首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results with the EPRI 2.5 MW(e) Integrated Environmental Control Pilot Plant (IECPP) indicate the interrelationship of particulate penetration, SO2 scrubber operation, waste production, and waste properties. Tests compared a fabric filter/wet scrubber and ESP/wet scrubber, the latter operated to simulate 1979 New Source Performance Standards (NSPS), 1971 NSPS, and pre-NSPS ESP units. Tests were conducted with low-sulfur coal producing a flue gas concentration of400ppm; flue gas spiking could be used to increase SO2 to 2000 ppm. Scrubber waste was dewatered in a thickener and vacuum belt filter (to 55 percent solids content), and mixed with fly ash. The pilot SO2 scrubber—when preceded by an ESP and forced to operate in zero-discharge—captured less SO2 than when preceded by a fabric filter. Also, scrubber operation with the ESP produced a greater quantity of waste with difficult handling characteristics, as compared to operation with the fabric filter. These difficulties occurred with particulate penetration above 0.10 lb/MBtu, which could reduce reagent utilization to 80percent. These results are attributable to inhibited limestone dissolution due to accumulation of an aluminum/fluoride compound. For both lowsulfur and simulated high-sulfur test conditions, allowing wastewater discharge to purge aluminum/fluoride content restored performance to design levels. Particulate control efficiency also affected solid waste physical properties. The fabric filter/wet scrubber produced the lowest solid waste permeability (10?8 cm/s). ESP operation at 1979 NSPS and pre-1971 NSPS ESPs increased solid waste permeability to 10?7 and 10?6 cm/s, respectively. These results are meaningful for SO2 scrubbers both for new plants and for retrofit to units with pre-NSPS ESPs, and could become significant with the increasing trend to restricted water discharge.  相似文献   

2.
Compliance with particulate standards for utility boilers burning low sulfur western coal has resulted in the installation and proposed installation of several fabric filter collectors where cold or hot electrostatic precipitators would have traditionally been applied. Recently, SO3 conditioning has been used to improve cold precipitator performance resulting in considerable reduction in specific collection area (SCA). All this suggests that trade-offs exist indicating ranges of SCA, A/C ratio, and power plant size (Mw) where fabric filters become competitive with electrostatic precipitators. Conceptual cost models are presented which indicate total capital investment and annual costs for the control devices. Precipitator costs are correlated with collecting area, gas flow rate, and power input and are presented as functions of SCA and Mw. Fabric filter costs are keyed to gross filter area, pressure drop, and gas flow rate. Fabric filters become competitive when a cold precipitator requires SCAs in excess of 600 to 800 and competitive when a hot precipitator requires equivalent cold precipitator SCAs in excess of 600 to 1000 depending on A/C ratio, Mw, and hot precipitator SCA credit allowance. The S03 conditioned precipitator scenario is shown to be economically competitive with fabric filters.  相似文献   

3.
Baghouse performance at utility coal-fired power plants is determined by baghouse design, operating procedures, and the characteristics of the ash that is collected as a dustcake on the fabric filter. The Electric Power Research Institute has conducted laboratory research to identify the fundamental properties of dustcake ash that influence baghouse performance. A database was assembled including measured characteristics of dustcake ash and data describing operating parameters and performance of full-scale and pilot-scale baghouses. Semi-empirical models were developed that describe the effects of particle morphology, particle size, ash cohesivity and ash chemistry on filtering pressure drop and particulate emissions. Cohesivity was identified as the primary ash characteristic affecting baghouse performance. Predictions of performance can be based on physical or chemical characterizations of the ash to be filtered. Part II of this article will discuss the effects of ash and coal chemistry, and baghouse design and operation on performance.  相似文献   

4.
This work focused on trace metal behavior and removal in a fabric filter or in a humidification reactor during the cofiring of sawdust and refuse-derived fuels (RDFs) in a pilot-scale bubbling fluidized bed (BFB) boiler. Trace metal emissions measurements before and after the fabric filter revealed that removal efficiency in the fabric filter was in the range of 80-100%, and that the European Union (EU) Directive on Incineration of Waste restrictions for trace metal emissions are easily achieved even if addition of RDFs substantially increases the concentration of trace metals in fuel blends. Limestone injection enhanced the removal of As and Se but had no noticeable effect on the removal of other trace metals. Extensive formation of HgCl2 and condensation on fly ash particles during sawdust plus 40% RDF cofiring resulted in a 92% Hg removal efficiency in the fabric filter. Limestone injection had no effect on the Hg removal in the fabric filter but decreased the Hg removal in a humidification reactor from 40 to 28%. Results of the bed material and fly ash analysis suggested capture of Cu, Pb, Mn, Ni, and Zn in the bed material but also suggested that these metals may be released from the bed if the fuel characteristics or process conditions are changed.  相似文献   

