首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A portable 1-butanol olfactometer was developed for quantifying odors in ambient air. Panelists compare the intensity of ambient odors with the intensity of discrete levels of 1-butanol provided by the olfactometer. Range of delivered 1-butanol concentrations Is 0 to 80 ppm in air at a flow rate of 15 L/min. Laboratory tests were performed to ascertain overall precision, consistency of panelist responses, uniqueness of each odor step, variability between two Identical olfactometers, and effect of delivery method. For 855 pairs of matched odor Intensities, the ratio of measured butanol concentration to set concentration averaged 0.984 or —0.023 scale steps (where the scale steps differ In concentration by factors of two). In field experiments the equivalent ambient odor Intensities determined by odor panels using the butanol olfactometer ranged from 1.5 ppm to 64 ppm of 1-butanol vapor In air. The precision of ambient odor measurements was within one-half scale step on the 1-butanol olfactometer, sufficient for most odor investigation and abatement research applications.  相似文献   

2.
Abstract

Odor intensity reveals a dose-effect relationship between inhaled odor and perceived odor sensation by the receptors, while odor concentration reflects the odor strength at the emission sources. The study reports significant improvements in experimental procedures in establishing the odor concentration-intensity (OCI) relationships using a newly developed digital olfactometer. The improvements in experimental procedures have been made to meet the requirements of both the VDI guideline 3882.1 and the European standard (EN13725). Several areas which could affect the reliability of the results have been identified in some similar studies. The latest digital olfactometer was calibrated automatically to ensure accurate and repeatable dilution ratios. Cross contamination has been eliminated through the instrument design and extensive cleaning procedures, making random presentation possible. Stringent panelist screening and continuous performance monitoring ensures consistent sensitivity of the panel. The extension of odor intensity category to temperature sensation gives a reference to assist judgments of perceived odor sensation. The Dyna-Scent calculation method has simplified odor intensity calculation and can be applied to many odor samples. A total of 38 odor samples from three alumina refinery sites and two sewage treatment plants were collected for analysis. The results have confirmed the efficiency of the olfactometer. Distinct Odor Concentrations (DOCs) were calculated for each sample using both VDI and DynaScent methods. A student t test on two major odor types confirmed that there are no significant differences between two methods. The study has shown the DOCs for refinery odor and wastewater odor are in the range of 3.8-15.4 and 4.2-15.6 odor unit (OU)/m3 respectively. The study demonstrated that the improvements are critical in achieving reliable odor intensity measurement. This can lead to the setup of quantitative odor impact criteria for different industries and sites.  相似文献   

3.
To correlate the odor strength of natural gas with its sulfur analysis, the recognition odor thresholds of 18 sulfur compounds were determined using an untrained panel of 35 peopie. For each test a series of odor concentrations graduated in increments of 100.2 was presented to the panel in random order over a range of concentrations above and below the olfactory thresholds of all panelists. Each odor was tested on at least three different days. Desired odor concentrations were produced by dynamic blending of gaseous mixtures of the odorous compounds with air. All testing was done out-of-doors during clement weather when no ambient odors were apparent. The range of olfactory response was found to be much greater for certain compounds than for others. Branching of the hydro-carbon chain increased odor strength. Certain compounds appeared to evoke anomalous responses.  相似文献   

4.
ABSTRACT

The following models of odor intensity for swine units were evaluated: the Weber-Fechner law model, the power law model, the Stevens model, and the Beidler model. Data were collected from four swine rooms (farrowing, finisher, gestation, and nursery) and odor threshold dilution ratios were measured by a panel using a dynamic forced-choice olfactometer. Odor intensity scales were determined by eight panelists using a six-point category scale method. A nonlinear parameter estimation method was used to estimate the parameters in each of the models. The widely used Weber-Fechner law did not adequately fit the data of odor intensity and threshold. Both the power law and the Beidler models described the data effectively, but the Beidler model showed the best fit of the data and was used as the model to represent the relationship between odor intensity and threshold dilution ratio for swine buildings.  相似文献   

