首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to assist in assessing potential odor problems arising from chemical manufacturing operations, the odor thresholds of 53 commercially important odorant chemicals have been determined using a standardized and defined procedure. The odor threshold data previously available have shown wide variation reflecting the diversity of procedures and techniques used. Factors that may affect the odor threshold measurement include the mode of presentation of the stimulus to the observer, the influence of extraneous odorants in the presentation system, the type of observer used, the definition of the odor response, the treatment of the data obtained, and the chemical purity of the odorant. The experimental approach used has minimized these variations. The odorants were presented to a trained odor panel in a static air system utilizing a low odor background air as the dilution medium. The odor threshold is defined as the first concentration at which all panel members can recognize the odor. The effect of chemical purity has been determined by measuring the odor threshold of materials representing different modes of manufacture or after purification by gas chromatographic procedures. The threshold concentrations range over six orders of magnitude. Trimethylamine exhibited the lowest threshold (0.00021 ppm volume); methylene chloride was not recognizable below 214 ppm. Of the 53 chemicals, sulfur bearing compounds exhibit low threshold values on the order of parts per billion. Aside from the sulfides, it is not possible to anticipate the odor threshold of a material based on its chemical structure or functionality.  相似文献   

2.
ABSTRACT

Intensity and threshold dilution ratio are two important indices for odor control of swine buildings. Although odor threshold dilution ratio is a widely used index to describe an odor, it should be related to intensity to be more useful. A method was proposed to measure both indices simultaneously by using a dynamic forced-choice olfacto-meter. Four air samples were taken from each of four swine rooms including farrowing, finisher, gestation, and nursery. A panel of eight people was used to evaluate odor intensity. Odor threshold dilution ratios were calculated according to the American Society for Testing and Materials (ASTM) Standard Practice E679-91 to be 333, 424, 25, and 221 for samples collected from farrowing, finisher, gestation, and nursery rooms, respectively. After the samples were diluted 14.7 times, the odor intensities were evaluated to be 3.79, 3.46, 0.48, and 4.0 for the above-mentioned rooms, respectively. The data collected were used to develop a mathematical model.  相似文献   

3.
ABSTRACT

The following models of odor intensity for swine units were evaluated: the Weber-Fechner law model, the power law model, the Stevens model, and the Beidler model. Data were collected from four swine rooms (farrowing, finisher, gestation, and nursery) and odor threshold dilution ratios were measured by a panel using a dynamic forced-choice olfactometer. Odor intensity scales were determined by eight panelists using a six-point category scale method. A nonlinear parameter estimation method was used to estimate the parameters in each of the models. The widely used Weber-Fechner law did not adequately fit the data of odor intensity and threshold. Both the power law and the Beidler models described the data effectively, but the Beidler model showed the best fit of the data and was used as the model to represent the relationship between odor intensity and threshold dilution ratio for swine buildings.  相似文献   

4.
欧盟工业废水污染物排放限值的制定   总被引:9,自引:0,他引:9  
目前欧盟废水污染物排放限值的制定,主要依据欧盟委员会公布的污染综合防治指令和水政策行动框架指令的原则来进行。限值的制定方法主要有两种:一是以技术先进、经济合理为基础的最佳可行技术法;二是通过水环境质量标准、水体稀释能力以及污水处理系统削减能力来计算的反演法。中国可借鉴欧盟的先进方法进行环境标准体系的建设和完善。  相似文献   

5.
Intensity and threshold dilution ratio are two important indices for odor control of swine buildings. Although odor threshold dilution ratio is a widely used index to describe an odor, it should be related to intensity to be more useful. A method was proposed to measure both indices simultaneously by using a dynamic forced-choice olfactometer. Four air samples were taken from each of four swine rooms including farrowing, finisher, gestation, and nursery. A panel of eight people was used to evaluate odor intensity. Odor threshold dilution ratios were calculated according to the American Society for Testing and Materials (ASTM) Standard Practice E679-91 to be 333, 424, 25, and 221 for samples collected from farrowing, finisher, gestation, and nursery rooms, respectively. After the samples were diluted 14.7 times, the odor intensities were evaluated to be 3.79, 3.46, 0.48, and 4.0 for the above-mentioned rooms, respectively. The data collected were used to develop a mathematical model.  相似文献   