5.
The retention of highly adherent fine particles in a fabric filter can cause a measurable difference in the forward and reverse air flow pressure drops. This difference, termed the check valve effect, results from the movement of aggregations or nodules of dust particles held by fibers on the surface or in the interstices of a fabric. The measurement of forward and reverse pressure drops is a useful method for determining the presence of nodules. Currently, we do not know of a simple way to prevent the formation of nodules nor to remove them easily once they form. However, we hope that in describing their effects, we may aid those individuals attempting to improve filter performance.  相似文献   

6.
Coke oven pushing emissions containing quantities of tars and dust require new approaches to adapt fabric filter collectors. This paper deals with the Wheelabrator/Taisei precoat filter systems being used on coke oven pushing operations. The Taisei test program and the filter installation at Tokyo Gas are discussed. The variables to be evaluated in the design of a fabric filter emission control system are examined.  相似文献   

7.
Baghouse performance at utility coal-fired power plants is determined by baghouse design, operating procedures, and the characteristics of the ash that is collected as a dustcake on the fabric filter. The Electric Power Research Institute has conducted laboratory research to identify the fundamental variables that influence baghouse performance. A database was assembled including measured characteristics of coal and dustcake ash, and data describing operating parameters and performance of full-scale and pilotscale baghouses. Predictions of performance can be based on physical characteristics of the ash to be filtered (discussed in Part I of this article), as well as chemical characterizations of the ash, or empirical correlations with the alkali content of the source coal The effects of design and operational variables can be included in these predictions. Baghouse performance can be optimized by exercising proper operating practices and by selecting a filtering fabric and cleaning method matched to the cohesivity of the ash to be collected.  相似文献   

8.
Activated carbon injection for Hg control in a 500-lb/hr pilot-scale coal-fired furnace equipped with a fabric filter for particulate control was evaluated at different operating conditions. The pilot-scale tests showed that Hg removal was improved at lower temperatures and higher C/Hg ratios. The two-stage mathematical model developed to describe Hg removal using powdered activated carbon injection upstream of a baghouse filter was used to obtain Langmuir isotherm parameters as a function of temperature by fitting the model to a subset of experimental data. The predictive capability of the model was then tested by comparing model calculations with additional experimental data from this system obtained using different operating temperatures and sorbent to Hg ratios. Model predictions were in good agreement with experimentally measured Hg removal efficiency. Based on the model predictions, Hg removal in the duct appears to be limited and higher C/Hg ratio, lower operating temperature, and longer cleaning cycle of the baghouse filter should be utilized to achieve higher Hg removal in this system.  相似文献   

9.
In order to study the effects of fabric filter parameters when filtering an actual industrial effluent stream, it is necessary to vary these parameters in the field. A mobile fabric filter system has been designed, fabricated and operated to provide this information. The design characteristics and some preliminary field data collected with this system are summarized.  相似文献   

10.
响应面法优化袋式除尘器脉冲清灰性能   总被引:1,自引:0,他引:1  
基于计算流体动力学的方法采用三维、可压缩、非稳态流动数学模型对袋式除尘器脉冲清灰过程进行了数值模拟,得到了滤袋内外压差,并与文献实验值进行了比较,验证了仿真模型的可靠性。基于响应面法研究了喷吹压力、喷吹高度、滤袋直径和滤袋长度对脉冲清灰性能的影响,得到这4个影响因子的二次多项式预测模型,并进行优化。结果表明,喷吹压力为0.3 MPa,喷吹高度为0.2 m,滤袋直径为0.16 m,滤袋长度为6 m时,内外压差峰值最优,优化结果与仿真模拟结果相差小于3%。研究结果为袋式除尘器脉冲清灰系统的设计与优化提供了重要参考。  相似文献   

11.
在自建的脉冲喷吹实验台上,利用Y—YD-7044型压电式传感器和MYD-8801加速度传感器,测试0120×2000mm覆PTFE膜无纺布滤袋在不同喷吹压力下,加文丘里与不加文丘里时的最大侧壁压力峰值和最大反向加速度,并对比计算了获得同样清灰强度时的脉冲阀一次喷吹耗气量。结果显示,添加文丘里能显著增大滤袋中下部最大侧壁压力峰值和整条滤袋上的最大反向加速度,即提高脉冲喷吹清灰强度;对应同样的喷吹压力,加文丘里时的平均最大侧壁压力峰值和平均最大反向加速度比不加文丘里时分别平均提高大约70%和50%;加文丘里获得同样清灰强度时的脉冲阀一次喷吹耗气量比不加文丘里时节省40%左右。证实对于脉冲喷吹清灰系统,添加文丘里能有效改善清灰效果以及减小能量?肖耗。  相似文献   