5.
6.
Several methods of data analysis used for the evaluation of odor detection thresholds have been examined through application to two samples of n-butanol. Panels of seven-ten people, working with a six level, IITRI, ternary forced choice olfactometer, were presented with initial concentrations of 99.5 and 52.1 ppm n-butanol during three trials. The ranking-plotting and ASTM E-679 methods were applied to the evaluation of discrimination-recognition thresholds of the odorous samples. It was found that single evaluations of detection or discrimination-recognition thresholds by either method were always ± 50%of the mean of six trials.The effects of successful guessing on the magnitudes of detection thresholds were examined in terms of a model based on the principle of maximum likelihood estimation of one, two and three trials of panel response. The magnitude of the discrimination threshold obtained by this method always fell between the detection and discrimination-recognition thresholds evaluated by the currently used models. The mean discrimination threshold of n-butanol for six trials was found to be 0.65 ± 0.25 ppm. It appears that the magnitude obtained from one trial with seven panel members would be sufficiently reliable for regulatory purposes when only one field sample is available, since any subsequent trials did not produce threshold values better than ± 40 % of the mean of six tests involving seven and ten panel members exposed to two different initial concentrations.  相似文献   

7.
Intensity and threshold dilution ratio are two important indices for odor control of swine buildings. Although odor threshold dilution ratio is a widely used index to describe an odor, it should be related to intensity to be more useful. A method was proposed to measure both indices simultaneously by using a dynamic forced-choice olfactometer. Four air samples were taken from each of four swine rooms including farrowing, finisher, gestation, and nursery. A panel of eight people was used to evaluate odor intensity. Odor threshold dilution ratios were calculated according to the American Society for Testing and Materials (ASTM) Standard Practice E679-91 to be 333, 424, 25, and 221 for samples collected from farrowing, finisher, gestation, and nursery rooms, respectively. After the samples were diluted 14.7 times, the odor intensities were evaluated to be 3.79, 3.46, 0.48, and 4.0 for the above-mentioned rooms, respectively. The data collected were used to develop a mathematical model.  相似文献   

8.
Odor intensity reveals a dose-effect relationship between inhaled odor and perceived odor sensation by the receptors, while odor concentration reflects the odor strength at the emission sources. The study reports significant improvements in experimental procedures in establishing the odor concentration-intensity (OCI) relationships using a newly developed digital olfactometer. The improvements in experimental procedures have been made to meet the requirements of both the VDI guideline 3882.1 and the European standard (EN13725). Several areas which could affect the reliability of the results have been identified in some similar studies. The latest digital olfactometer was calibrated automatically to ensure accurate and repeatable dilution ratios. Cross contamination has been eliminated through the instrument design and extensive cleaning procedures, making random presentation possible. Stringent panelist screening and continuous performance monitoring ensures consistent sensitivity of the panel. The extension of odor intensity category to temperature sensation gives a reference to assist judgments of perceived odor sensation. The DynaScent calculation method has simplified odor intensity calculation and can be applied to many odor samples. A total of 38 odor samples from three alumina refinery sites and two sewage treatment plants were collected for analysis. The results have confirmed the efficiency of the olfactometer. Distinct Odor Concentrations (DOCs) were calculated for each sample using both VDI and DynaScent methods. A student t test on two major odor types confirmed that there are no significant differences between two methods. The study has shown the DOCs for refinery odor and wastewater odor are in the range of 3.8-15.4 and 4.2-15.6 odor unit (OU)/m3 respectively. The study demonstrated that the improvements are critical in achieving reliable odor intensity measurement. This can lead to the setup of quantitative odor impact criteria for different industries and sites.  相似文献   

9.
Biofilter technology has been applied recently to treating rendering odors. Soil beds are one class of biofilter but as yet have not been used for this application. Although wet scrubbers have been a traditional method of odor control, their capital and operating costs are impacting more severely. Soil bed systems are less expensive to install and operate.

A soil bed system was installed at a rendering plant in Arizona and has been in operation since September 1983. The soil bed treats 1100 m3/h (650 cfm) of cooker noncondensables with a surface area of 420 m2(4500 ft2). The pressure drop across the soil bed is 5 cm (2 in.) of water. Odor sensory testing with the MTRI forced-choice triangle dynamic olfactometer indicates an odor removal efficiency of 99.9 percent is obtained with the soil bed. Soil bed odor removal efficiency is equivalent to or superior than that for incineration or scrubbing of high intensity odors from the rendering process. Recent experience during this past winter indicates a soil bed is a viable method for operation in a northern climate with severe winter weather conditions. Also, monitoring of the leachate from a soil bed indicated no contamination.  相似文献   

