations of 28 individual compounds, PAHs accounted for approximately 30 % of the AhR-mediated potency determined by the bioassay. The results show that there can be a significant difference between levels of bioactive compounds in air between daytime and nighttime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号