首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developed is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a baghouse equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse.  相似文献   

2.
Abstract

Loss of filtration efficiency in a fabric filter baghouse is typically caused by bag failure, in one form or another. The degree of such failure can be as minor as a pinhole leak or as major as a fully involved baghouse fire. In some cases, local air pollution regulations or federal hazardous waste laws may require estimation of the total quantity of particulate matter released to the environment as a result of such failures. In this paper, a technique is presented for computing the dust loading in the baghouse exhaust when one or more bags have failed. The algorithm developed is shown to be an improvement over a previously published result, which requires empirical knowledge of the variation in baghouse pressure differential with bag failures. An example calculation is presented for a bag-house equipped with 200 bags. The prediction shows that a small percentage of failed bags can cause a relatively large proportion of the gas flow to bypass the active bags, which, in turn, leads to high outlet dust loading and low overall collection efficiency from the baghouse.  相似文献   

3.
Abstract

The cumulative years of service of baghouses in the electric utility industry have doubled since the last industrywide review of their operating performance. We have gathered information from all 102 operating baghouses to develop an updated record of how this technology continues to serve the electric utility industry. In general, baghouse performance has met or exceeded the expectations for controlling emissions. There are, however, wide ranges of pressure drop and bag life performance. Most operators report a long-term trend of increasing pressure drop. The life expectancy of filter bags averages 7.5 years, with more than 20% of the population achieving more than 10 years of bag life. Factors such as coal and ash properties certainly affect baghouse operation, but another reason for variations in bag life is the lack of an optimized protocol for controlling the long-term buildup of residual dustcake. We conclude that many baghouses could operate with lower pressure drop and longer bag life by optimizing the cleaning system. Dustcake weight or drag are better indicators of performance than pressure drop and should be used to develop an optimum baghouse operating protocol.  相似文献   

4.
In advanced electrostatic stimulation of fabric filtration (AESFF), a high voltage electrode is placed coaxially inside a filter bag to establish an electric field between the electrode and the bag surface. The electric field alters the dust deposition pattern within the bag, yielding a much lower pressure drop than that found in a conventional bag. Pilot plant results show that AESFF bags can operate with a rate of pressure loss that is 70 percent below that for conventional bags. The presence of the electric field also affects the aging characteristics of the AESFF bags. On the average, the AESFF bags had residual drags that were 10 percent below those of conventional bags. The results show that AESFF baghouses can yield the same pressure drop performance as conventional baghouses while operating at much higher air-to-cloth ratios. An economic analysis evaluated the capital, operating, and maintenance costs for electric utility plants ranging from 200 to 1,000 MW. For AESFF baghouses the capital cost was found to be 25 to 48 percent below that of a conventional baghouse. A lifetime cost analysis predicts a net present value for an AESFF baghouse that is 10 to 30 percent below that of a conventional baghouse.  相似文献   

5.
In recent years, the utility industry has turned to baghouses as an alternative technology for particulate emission control from pulverized-coal-fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.  相似文献   

6.
Abstract

In recent years, the utility industry has turned to bag-houses as an alternative technology for particulate emission control from pulverized-coal–fired power plants. One of the more significant issues is to improve poor gas distribution that causes bag failures in baghouse operation. Bag failures during operation are almost impossible to prevent, but proper flow design can help in their prevention. This study investigated vertical velocity profiles below the bags in a baghouse (the hopper region) to determine whether flow could be improved with the installation of flow distributors in the hopper region. Three types of flow distributors were used to improve flow distribution and were compared with the original baghouse without flow distributors. Velocity profiles were measured by a hot-wire anemometer at an inlet velocity of 18 m/sec. Uniformity of flow distribution was calculated by the uniformity value U for the velocity profile of each flow distributor. Experimental results showed that the velocity profile of the empty configuration (without flow distributors) was poor because the uniformity value was 2.048. The uniformity values of type 1 (flow distributor with three vertical vanes), type 2 (flow distributor with one vertical and one inclined vane), and type 3 (flow distributor with two inclined vanes) configurations were reduced to 1.051, 0.617, and 0.526, respectively. These results indicate that the flow distributors designed in this study made significant improvements in the velocity profile of a baghouse, with the type 3 configuration having the best performance.  相似文献   

7.
Abstract

This investigation studied the effects of injecting dry hydrated lime into flue gas to reduce sulfur trioxide, (SO3) concentrations and consequently stack opacity at the University of Missouri-Columbia power plant. The opacity was due to sulf uric acid mist forming at the stack from high SO3 concentrations. As a result of light scattering by the mist, a visible plume leaves the stack. Therefore, reducing high concentrations of SO3 reduces the sulfuric acid mist and consequently the opacity. To reduce SO3 concentrations, dry hydrated lime is periodically injected into the flue gas upstream of a baghouse and downstream of an induced draft fan. The hydrated lime is transported downstream by the flue gas and deposited on the filter bags in the baghouse forming a filter cake. The reaction between the SO3 and the hydrated lime takes place on the filter bags. The hydrated lime injection system has resulted in at least 95% reduction in the SO3 concentration and has reduced the opacity to acceptable limits. Low capital equipment requirements, low operating cost, and increased bag life make the system very attractive to industries with similar problems.  相似文献   