12.
Dust deposit profiles in a pilot-scale pulse-jet fabric filter were measured using a beta gauge. Fly ash was collected on polyester needled felt bags, and the dust profiles were measured after the test system was operated to equilibrium at superficial filtration velocities of 50, 75,100,125, and 150 mm/s. The profiles measured show that a large mass of dust is retained on the fabric of a pulse-jet filter when operated at high filtration velocities. This dust mass retention can be caused by two mechanisms: the failure to remove dust from the fabric during a cleaning pulse, and the redeposition of suspended dust onto the fabric after a cleaning pulse. The dust deposit measured at the highest test velocity was found to be much different from the deposits measured at all other velocities. The deposit found at 150 mm/s had almost twice the average areal density and was more evenly distributed than the deposits found at lower velocities.  相似文献   

13.
Presently, in Japan there are no limitations on the emission of PCDDs or PCDFs, but in order to study the feasibility of dry type air pollution control, a pilot plant was constructed in 1988 and the removal efficiencies for PCDDs, acid gas and heavy metals were measured.At the same time PCDDs concentration was compared with that of a previously installed electrostatic precipitator (ESP) plus wet scrubber line.In this paper, the following two items are reported.
1. (1) The difference in the amounts of PCDDs and PCDFs produced due to differences in gas temperature and retention time in ESP and fabric filter (FF).
2. (2) Removal efficiencies of PCDDs and PCDFs of fabric filter.
PCDDs concentration, generally 100–200 ng/Nm3 at the boiler outlet (ESP inlet and/or Quench Reactor (QR) inlet), increased several times at the ESP outlet, but it showed almost no increase at the QR outlet due to a sudden temperature drop. The temperature was 280–310°C, and the gas retention time was 12 sec. during passage through ESP so that it is thought that PCDD was formed under these conditions.On the other hand, a removal efficiency of approx. 90% was obtained with the fabric filter, and the PCDD at the bag outlet was at a sufficiently low level.  相似文献   

14.
It has been amply demonstrated that there are reasons for improving the collection of fine participates. Some areas of research and development which may prove fruitful in extending fabric filter capabilities have been suggested.  相似文献   

15.
A two-stage mathematical model for Hg removal using powdered activated carbon injection upstream of a baghouse filter was developed, with the first stage accounting for removal in the ductwork and the second stage accounting for additional removal caused by the retention of carbon particles on the filter. The model shows that removal in the ductwork is minimal, and the additional carbon detention time from the entrapment of the carbon particles in the fabric filter enhances the Hg removal from the gas phase. A sensitivity analysis on the model shows that Hg removal is dependent on the isotherm parameters, the carbon pore radius and tortuosity, the C/Hg ratio, and the carbon particle radius.  相似文献   

16.
To reveal the formation mechanism of a pulse-jet airflow’s cleaning effect in a filter bag, a theoretical model is built by using the theory of the gas jet and unitary adiabatic flow according to given specifications and dimensions of the bags and resistance characteristics of the cloth and dust layer. It is about the relationship between cleaning system structure and operating parameters. The model follows the principle that the flow and kinetic energy of jet flow injected into a filter bag should be consistent with the flow of cleaning airflow in the bag and the pressure drop flowing through the filter cloth and dust layer. The purpose of the model is to achieve the peak pressure of cleaning airflow, which dominates the effect of the pulse-jet cleaning process. The cleaning system structure includes air pressure in the nozzle, structure and size of nozzle, exit velocity of nozzle, jet distance, and diameter of jet cross section. Based on the condition of the cleaning system structure and operating parameters established by using the theoretical model, Fluent software is applied to carry out a numerical simulation of the jet airflow field at the nozzle’s outlet, jet airflow field between nozzle and bag top, and cleaning airflow field in the filter bag. Experimental results are used to verify the reliability of the theoretical model. They are obtained in a pilot-scale test filter with a single bag, with length 2 m and in general full-scale dimensions of the cleaning system. The results show that when any rectification measure is not installed at the bag opening, the cross-sectional area covered by the jet gas is hardly sufficient to cover the entire area of the bag opening. A large portion of the gases injected into the filter bag will overflow reversely upward from the edge due to pressure differences between the upper area and lower area inside the bag opening. This led to a serious shortage of the cleaning airflow and ar limited increase in static pressure. When a venturi-type rectifier tube is installed at the bag opening, the jet flow is converted to funnel flow for which the cross-section velocity distribution is more uniform at the throat of the rectifier tube due to the guided effects of the upper tapered pipe. Then it is transited to stressful flow below the bag opening via rectified effects of the lower dilated pipe. The results show that the gap between the static pressure of gas in the bag and the expected value is significantly reduced. The theoretical value of the nozzle diameter is enlarged to compensate for two aspects of adverse effects of cleaning airflow and energy. This is because the flow is not a purely free-form jet from the nozzle to the entrance of the rectifier tube and because the gas suffers from local resistance while flowing through the rectifier tube. The numerical simulation and experiment show that the peak pressure of cleaning airflow in the filter bag is able to reach the expected value. The results confirm that the mechanism of the pulse-jet cleaning airflow and the calculation method of the pulse-jet cleaning system structure and operating parameters offered in this study are correct. The study results provide a scientific basis for designing the system of pulse-jet fabric filters.

