首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for par-ticulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases.

The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area’s inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.  相似文献   

2.
3.
Abstract

This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001–2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988–1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect.  相似文献   

4.
5.
Abstract

The Houston-Galveston metropolitan area has a relatively high density of point and mobile sources of air toxics, and determining and understanding the relationship between emissions and ambient air concentrations of air toxics is important for evaluating potential impacts on public health and formulating effective regulatory policies to control this impact, both in this region and elsewhere. However, conventional ambient air monitoring approaches are limited with regard to expense, siting limitations, and representative sampling necessary for adequate exposure assessment. The overall goal of this multiphase study is to evaluate the use of simple passive air samplers to determine temporal and spatial variability of the ambient air concentrations of selected volatile organic compounds (VOCs) in urban areas. Phase 1 of this study, reported here, was a field evaluation of 3M organic vapor monitors (OVMs) involving limited comparisons with commonly used active sampling methods, an assessment of sampler precision, a determination of optimal sampling duration, and an investigation of the utility of a simple modification of the commercial sampler. The results indicated that a sampling duration of 72 hr exhibited generally low bias relative to automated continuous gas chromatography measurements, good overall precision, and an acceptable number of measurements above detection limits. The modified sampler showed good correlation with the commercial sampler, with higher sampling rates, although lower than expected.  相似文献   

6.
Abstract

Although the fugitive dust associated with construction mud/dirt carryout can represent a substantial portion of the particulate matter (PM) emissions inventory in non-attainment areas, it has not been well characterized by direct sampling methods. In this paper, a research program is described that directly determined both PM10 and PM2.5 (particles ≤10 and 2.5 μm in classical aerodynamic diameter, respectively) emission factors for mud/dirt carryout from a major construction project located in metropolitan Kansas City, MO. The program also assessed the contribution of automotive emissions to the total PM2.5 burden and determined the baseline emissions from the test road. As part of the study, both time-integrated and continuous exposure-profiling methods were used to assess the PM emissions, including particle size and elemental composition. This research resulted in overall PM10 and PM2.5 emission factors of 6 and 0.2 g/vehicle, respectively. Although PM10 is within the range of prior U.S. Environmental Protection Agency (EPA) guidance, the PM2.5 emission factor is far lower than previous estimates published by EPA. In addition, based on both the particle size and chemical data obtained in the study, a major portion of the PM2.5 emissions appears to be attributable to automotive exhaust from light-duty, gasoline-powered vehicles and not to the fugitive dust associated with re-entrained mud/dirt carryout.  相似文献   

7.
An ambient air sampling study was conducted around a municipal waste combustor; a primary goal was to develop procedures and methods to evaluate the emissions of organic mutagens resulting from incomplete combustion of municipal waste. The products of Incomplete combustion from incineration include complex mixtures of organics, particularly polycycllc aromatic compounds, which are present after atmospheric dilution and cooling In emissions as semi-volatile or particle bound organic compounds. Combustion emissions are generally recognized as a potential cancer risk since they contain many carcinogenic and mutagenlc polycyclic aromatic hydrocarbons. Analyzing such a complex mixture for the presence of even a few selected chemicals is difficult and provides risk information on only a fraction of the chemicals present. Bioassay methods, however, may be directly applied to evaluate the mutagenic and potential carcinogenic activity of the complex organics from combustion emissions. The Salmonella (Ames) assay was used to determine the mutagenicity associated with particles from ambient air collected near a municipal waste combustor. Dose-response data was generated, and mutagenicity concentrations were calculated to demonstrate the utility of bioassay In assessing the potential Impact of emissions from municipal waste combustion. This phase of study quantified mutagenicity concentrations In ambient air but did not detect organic mutagens that could be attributed to Incinerator emissions.  相似文献   

8.
A critical problem arises if one attempts to compare data from air monitoring stations in different cities, because there are so many differences in monitoring site locations. Some air monitoring stations are on the 6 th and 8 th floors of tall buildings in downtown areas; some are at ground level beside streets with heavy traffic; some are in residential areas with little traffic or industry; and some are in suburban or nonurban areas. Unfortunately, there is ample evidence that the location of a monitoring station relative to nearby sources (such as highways) affects the values observed at the station, particularly for carbon monoxide and other vehicular pollutants. Thus, a standardized system of site selection, such as the one proposed here, appears essential to improve the comparability and meaningfulness of data obtained from different air monitoring stations throughout the Nation.  相似文献   

9.
ABSTRACT

Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in modern urban areas. In London in December 1952, the unexpected deaths due to PM exposure could be identified and counted as integers by the coroners. In modern times, the PM-related deaths cannot be as readily identified, and they can only be inferred as fractional average daily increases in mortality rates using sophisticated statistical filtering and analyses of the air quality and mortality data. The causality of the relationship between exposure to ambient PM and acute mortality at these lower modern PM concentrations has been questioned because of a perception that there is little significant correlation in time between the ambient PM concentrations and measured personal exposure to PM from all sources (ambient PM plus indoor-generated PM).