8.
9.
The concept of electrostatic stimulation of fabric filtration (ESFF) has been investigated at pilot scale. The pilot unit consisted of a conventional baghouse in parallel with an ESFF baghouse, allowing direct comparison. All results reported in this paper are for pulse-cleaned bags in which the electric field was maintained parallel to the fabric surface. The performance of the ESFF baghouse has been superior to the parallel conventional baghouse by several measures. The ESFF baghouse demonstrated: (1) a reduced rate of pressure drop increase during a filtration cycle, (2) lower residual pressure drop, (3) stable operation at higher face velocities, and (4) improved particle removal efficiency. These benefits can be obtained with only minor modifications to conventional pulse-jet hardware and at low electrical power consumption. The indicated ability to operate at increased face velocities with only modest expenditure for electrical hardware leads to very favorable economic projections.  相似文献   

10.
This is the second of a two-part article that reviews baghouse filtration theory, presents size estimating methods, and gives costing procedures for a variety of baghouse types and sizes. Part I of the article discussed theory and sizing; this part presents costing. Information is given for estimating total capital investment including separate costs for the bare baghouse (five types), bags, and, where needed, cages and Venturis. Factors are given for installation and for indirect costs. Direct and indirect annual costs are discussed. An example problem is given. The material in this article is taken primarily from the EAB Control Cost Manual.  相似文献   

11.
At the Monticello station, operated by the Texas Utilities Generating Company, lignite coal obtained locally in Titus and Hopkins Counties fuels each of the three units. Units 1 and 2 are identical 575-MW Combustion Engineering (CE) boilers, each of which discharges its effluent to a 36- compartment shake/deflate cleaned baghouse paralleled with four electrostatic precipitators (ESP). Unit 3 is a larger boiler and is followed by an ESP and a scrubber. The Unit 1 and 2 baghouses were designed to clean 80 percent of the flue gas. Since startup, these baghouses have regularly experienced flange-to-flange pressure drops in excess of 10 in. H2O, with large opacity spikes caused by ash bleeding through the bags after compartment cleanings. Because of higher-than-expected pressure drop, the baghouses receive only about 45-50 percent of the flue gas. Analysis has shown the Monticello lignite ash significantly differs from most other coal ashes. Testing has shown that the Monticello ash is not filtered effectively by many "standard" bag materials. However, this testing indicates that there are fabrics that show promise of eliminating the ash bleedthrough with little pressure drop penalty. Testing has also shown that injection of low concentrations (10-15 ppm) of ammonia (NH3) into the flue gas significantly decreases ash bleedthrough, so that with NH3 injection "standard" bag materials may perform adequately. Currently, fullcompartment testing of four fabrics, with and without NH3 injection, is under way at the Unit 1 baghouse. The research conducted at the Monticello station is reviewed in this paper and the encouraging results from the full-compartment tests are presented.  相似文献   

12.
An experimental investigation on sulfur dioxide removal in a pilot-scale spray dryer from the flue gas generated by combustion of low-sulfur (S) heavy oil is reported. A limewater slurry was sprayed through an ultrasonic two-fluid atomizer in the spray-dry chamber, and the spent sorbent was collected downstream in a pulse-jet baghouse together with fly ash. Flue gas was sampled at different points to measure the desulfurization efficiency after both the spray-dry chamber and the baghouse. Parametric tests were performed to study the effect of the following variables: gas inlet temperature, difference between gas outlet temperature and adiabatic saturation temperature, lime-to-S ratio, and average size of lime particles in the slurry. Results indicated that spray drying is an effective technology for the desulfurization of low-S fuel oil flue gas, provided operating conditions are chosen carefully. In particular, the lowest gas inlet and outlet temperatures compatible with baghouse operation should be selected, as should a sufficiently high lime-to-S ratio. The attainment of a small lime particle size in the slurry is critical for obtaining a high desulfurization efficiency. A previously presented spray-dry flue gas desulfurization model was used to simulate the pilot-scale desulfurization tests, to check the ability of the model to predict the S capture data and its usefulness as a design tool, minimizing the need for pilot-scale experimentation. Comparison between model and experimental results was fairly good for the whole range of calcium/S ratios considered.  相似文献   

13.
This paper describes some technical and economic aspects of the nahcolite ore injection process for the simultaneous removal of fly ash and sulfur oxides from stack gases. The process is capable of removing greater than 99% of the particulate matter and greater than 70% of the sulfur oxides present in such gases. In the process, nahcolite ore, a naturally occurring material containing 70 to 90% sodium bicarbonate, is ground to 90% passing through —200 mesh screens. Approximately 20% of the ground ore is used to precoat the filter bags in a baghouse filter while the remainder of the material is fed into the flue gas Just ahead of the baghouse. The flue gas is drawn through the baghouse by induced draft fans and sent up the stack. Most of the SO2 and practically all of the fly ash in the flue gas can be removed as the gas passes through the filter bags. The spent nahcolite ore and fly ash are collected and conveyed to waste disposal as landfill, or alternatively processed for insolubilization by coprecipitation prior to landfilling. The technical feasibility of the process has been demonstrated in both bench scale and pilot scale engineering studies. Economic analyses performed for the cases of plants located in the midwest and southwest indicate lower capital costs for the nahcolite injection process when compared to wet scrubbing. On an annual cost basis, the nahcolite ore Injection process is comparable in cost to wet scrubbing for the case of the southwestern power plant, and somewhat more expensive for the case of the midwestern plant.  相似文献   