Implications: Pulse-jet cleaned fabric filters are commonly used for air pollution control in many industries. Pulse-jet cleaning is widely used for this purpose as it enables frequent cleaning while the filter is operating. However, the theoretical system of the forming mechanism of the pulse-jet cleaning has not formed so far. This indicates the theoretical model plays an important role in designing effective pulse-jet cleaned fabric filters.  相似文献   


17.
A new filter, using a compressible-filter medium, has been evaluated for the filtration of secondary effluent. The ability to adjust the properties of the filter medium by altering the degree of the medium compression is a significant departure from conventional depth-filtration technology. Unlike conventional filters, it is possible to optimize the performance of the compressible-medium filter (CMF) by adjusting the medium properties (i.e., collector size, porosity, and depth) to respond to the variations in influent quality. Because existing filter models cannot be used to predict the performance of the CMF, a new predictive model has been developed to describe the filtration performance of the CMF and the effect of medium-compression ratio. The model accounts for the fact that the properties of the filter medium change with time and depth. The model, developed for heterodisperse suspensions and variable influent total suspended solids concentrations, can be used to predict all possible phases of filtration (i.e., ripening, constant removal, and breakthrough). A hyperbolic-type, second-order, nonlinear, partial-differential equation was derived to model the CMF. The equation was solved using the finite-difference numerical method. The accuracy of the numerical method was tested by a sensitivity analysis and a convergence test. The model is first-order accurate with respect to medium depth and time. Field data were obtained for the filtration of settled secondary effluent using a CMF with a capacity of 1200 m3/d. Model predictions were compared with observed performance from filter runs conducted at medium-compression ratios between 15 and 40% and filtration rates from 410 to 820 L/m2 min. The difference between the observed and the predicted values was found to be within 0 to 15%.  相似文献   

18.
A new model for pulse jet fabric filtration is proposed. In contrast to the earlier model of Ravin and Humphries, which was formulated on the steady state assumption, the present study is aimed at developing a predictive capability for both transient and steady state operations, taking into account the compression effect of filter cakes. The model's relative simplicity allows frequent updating of the model parameter values, thus improving the accuracy of predictions. As a result, the model is particularly useful in developing control algorithms and designing controllers of pulse jet fabric filtration systems.  相似文献   

19.
Abstract

A two-stage mathematical model for Hg removal using powdered activated carbon injection upstream of a bag-house filter was developed, with the first stage accounting for removal in the ductwork and the second stage accounting for additional removal caused by the retention of carbon particles on the filter. The model shows that removal in the ductwork is minimal, and the additional carbon detention time from the entrapment of the carbon particles in the fabric filter enhances the Hg removal from the gas phase. A sensitivity analysis on the model shows that Hg removal is dependent on the isotherm parameters, the carbon pore radius and tortuosity, the C/Hg ratio, and the carbon particle radius.  相似文献   

20.
Operation and maintenance and performing correct system monitoring of fabric filters is discussed. The anticipation of future problems at the time of start-up and the necessity of maintaining correct records on the system to assist in later troubleshooting is stressed. When all is going well, the fabric filter requires little but routine maintenance on moving parts, which is usually well identified in the service manuals. Problems usually appear as excessive emissions, high pressure drop, or inadequate bag life. In order to find the cause of these problems, one must have maintained sufficient Information on the system to identify what changed and when. With this information, there are logical paths to follow to the proper solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号