6.
Real-world particulate emission measurements usually include a fresh nanoparticle mode called the nucleation mode. The formation of the nucleation mode during mixing, dilution, and cooling of diesel exhaust is discussed based on existing experimental and modeling data. The further evolution of the nucleation mode and the local dilution ratio within the vehicle exhaust is reviewed. The nucleation mode forms at low dilution ratios (< or = 10) and is fully formed at the dilution ratio of approximately 100. The findings of the studies comparing real-world and dynamometer measurements are reviewed. A qualitative agreement of nucleation mode formation is generally observed. The geometric mean diameter of the nucleation mode, measured on-road, is well reproduced in the laboratory. However, the number concentration of the nucleation mode is too low in the laboratory (by a factor of 2-10). Nevertheless, the trends are reproduced, including those caused by differences in vehicle speed and engine load, engine and aftertreatment technology, as well as fuel and lubricant composition.  相似文献   

7.
ABSTRACT

Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 μm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships.

A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 μm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented.  相似文献   

8.
The European critical levels (CLs) to protect vegetation are expressed as an accumulative exposure over a threshold of 40 ppb (nl l(-1)). In view of the fact that these chamber-derived CLs are based on ozone (O(3)) concentrations at the top of the canopy the correct application to ambient conditions presupposes the application of Soil-Vegetation-Atmosphere-Transfer (SVAT) models for quantifying trace gas exchange between phytosphere and atmosphere. Especially in the context of establishing control strategies based on flux-oriented dose-response relationships, O(3) flux measurements and O(3) exchange simulations are needed for representative ecosystems. During the last decades several micrometeorological methods for quantifying energy and trace gas exchange were developed, as well as models for the simulation of the exchange of trace gases between phytosphere and atmosphere near the ground. This paper is a synthesis of observational and modeling techniques which discusses measurement methods, assumptions, and limitations and current modeling approaches. Because stomatal resistance for trace gas exchange is parameterized as a function of water vapor or carbon dioxide (CO(2)) exchange, the most important micrometeorological techniques especially for quantifying O(3), water vapor and CO(2) flux densities are discussed. A comparison of simulated and measured O(3) flux densities shows good agreement in the mean.  相似文献   

9.
An ambient air sampling study was conducted around a municipal waste combustor; a primary goal was to develop procedures and methods to evaluate the emissions of organic mutagens resulting from incomplete combustion of municipal waste. The products of Incomplete combustion from incineration include complex mixtures of organics, particularly polycycllc aromatic compounds, which are present after atmospheric dilution and cooling In emissions as semi-volatile or particle bound organic compounds. Combustion emissions are generally recognized as a potential cancer risk since they contain many carcinogenic and mutagenlc polycyclic aromatic hydrocarbons. Analyzing such a complex mixture for the presence of even a few selected chemicals is difficult and provides risk information on only a fraction of the chemicals present. Bioassay methods, however, may be directly applied to evaluate the mutagenic and potential carcinogenic activity of the complex organics from combustion emissions. The Salmonella (Ames) assay was used to determine the mutagenicity associated with particles from ambient air collected near a municipal waste combustor. Dose-response data was generated, and mutagenicity concentrations were calculated to demonstrate the utility of bioassay In assessing the potential Impact of emissions from municipal waste combustion. This phase of study quantified mutagenicity concentrations In ambient air but did not detect organic mutagens that could be attributed to Incinerator emissions.  相似文献   

10.
The Environmental Protection Agency is reviewing the need for a short-term NO2 standard based on an averaging time of three hours or less. State Implementation plans and New Source Reviews will require air quality simulation techniques capable of estimating ambient NO2 concentrations. There is a need for multi-source (urban) models and for point source models.