14.
In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.  相似文献   

15.
针对实际运行过程中,袋式除尘器滤袋使用寿命短,压力损失过大的问题,本文以翼形上进风袋式除尘器为研究对象,采用CFD(computational fluid dynamics)技术模拟分析不同滤袋数(分别为92、88、84、80、76和72)时袋式除尘器内气流分布和压力损失规律。主要考察了流量分配系数、最大流量不均幅值、气流迹线、滤袋表面速度分布与压降等指标。结果表明,滤袋数为76个时,气流分布最为均匀,各滤袋负载均衡;相同过滤速度下,装置的压降随滤袋数目的增加而上升,即压降大小顺序为9288847672;与72个滤袋相比,76个滤袋的可用过滤面积更大。综合考虑,袋式除尘器的最优滤袋数目为76个。模拟结果为袋式除尘器的设计和优化提供了依据。  相似文献   

16.
Abstract

In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 µm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38–99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1–1 µm. In this size range, ESP and baghouse collection efficiencies are 85.79–98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.  相似文献   

17.
Experiments were conducted to investigate the appearance of contaminants in fluorocarbon-film bags which have been widely used as photochemical reactors and storage containers in air pollution research. Clean air stored in such bags was gradually contaminated by a wide range of heavy hydrocarbons (≥ C5 ) as well as by nitrogen oxides. Warming a bag dramatically increased the contamination rate for hydrocarbons. The substances observed in the bags appear to have originated in the air outside the bags and appeared in the bags due to the permeability of the film. When a bag was stored in a controlled clean environment, the rate of contamination by hydrocarbons was dramatically reduced. Experiments in which high concentration mixtures of hydrocarbons and nitrogen oxides were stored in the bags likewise showed that some high molecular weight hydrocarbons as well as NO and NO2 permeate through the bag walls. Decontamination of the bags can be accomplished by storing them in a clean environment.  相似文献   

18.
Vertical snow sampling and moss bag transplants were used to estimate the local inorganic and organic pollutant load deposited from traffic along a major highway in Finland. The pH and concentrations of Cl(-), NO(3)(-), SO(4)(2-), Ca(2+), Na(+) and polyaromatic hydrocarbons (PAHs) were determined from snow samples collected in winter at different sites along the highway. In summer, moss bags containing 20 g of fresh red-stemmed feather moss (Pleurozium schreberi) were transplanted at the same sites. The moss bag transplants remained exposed to roadside traffic for a period of one month following which the samples were collected and the PAH profiles and concentrations were analysed. The deposition of inorganic and organic pollutants from road traffic was observed up to 60 m from the road. The prevailing winds had a significant effect on the dispersion of pollutants. Snow appears to be a good collector of inorganic pollutants from the atmosphere and can be used to monitor local airborne pollution from road traffic. Snow packs can also be used as passive collectors of organic pollutant loads from road traffic on a local scale. To monitor organic PAH deposition from the road traffic, moss bags appeared to be better indicators compared to snow sampling. The efficiency of moss bags in accumulating PAH compounds indicate that vegetation may be an important sink for traffic pollution.  相似文献   

19.
Pulse-jet fabric filters rely on the filtration of dirty flue gas by the outside surface of the bags, which are then cleaned by a shock wave generated by an air pulse entering each bag from the top. As it travels down the length of the bag, the shock wave flexes the fabric and dislodges the dust cake. Enhancement of the pulse may be achieved by using a venturi, and cleaning may be on-line or off-line. This paper summarizes the results of an exhaustive study conducted for the Electric Power Research Institute to provide a convenient and versatile information base about the use of pulse-jet fabric filters on coal-fired boilers. Predominant features of the many pulse-jet installations identified by vendor survey and literature survey are shown in graphical and tabular form.  相似文献   

20.
The United Power Association’s dry FGD system at Stanton, North Dakota was the first utility-operated lime spray dryer to be put into service in the United States. At 60 MW in size, it utilizes a single spray dryer vessel with three rotary atomizers and a ten-compartment fabric filter. It is currently operating at better than expected efficiency and Is meeting state and federal air quality requirements. Start-up and operation have shown that certain areas of design and operating conditions are critical to reliable operation. Flue gas, slurry, and water distribution and mixing must be carefully controlled if reliable, long term operation is to be achieved. Likewise, water chemistry Is Important in the reagent preparation equipment. Start-up of the system was accomplished In a step-wise fashion to bring the baghouse on line first, followed by the spray dryer. The spray dryer was operated at gradually lower outlet temperatures until design conditions were met. Measures taken since start-up to ensure reliable operation, and operation over an eighteen month period are discussed. Both particulate and SO2 emission performance are evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号