10.
Trichoderma species, the causal agents of green mould disease, induce great losses in Agaricus bisporus farms. Fungicides are widely used to control mushroom diseases although green mould control is encumbered with difficulties. The aims of this study were, therefore, to research in vitro toxicity of several commercial fungicides to Trichoderma isolates originating from Serbian and Bosnia-Herzegovina farms, and to evaluate the effects of pH and light on their growth. The majority of isolates demonstrated optimal growth at pH 5.0, and the rest at pH 6.0. A few isolates also grew well at pH 7. The weakest mycelial growth was noted at pH 8.0–9.0. Generally, light had an inhibitory effect on the growth of tested isolates. The isolates showed the highest susceptibility to chlorothalonil and carbendazim (ED50 less than 1 mg L?1), and were less sensitive to iprodione (ED50 ranged 0.84–6.72 mg L?1), weakly resistant to thiophanate-methyl (ED50 = 3.75–24.13 mg L?1), and resistant to trifloxystrobin (ED50 = 10.25–178.23 mg L?1). Considering the toxicity of fungicides to A. bisporus, carbendazim showed the best selective toxicity (0.02), iprodione and chlorothalonil moderate (0.16), and thiophanate-methyl the lowest (1.24), while trifloxystrobin toxicity to A. bisporus was not tested because of its inefficiency against Trichoderma isolates.  相似文献   

11.
The information presented in this paper is directed to persons concerned with control of exhaust odors from diesel-engine-powered vehicles. This paper summarizes projects sponsored by the Environmental Protection Agency (EPA) over the past years in the field of diesel-exhaust odor. These investigations have concentrated on developing measurement methods for quantifying different odor levels, evaluating various odor control methods, and evaluating public opinions of such odors.

A human panel method using odor reference standards has been found suitable to measure these odor levels. In addition to this technique, chemical characterization work has been sponsored under a project jointly sponsored by the Coordinating Research Council and the EPA to isolate and identify those species responsible for the odor.

Knowledge of these odorous compounds and the techniques necessary to isolate them should lead to development of a chemical method to measure this type of odor, in place of human panelists. Such basic information would also lead to developing control techniques to minimize this odor.

Several control techniques were evaluated for diesel exhaust odor. To date, the most effective method is an improved needle injector for use in the Detroit Diesel type E 6V-71 engine commonly used in buses.

Finally, public reaction to diesel-engine-exhaust odor has been measured. It has been found that a systematic relationship exists between increasing public objections and increasing diesel odor intensity.  相似文献   

12.
Odor emissions during manure spreading events have become a source of concern, particularly where farms are located nearby urban areas. The objective of the present study was to compare odor concentrations and odor emission rates due to pig manure application using two different types of applicators, a sub-surface deposition system and a conventional splash-plate applicator. Air samples were collected using a Surface Isolation Flux Chamber and the "bag-in-vacuum chamber" techniques, at 0.5, 1.5 and 2.5 hours after manure application. A three-station forced-choice dynamic dilution olfactometer was used by an odor panel for determining odor concentration. Preliminary results indicated that with the sub-surface deposition system applicator odor emission rate was reduced by 8% to 38% compared to that of the conventional splash-plate applicator. The highest reduction in odor strength and odor emission rate was observed in the most offensive period after manure application. The sub-surface deposition system may be a solution for hog producers who wish to reduce odor complaints from applying manure without the cost and problems associated with deep injection systems.  相似文献   

13.
ABSTRACT

Intensity and threshold dilution ratio are two important indices for odor control of swine buildings. Although odor threshold dilution ratio is a widely used index to describe an odor, it should be related to intensity to be more useful. A method was proposed to measure both indices simultaneously by using a dynamic forced-choice olfacto-meter. Four air samples were taken from each of four swine rooms including farrowing, finisher, gestation, and nursery. A panel of eight people was used to evaluate odor intensity. Odor threshold dilution ratios were calculated according to the American Society for Testing and Materials (ASTM) Standard Practice E679-91 to be 333, 424, 25, and 221 for samples collected from farrowing, finisher, gestation, and nursery rooms, respectively. After the samples were diluted 14.7 times, the odor intensities were evaluated to be 3.79, 3.46, 0.48, and 4.0 for the above-mentioned rooms, respectively. The data collected were used to develop a mathematical model.  相似文献   