A review of currently available techniques for the estimation of NO2 concentrations resulting from NOx point sources is presented. The available methods include simple screening techniques and refined reactive plume models. The screening techniques first use a standard gaussian dispersion model to estimate the maximum 1 hr NOx concentration caused by the source. The second step involves estimating the fraction of this NO* concentration occurring as NO2.

Reactive plume models numerically simulate the simultaneous effects of dispersion and chemistry on NO2 concentrations. Organic as well as inorganic reactions are incorporated. Reactive plume models should be used, where screening techniques indicate the potential for violation of the NO2 standard.

Current generation reactive plume models neglect the effect of turbulent concentration fluctuation on NO2 formation and use inappropriately large dispersion coefficients to estimate plume concentrations. Approaches being developed to resolve these problems are discussed.  相似文献   

11.
Remedial options for leaking underground storage tanks were investigated in a joint project of the Electric Power Research Institute and the Underground Storage Tank Committee of the Utility Solid Waste Activities Group. Both existing and emerging technologies were examined. Thirteen remedial techniques were identified and initially characterized as in situ or non-in situ. In situ methods include volatilization, biodegradation, leaching and chemical reaction, vitrification, passive remediation, and isolation or containment. Non-in situ techniques include land treatment, thermal treatment, asphalt incorporation, solidification and stabilization, groundwater extraction and treatment, chemical extraction, and excavation. Soil and groundwater remediation problems have many site-specific considerations which must be considered in choosing an appropriate remedial option; these include cleanup goals, site and contaminant characteristics, cost, exposure pathways, and others. Appropriate remedial techniques are chosen by assessing technical, implementational, environmental and economic considerations of each available option to achieve the desired cleanup goal at the specified site.  相似文献   

12.
The aim of this study was to develop a dilution system which would permit the TSI 3007 condensation particle counter (CPC) to operate within its maximum detectable concentration threshold, even when sampling extremely high submicron particle concentrations. The intention of this was to provide a better alternative to coincidence correction factors, which have several limitations; the most significant of which being that they are only applicable to a comparatively low concentration and also that the components of the unit are exposed to concentrations beyond their operating specifications. To achieve the aim, a bifurcation-based system was developed and tested repeatedly at concentrations of unleaded petrol combustion particles up to ∼8.5×106 p cm−3. The benchmark particle concentration was measured by a TSI 3022A CPC. The results of the tests showed that the nominal dilution ratio based on flow partitioning was applicable up to ∼3.5×105 p cm−3, after which particle losses to a capillary tube primarily caused a large increase in apparent dilution. These losses were consistent throughout all tests and allowed the unit to remain below the maximum detection threshold, even under the extreme challenge concentrations encountered. This work represents a useful extension of the operating range of the TSI 3007, without significantly compromising either the quality of data collected or the internal components of the unit.  相似文献   

13.
Gullett BK  Ryan JV  Tabor D 《Chemosphere》2001,43(4-7):403-406
13C12-Labelled mono-, di-, and tri-chlorinated dibenzo-p-dioxin (CDD) and chlorinated dibenzofuran (CDF) standards have been tested for their applicability to standard EPA sampling and analytical Methods 0023A/8290. These methods target for analysis only the tetra- through octa-CDD/CDF homologues. Extension of the isotope dilution method to include those lower chlorinated homologues is important toward obtaining reliable species concentration data on the complete, mono- to octa-chlorinated homologue profile. These data will improve our ability to model poly-CDD/CDF concentrations through understanding mechanisms of poly-CDD/CDF formation, chlorination, and dechlorination.  相似文献   