This article shows that the critical factor supporting the plausibility of a linear PM mortality relationship is the expected high correlation in time of people's exposure to PM of ambient origin with measured ambient PM concentrations, as used in the epidemiological time series studies. The presence of indoor and personal sources of PM masks this underlying relationship, leading to confusion in the scientific literature about the strong underlying temporal relationship between personal exposure to PM of ambient origin and ambient PM concentration. The authors show that the sources of PM of non-ambient origin operate independently of the ambient PM concentrations, so that the mortality effect of non-ambient PM, if any, must be independent of the effects of the ambient PM exposures.  相似文献   

10.
11.
ABSTRACT

Most time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects.

Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2 5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4 2-, which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was measured in all PM2 5 samples as an indicator of accumulation mode particu-late matter of ambient origin.  相似文献   

12.
ABSTRACT

The size range of airborne particles that is closely related to specific deposition regions in the human respiratory tract and excess lung burden of these deposited particles is associated with disease. Size-selective sampling, therefore, needs to be performed to assess the related health risks. Performance criteria applied to these samplers must be well characterized in order to provide accurate and reliable results. The PM10 samplers that have been used in place of the total suspended particulate samplers for the collection of ambient air particles are more relevant to potential inhalation hazards. In order to be certified, a PM10 sampler must meet reliable performance specifications, primarily the aerosol penetration test with liquid and solid particles in a wind tunnel (wind speeds of 2, 8, and 24 km/hr). This testing is intended to assure reasonable accuracy in aerosol measurements. However, the sampler performance under calm air conditions has not been well studied.

In the present study, the sampling heads of three devices—the Harvard impactor, the Personal Environmental Monitor (PEM), and the Sierra Andersen model 241 dichotomous sampler PM10 inlet head—were tested for aerosol separation efficiency. With the consideration of bias and imprecision of the measurements, five specimens of each type of sampler were chosen for performance testing, repeating the tests 5 times for each specimen. An ultrasonic atomizing nozzle was used to nebulize potassium sodium tartrate tetrahydrate and dioctyl phthalate particles as the solid and liquid challenge aerosols, respectively. The aerosol number concentrations and size distributions upstream and downstream of the samplers were measured by using an aerosizer calibrated against a settling velocity chamber. The results showed that among the samplers tested, the dichotomous sampler PM10 inlet head had the best fit to the PM10 convention, while the other two samplers not only appeared to have a steeper separation-curve slope but also had significant particle bounce when challenged with solid particles. Analysis of variance also confirmed the superiority of the dichotomous samplers. Surface-coating with oil or grease greatly reduced the problem of particle bounce.  相似文献   

13.
Abstract

Air pollution directional risk (APDR) is an essential factor to be assessed when selecting an appropriate landfill site. Because air pollutants generated from a landfill are diffused and transported by wind in different directions and speeds, areas surrounding the landfill will be subject to different associated risks, depending on their relative position from the landfill. This study assesses potential APDRs imposed from a candidate landfill site on its adjacent areas on the basis of the pollutant distribution simulated by a dispersion model, wind directions and speeds from meteorological monitoring data, and population density. A pollutant distribution map layer was created using a geographic information system and layered onto a population density map to obtain an APDR map layer. The risk map layer was then used in this study to evaluate the suitability of a candidate site for placing a landfill. The efficacy of the proposed procedure was demonstrated for a siting problem in central Taiwan, Republic of China.  相似文献   

14.
Atmospheric dustfall was qualitatively examined for sulfate content by the techniques of chemical micrurgy. Quantitative assessment of suspended sulfate particulate according to size was by cascade impactor sampling and turbidimetric analysis of stage washings as BaSO4. Sulfate particles less than 1.9 micron mass median diameter in size contributed approximately 43% by weight and 90% by number to total particulate sulfate in Pittsburgh air. The mechanics of particulate sulfate formation in the atmosphere are discussed on the basis of these findings.  相似文献   

15.
16.
Abstract

Airborne fine particles of PM2.5-10 and PM2.5 in Bangkok, Nonthaburi, and Ayutthaya were measured from December 22, 1998, to March 26, 1999, and from November 30, 1999, to December 2, 1999. Almost all the PM10 values in the high-polluted (H) area exceeded the Thailand National Ambient Air Quality Standards (NAAQS) of 120 μg/m3. The low-polluted (L) area showed low PM10 (34–74 μg/m3 in the daytime and 54–89 μg/m3 at night). PM2.5 in the H area varied between 82 and 143 μg/m3 in the daytime and between 45 and 146 μg/m3 at night. In the L area, PM2.5 was quite low both day and night and varied between 24 and 54 μg/m3, lower than the U.S. Environmental Protection Agency (EPA) standard (65 μg/m3). The personal exposure results showed a significantly higher proportion of PM2.5 to PM10 in the H area than in the L area (H = 0.80 ± 0.08 and L = 0.65 ± 0.04).

Roadside PM10 was measured simultaneously with the Thailand Pollution Control Department (PCD) monitoring station at the same site and at the intersections where police work. The result from dual simultaneous measurements of PM10 showed a good correlation (correlation coefficient: r = 0.93); however, PM levels near the roadside at the intersections were higher than the concentrations at the monitoring station. The relationship between ambient PM level and actual personal exposures was examined. Correlation coefficients between the general ambient outdoors and personal exposure levels were 0.92 for both PM2.5 and PM10.