14.
This paper presents results of an experimental study into factors contributing to decay of odor samples during storage, between 4 and 40 hr after sample collection. The odor studied was sampled from a tobacco processing plant as part of collaborative research with a view to establishing a manual outlining methods for odor annoyance management, specifically for the tobacco industry. In August and September 1997, an experimental program was carried out in which two types of tobacco odor were sampled: Burley Toaster and Mix. The dependent variable was odor concentration in the bag, measured by dynamic olfactometry in accordance with the draft Comité Européen de Normalisation (CEN) standard EN13725 "Air Quality-Determination of Odor Concentration by Dynamic Olfactometry." The independent variables were sampling bag material, degree of dilution during sampling, dilution gas used, particle removal during sampling, and age of sample in hours. In the first phase, 94 odor analyses were carried out. In a second test, 32 samples were analyzed for odor concentration. In addition, 16 samples were analyzed using gas chromatography-mass spectrometry (GC-MS). Analysis of the results (analysis of variance) led to the unexpected conclusion that Nalophan film bags performed significantly better than metalized Cali-Bond layered film as a bag material. The odor concentration of samples in Nalophan bags remained relatively stable between 4 and 12 hr after sampling. After 30 hr, decay to about half the initial concentration, as measured at 4 hr, was observed. Particle removal during sampling caused the odor concentration in the bags to be reduced by approximately 20%. For practical reasons, particle removal remains useful, to avoid contamination of equipment. Using air or nitrogen as the neutral gas for pre-dilution during sampling or the dilution factor used (between factor 2 and 6) did not appear to have an effect on the decay characteristic of odor samples. The following recommendations are suggested for the practice of collecting odor samples and apply specifically to tobacco processing emissions: Analyze samples as soon as possible, preferably within 12 hr; When samples age for more than 12 hr, decay is likely to cause a reduction in odor concentration to half the original concentration at age 30 hr; Use sampling bags made of Nalophan NA or benchmark performance of other materials against Nalophan NA before using alternative materials; Use pre-dilution when sampling only for the purpose of avoiding condensation during sample storage. Use an appropriate minimum dilution factor to avoid condensation; Both nitrogen and high-purity (synthetic) air are suitable to use as neutral gas for pre-dilution; and When sampling tobacco odors, use an odorless filter to remove particles. This practice removes a source of variation and avoids contamination of equipment. The effect on results, despite being consistently lower in odor concentration, is not meaningful in terms of perceived intensity or annoyance potential.  相似文献   

15.
An odor of unknown origin described as a “tar” or “asphalt” smell has become unbearable for many of Globeville, CO, residents over the past few years. Residents report during odor events burning eyes and throat, headaches, skin irritation, and problems sleeping. This study was undertaken to identify the potential sources of the odor and the concentrations of air pollutants making up the odor by conducting meteorological correlations and sampling for a panel of volatile organic compounds (VOCs), sulfur gases, and polycyclic aromatic hydrocarbons (PAHs) in the neighborhood and near suspected sources. Wind speed and direction data collected every 1 min in the neighborhood indicate that when the odor is noticed, the community is directly downwind of a wood preservation facility and an asphalt roofing facility. Air samples collected during high-intensity odor events have shown concentrations of methylene chloride, hexane, toluene, naphthalene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, each at least two times higher than background concentrations. Naphthalene and the other PAHs are known pollutants emitted from wood treatment processes, and are known to have a coal tar odor. Naphthalene was present in a sample collected directly adjacent to the Koppers facility and was not present in any background samples. Single-compound odor and health thresholds, however, were never surpassed. Given the technical and regulatory challenges of sampling odors and controlling emissions, it is recommended that Globeville residents and neighboring industry pursue a “good neighbor policy” to solve the odor issue. Specific offending industrial processes could be identified for which there exist cost-effective control technologies that would reduce exposure to odors and air toxics in Globeville.