14.
Pharmaceutical and personal care products (PPCPs) in urban receiving waters   总被引:5,自引:0,他引:5  
The transport pathways of pharmaceutical and personal care products (PPCP) discharges within the urban water cycle include both combined and separate sewer systems with only the former receiving treatment. The dry-weather flow dilution patterns for selected PPCPs following discharge from a sewage treatment works (STW) to a North London stream indicate a persistent downstream increase in concentration. The dilution ratio analysis also indicates that the STW's final effluent only contributes a dilution of the endogenous concentrations already present in the river flow which reflects a progressive PPCP load with increasing urbanization; "worst-case" scenarios being probably related to wet-weather conditions. Maximum PPCP concentrations fall above the reported PEC levels and the analysis highlights the deficiencies of conventional acute toxicity for the evaluation of long-term effects of episodic urban discharges. Groundwater analysis points to sewer exfiltration which is limited in terms of PPCP impact to 25-50 cm depths.  相似文献   

15.
Abstract

Traffic noise is ubiquitous in many communities and is an important environmental concern, especially for persons located near major roadways. Several different methods are available to estimate noise levels resulting from roadway traffic. These include computational, graphical, and computer modeling techniques.

The prediction methodology presented here is a simplified technique that can be used for estimating noise resulting from traffic and for screening traffic noise impacts. This Traffic Noise Screening (TNS) approach consists of a series of traffic noise level prediction graphs developed for different roadway configurations. The graphs are based on the results from using the Federal Highway Administration (FHWA) STAMINA2.0 computerized noise prediction model for various scenarios. Data inputs to the TNS approach include roadway geometries, traffic volumes, vehicle travel speed, and centerline distance to the receptors.

The TNS graphs allow easy estimation of traffic noise levels for use in predicting traffic-related noise impacts. This TNS approach is not intended as a substitute for detailed modeling, such as with STAMINA2.0, but as a screening tool to aid in determining when detailed modeling may be necessary. If screening results indicate that noise estimates are significant, or if the scenario is rather complex, then additional, more detailed modeling can be performed.  相似文献   

16.
This paper presents the design and performance of a compact dilution sampler (CDS) for characterizing fine particle emissions from stationary sources. The sampler is described, along with the methodology adopted for its use. Dilution sampling has a number of advantages, including source emissions that are measured under conditions simulating stack gas entry and mixing in the ambient atmosphere. This is particularly important for characterizing the semivolatile species in effluents as a part of particulate emissions. The CDS characteristics and performance are given, along with sampling methodology. The CDS was compared with a reference dilution sampler. The results indicate that the two designs are comparable for tests on gas-fired units and a diesel electrical generator. The performance data indicate that lower detection limits can be achieved relative to current regulatory methods for particulate emissions. Test data for the fine particulate matter (PM2.5) emissions are provided for comparison with U.S. Environment Protection Agency (EPA) Conditional Test Method 040 for filterable particulate matter (FPM) and the EPA Method 202 for condensable particulate matter. This comparison showed important differences between methods, depending on whether a comparison is done between in situ FPM determinations or the sum of such values with condensable PM from liquid filled impingers chilled in an ice bath. These differences are interpretable in the light of semivolatile material present in the stack effluent and, in some cases, differences in detection and quantification limits. Determination of emissions from combustors using liquid fuels can be readily achieved using 1-hr sampling with the CDS. Emissions from gasfired combustors are very low, requiring careful attention to sample volumes. Sampling volumes corresponding with 6-hr operation were used for the combined mass and broad chemical speciation. Particular attention to dilution sampler operation with clean dilution air also is essential for gas-fired sources.  相似文献   

17.
Avoiding substrate inhibition is a significant challenge in designing biological treatment systems for concentrated or toxic wastes. Substrate inhibition is commonly avoided by diluting the waste before treatment, however, dilution of a waste before treatment is not always feasible. In the case of radioactive mixed wastes and chemical warfare materiel (CWM), dilution presents regulatory and safety concerns. In this study, we investigated a "drip-feed" reactor configuration as an alternative approach for the biological treatment of concentrated waste streams with minimal dilution and complete containment. In the drip-feed reactor undiluted waste is slowly fed to biomass in a reactor at a rate sufficient to maintain activity, but at a low enough rate so that bacterial degradation maintains the reactor concentration below the toxic threshold. The reactor has no effluent, but rather fills as the undiluted waste is fed to the reactor, which has the advantage of preventing the release of hazardous material into the environment during treatment. Volatile releases are prevented with the use of condensers. The drip-feed bioreactor configuration was tested under aerobic conditions, at 25 degrees C, using a 10% acetonitrile feed solution. The treatment of acetonitrile to less than 0.1 mg l(-1) was achieved with a dilution factor of only 3.4. The acetonitrile degradation reaction was pH sensitive, where the optimal pH range for the biodegradation process was approximately between 6.5 and 7.1 and the biodegradation rate declined precipitously above pH 7.2. The applicability of the drip-feed reactor configuration to the treatment of mixed wastes and CWM is discussed.  相似文献   