Bangkok air quality data for 1997–2000, including 24-hr average PM10, NO2, SO2, and O3 from eight PCD monitoring stations, were analyzed and validated. The annual arithmetic mean PM10 of the PCD data at the roadside monitoring stations for the last 3 years decreased from 130 to 73 μg/m3, whereas the corresponding levels at the general monitoring stations decreased from 90 to 49 μg/m3. The proportion of days when the level of the 24-hr average PM10 exceeded the NAAQS was between 13 and 26% at roadside stations. PCD data showed PM10 was well correlated with NO2 but not with SO2, suggesting that automobile exhaust is the main source of the particulate air pollution. The results obtained from the simultaneous measurement of PM2.5 and PM10 indicate the potential environmental health hazard of fine particles. In conclusion, Bangkok traffic police were exposed to high levels of automobile-derived particulate air pollution.  相似文献   

17.
The role of sulfur compounds in our environment has been the subject of much speculation during the past two decades. An evaluation of the effect of man-made contributions to the biogeochemical sulfur cycle requires a comprehensive examination of source magnitudes, atmospheric concentrations and removal processes. Many voids exist in our present knowledge of these parameters despite the contributions of numerous researchers. Adequate information is needed concerning the various forms of sulfur as well as other critical constituents which exist in our biosphere so that their interrelationship and role in the mechanisms of the sulfur cycle may be more fully understood.  相似文献   

18.
A study was conducted to identify, characterize, and quantify the national particulate air pollution problem from stationary sources. Particulate emissions from stationary sources were determined from data on emission factors, grain loadings, and material balances. The principal method used for establishing the tonnage emitted by an industry utilized uncontrolled emission factors. Total tonnage emitted by a given industry was calculated from four quantities: (1) an emission factor for the uncontrolled source; (2) the total tonnage processed per year by the industry; (3) the efficiency of control equipment used; and (4) the percentage of production capacity equipped with control devices.

Particulate emissions from stationary sources in the United States currently total approximately 18 X 106 ton/yr. The major stationary sources of particulates include electric power generation plants, the crushed stone industry, the forest products industry, agriculture and related operations, the cement industry, and the iron and steel industry.

Three methods were developed to project the total quantity of particulate pollutants emitted up to the year 2000. In making these forecasts, these factors were considered (1) changes in production capacity; (2) improvements in control devices; and (3) regulatory action to enforce installation of control equipment.

These forecasts indicate that particulate emissions can be reduced from the current level of 18 X 106 ton/yr to 3 X 106 ton/yr by 2000 based on the most optimistic forecast. The projections also suggest that major reductions of particulate matter will most likely occur by installation of control equipment on uncontrolled sources and by shifts to more efficient types of collection equipment on existing controlled sources.  相似文献   

19.
ABSTRACT

This paper compares three analytical methods that are often used to analyze composition of atmospheric aerosol: Ion Chromatography (IC), Proton Induced X-ray Emission (PIXE), and X-Ray Fluorescence (XRF). Three monitoring studies are discussed: (1) a comparison of air particulate data collected by several independent sampler/ analytical technique suites run by different laboratories; (2) a study involving two identical samplers and a single suite of analytical techniques; and (3) analysis of identical aerosol samples by two different techniques (XRF vs. PIXE). While the XRF versus PIXE project shows a very good agreement for most elements, the first interlaboratory study demonstrates the “real-life” noise introduced into the final data set by various sampling complications and different collection characteristics of the samplers used. The XRF versus PIXE study also revealed an unexplained deviation in measured sulphur concentrations for very lightly loaded samples. In the five-sampler comparison, two data sets provided by IC were approximately 20% lower than the three data sets obtained by PIXE and XRF. When two identical IMPROVE-compat-ible samplers were used and samples were subjected to similar procedures and the same analytical techniques, the variability between the two air concentration data sets significantly decreased.  相似文献   

20.
The diversity of hydrocarbons which are present in ambient polluted air provide a potentially rich source of information concerning the nature of this type of pollution. Measurements of the relative amounts of various hydrocarbons can be correlated with the various possible sources. Since hydrocarbon reactivities vary widely it is also possible to estimate the extent to which various individual hydrocarbons have reacted. Except for samples taken deliberately near sources of hydrocarbon pollution these air samples invariably resemble auto exhaust with an addition of natural gas and of C3–C5 paraffins which resemble gasoline vapor. Samples taken in industrial areas and near the smoke plume from a brush fire showed distinctive differences in composition. During the smog season in the fall of 1968 good data were obtained of “typical” or “representative” samples of light, medium and heavy smog. These show the expected depletion of more reactive hydrocarbons in a much more convincing way than before. By comparing these distributions with composition in unreacted samples and by making use of data from bottle irradiations, it was possible to estimate the contribution of the various hydrocarbons in terms of “amount reacted.” The amounts of higher hydrocarbons present and reacted were also estimated from gasoline composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号