Implications: Meteorological correlations and samples of volatile organic compounds (VOCs), sulfur gases, and polycyclic aromatic hydrocarbons (PAHs) in the Globeville, CO, neighborhood and near suspected sources during odor events indicate potential industrial sources of a transient and noxious odor. Legislative approaches have proven unfruitful and no health or odor thresholds were typically violated. New approaches are warranted to address odor mixture effects in neighborhoods near industrial facilities.  相似文献   

16.
选择目前国内成功运营的餐厨垃圾资源化处理厂为采样点,采用气相色谱-质谱联用(GC/MS)技术对该厂的主要工段,如卸料室、破碎室、湿热反应器出气口、好氧发酵仓、厌氧发酵区以及厂界的臭气进行了定性和定量的分析。结果表明,6个采样点共检测出包括芳香烃、硫化物、卤代物、烯烃、烷烃、醇、醛、酮和酯在内的9类66种物质,各采样点臭气总浓度分别为:11.738、18.390、30.917、25.097、4.737和2.635 mg/m3。其中湿热反应器出气口处恶臭气体浓度最高,其芳香烃、硫化物、卤代物、烯烃、烷烃、酮及酯类物质均高于其他检测点,需对该工段进行重点监测和控制。恶臭排放特征分析表明,各点的H2S浓度均超过嗅觉阈值,除厂界外甲硫醇和二甲二硫检测值均超过嗅觉阈值。  相似文献   

17.
Odor pollution is a big environmental problem caused by large-scale livestock production in China, and developing a practical way to reduce these odors is pressing. In this study, a combination of 0.2–1.0 U/mL lignin peroxidase (LiP) and one of three peroxides (H2O2, CaO2, 2Na3CO3·3H2O2) was examined for its efficiency in reducing the release of eight chemicals (propionic acid, isobutyric acid, isocaproic acid, isovaleric acid, phenol, p-cresol, indole, and skatole), NH3, H2S, and odor intensity from pig manure. The results showed an approximately 90% reduction in p-cresol, 40–60% reduction in odor intensity, 16.5–40% reduction in indolic compounds, and 25–40% reduction in volatile fatty acids. Being the electron acceptors of LiP, 2Na3CO3·3H2O2 and CaO2 performed better than H2O2 in reducing the concentration of eight chemicals, NH3, H2S, and odor intensity from pig manure. The effect of deodorization can last for up to 72 hr.

Implications: In China, one of the major environmental problems caused by confined feeding is odor pollution, which brings a major threat to the sustainability, profitability, and growth of the livestock industry. To couple the LiP with the electron acceptors, a low–cost, simple, and feasible method for odor removal was established in this study. Based on the study results, a practical treatment method was provided for odor pollution and supply the farm operators a more flexible time to dispose treated manure.  相似文献   


18.
19.
A new series of halogenated Schiff bases was synthesized by the condensation of 5-fluoro-2-hydroxy acetophenone and 3,5-dichloro-2-hydroxy acetophenone with different alkyl amines, namely propyl, pentyl, hexyl, heptyl, octyl, nonyl, dodecyl, tetradecyl, hexadecyl, and octadecyl amines, under microwave irradiation. Newly formed molecules were characterized by Infrared and nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopic techniques. Further, the Schiff bases were screened for antifungal bioassay, and the results showed potential fungicidal activity against two very important plant infecting fungi, viz. Rhizoctonia solani and Sclerotium rolfsii. Among the screened compounds, 2,4-dichloro-2-[1-(propylimino)ethyl]phenol was found to be the most active compound against both R. solani (ED50 8.02 mg L?1) and S. rolfsii (ED50 21.51 mg L?1) followed by 2,4-dichloro-2-[1-(pentylimino) ethyl]phenol (ED50 13.02 and 29.57 mg L?1, respectively). The synthesized compounds were also screened for antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging technique. All the compounds showed very low to moderate activity as compared with Gallic acid.  相似文献   

20.
The gas phase thermal decomposition rates of the C1 and C2-substituted peroxyacyl nitrates (RC(O)OONO2), PAN (R = CH3), PPN (R = C2H5) and vinyl-PAN (R = CH2 = CH-) have been measured at ambient temperature (288 - 299 K) and 1 atm. of air. Our results for PAN (k = A exp (-Ea/RT), log10 (A, s-1) = 16.2 ± 1.6, Ea = 26.9 ± 2.1 kcal / mol, k298 = 3.0 × 10?4S?1) are consistent with literature data. Thermal decomposition rates for PPN and vinyl-PAN are similar to that for PAN, with k298 = 3.0 × 10?4S?1 for PAN, 3.4 × 10?4S?1 for PPN and 3.0 × 10?4S?1 for vinyl-PAN. Implications for the atmospheric persistence of PPN and vinyl-PAN as compared to that of PAN are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号