18.
The possibility of exposure of large segments of the population to complex, multifrequency microwave radiation in the environment is now a reality. It is necessary, therefore, to determine the safe level of exposure for the general population so as to prevent any occurrence of harmful effects without unduly restricting the beneficial uses of microwaves.

The biological effects generated by exposure to microwave radiation are usually designated as thermal or non-thermal (specific) in nature. Thermal effects are those interactions which are caused by the heating of the biological specimen and can be duplicated using conventional heating techniques. Nonthermal or specific effects are due to the direct interaction of the electromagnetic field of the incoming microwave radiation and the biological specimen.

The two organs of the body which are particularly sensitive to elevation in temperature are the testicles and the eyes. These organs, therefore, are the most sensitive to exposure to microwave radiation. Research on dogs, rabbits, and rats has shown that at 10 mW/cm, (power density in milliwatts per square centimeter) pathological damage to the testes include a degeneration of the epithelium lining of the seminiferous tubules, and a sharp reduction in the number of maturing spermatocytes. The reduction in testicular function due to the heating effect at 10 mW/cm2 appears to be temporary and reversible.

Cataracts have been produced in the eyes of experimental animals. Several investigators have used the eyes of rabbits to establish threshold for cataract formation. For CW radiation, the threshold in rabbits for long-term ex-posure, was measured to be approximately 100 mW/cm2. Several cases of eye cataracts in man due to microwave exposure have been reported at power densities of the same order of magnitude. More research is needed before threshold values for cataract formation in humans can be specified with certainty.

Nonthermal or specific effects are more difficult to detect than the thermal effects. This difficulty is due to the nature of the response of the biological specimen and the lack of explanation of the mechanism causing the effect. The most often reported effects of low level microwave radiation are neurological in nature. Effects on animals include changes in EEG patterns, changes in the conditioned reflexes, alterations in sensitivity to light, sound, and olfactory stimuli, alterations in the biocurrents of the cerebral cortex, and changes in behavior. Many subjective symptoms in humans working around microwave equipment have been reported by investigators from the U.S.S.R. and Eastern European researchers.

Genetic effects have been reported by some investigators. Exposure of chick embryos to microwave radiation induced abnormal development while conventional heating to the same temperature did not cause abnormalities. In general, the abnormalities appeared to be caused by the inhibition of growth and cell differentiation. Abnormal development of the “mealworm” beetle pupae has also been detected when exposed to microwave radiation. This study also indicates that the abnormalities were not due to thermal effects but due to the inhibition of cell differentiation caused by a direct interaction with the electromagnetic field.  相似文献   

19.
20.
Ozone generation is computed in a one-dimensional photochemistry code following convective redistribution of tropical urban effluent into the free troposphere. Simulations are run at several stages of pollutant dilution by surrounding surface air. A threshold boundary layer NOx concentration of 300 pptv is established for significant production enhancements at upper levels. Areas defined by the 300 pptv level are examined in the Gaussian dispersion framework based on a wet season plume event observed in Amazonia. Pollution travels slowly in the sluggish winds of the equatorial trough. Daily storms are likely to interrupt the effluent while coverages are still on the order of few thousand square kilometers and NOx concentrations are above the threshold. Dry season plume sizes are difficult to assess because local concentration data are scarce, but it is conceivable that the faster trade winds lead to a several fold extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号