首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The General Motors Research Laboratories and the Sloan-Kettering Institue for Cancer Research are collaborating to determine the contribution by automotive vehicles to the polynuclear aromatic hydrocarbons in city air. Sampling of particulate matter at the rate of 140 M3/min (5000 cfm) was carried out at two heavily-trafficked sites in Detroit and one suburban site in Warren, Michigan. Carbon monoxide was determined continuously, and particulate matter was analyzed for “tar,” polynuclear aromatic hydrocarbons, lead, vanadium, and sulfates. Polynuclear aromatic hydrocarbons in automobile exhaust gas are assumed to be dispersed in air along with carbon monoxide or lead from automobiles. It is further assumed that automobiles are the sole source of carbon monoxide and lead in the atmosphere. Concentrations of carbon monoxide and lead in exhaust gas and in the air are utilized to estimate the percentage of polynuclear aromatic hydrocarbons in the air attributable to automobiles. The mean automobile contributions to benzo(a)pyrene in the air, based on lead concentrations, were 18% at a Freeway Interchange, 5% in a downtown commercial area, and 42% in suburban Warren. The average concentrations of benzo(a)pyrene at the sites were 6 μg/103 M3, 7 μg/103 M3 and 1 μg/103 M3, respectively. Mean contributions based on carbon monoxide concentrations were approximately twice the levels based on lead concentrations. Benzo(a)pyrene and benz(a)anthracene in air were not statistically related to carbon monoxide or lead in air, but were higher in winter than in summer, probably because of the higher levels of these materials emitted in space heating combustion in winter.  相似文献   

2.
Concentrations of airborne polycyclic aromatic hydrocarbons (PAH), fluoride, suspended particles and particulate carbon were determined in four different residential areas near aluminum industries. Two of the areas were exposed to pollutants from primary aluminum production, the third area was close to a plant manufacturing electrodes for the aluminum industry while the fourth area received pollutants from the production of aluminum as well as electrodes. The sampling time was 24 h and the samples were collected every eighth day for about 16 months. The concentrations of PAH were high compared to levels in other polluted areas with industry and dense traffic. The average concentrations for benzo(a)pyrene (BaP) were above 10 ngm−3, which has been proposed as a guideline in some countries, at all sites. The highest air concentration of BaP measured in the present study was 160 ng m−3. At two of the stations the fluoride concentrations exceeded the 24-h national guideline of 25 μgm−3, which has been set to protect human health. In a few cases the concentrations of suspended particles were high while the levels of carbon agreed with concentrations reported in urban and residential areas in U.S.A. The concentrations varied with time and the variation was caused mainly by the changes of the meteorological conditions. The frequency distributions were skew for all components and close to logarithmic normal. PAH were well correlated with fluoride, which is an aluminum production tracer, indicating that they are of the same origin. The aluminum industry did not seem to be the main source of particulate matter and carbon in air. Apportionment studies of the organic pollutants were carried out by cluster analysis, and the results showed that the aluminum production is the main source to the PAH in ambient air in these areas.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) present in size- and density-fractionated road dust were measured to identify the important fractions in urban runoff and to analyse their sources. Road dust was collected from a residential area (Shakujii) and a heavy traffic area (Hongo Street). The sampling of road dust from the residential area was conducted twice in different seasons (autumn and winter). The collected road dust was separated into three or four size-fractions and further fractionated into light (<1.7 g/cm3) and heavy (>1.7 g/cm3) fractions by using cesium chloride solution. Light particles constituted only 4.0+/-1.4%, 0.69+/-0.03% and 3.4+/-1.0% of the road dust by weight for Shakujii (November), Shakujii (February) and Hongo Street, respectively but contained 28+/-10%, 33+/-3% and 44+/-8% of the total PAHs, respectively. The PAH contents in the light fractions were 1-2 orders of magnitude higher than those in the heavy fractions. In the light fractions, the 12PAH contents in February were significantly higher than the 12PAH contents in November (P<0.01), whereas in the heavy fractions, no significant difference was found (P>0.05). Cluster analysis revealed that there was a significant difference in the PAH profiles between locations rather than between size-fractions, density-fractions and sampling times. Multiple regression analysis indicated that asphalt/pavement was the major source of Shakujii road dust, and that tyre and diesel vehicle exhaust were the major sources of finer and coarser fractions collected from Hongo Street road dust, respectively.  相似文献   

4.
Solvent extraction and tandem dechlorination for decontamination of soil   总被引:1,自引:0,他引:1  
The United States Environmental Protection Agency (US EPA) guidelines allow removal of polychlorinated biphenyls (PCBs) from soils via solvent extraction. This option holds promise for removal of other recalcitrant organic contaminants as well. A study was undertaken to evaluate the effectiveness of solvent extraction with two tandem degradation techniques. The degradation techniques were chemical dehalogenation with immobilized reagents and gamma-ray irradiation. The integrated approach was evaluated with contaminated soils from wood treatment and electric power substation sites. Evaluations were carried out on a bench scale in the laboratory and on a semi-pilot scale at a contaminated site. Binary solvent mixture of alkanes and alcohols yielded the highest extraction efficiencies. Extraction efficiencies in excess of 90% were obtained for PCBs, polychlorinated dibenzo-p-dioxins (PCDDs) and polynuclear aromatic hydrocarbons (PAHs). Extracted PCBs were rapidly degraded through chemical dehalogenation or with high doses of the gamma-ray irradiation. The residual organics in the solvent mixture were removed with activated carbon, and the solvent was recycled for subsequent soil extractions. Contaminants adsorbed on the activated carbon were destroyed with a counter flow oxidation process.  相似文献   

5.
Nitro-PAH in ambient particulate matter in the atmosphere of Athens   总被引:2,自引:0,他引:2  
Nitrated polynuclear aromatic hydrocarbons (NPAH) with a molecular mass of 247 Daltons were found in soot collected in downtown Athens during a campaign performed in 1996. In particular, 2-nitrofluoranthene (2-NFa) and 2-nitropyrene (2-NPy), which are mainly related to photo-induced chemical processes occurring in the atmosphere, were more abundant than 1-nitropyrene (1-NPy) usually associated to motor vehicle exhaust.  相似文献   

6.
Continuous measurements of particle size distributions of 3-407 nm were collected from August 2002 to July 2004 at the Fresno Supersite to understand their number concentrations, size distributions, and formation processes. Measurements for fine particulate matter (PM2.5) mass, sulfate (SO4(2-)), nitrate (NO3-), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), and meteorological data (wind speed, wind direction, temperature [T], relative humidity [RH], and solar radiation) were used to determine the causes of nanoparticle (3-10 nm) and ultrafine (10-100 nm) particle events. These events were found to be divided into four types: (1) 3- to 10-nm morning nucleation; (2) 10- to 30-nm morning traffic; (3) 10- to 30-nm afternoon photochemical; and (4) 50- to 84-nm evening home heating, including residential wood combustion. Intense examples of the first type (>10(4) number [#]/cm3) were observed on 29 days, nearly always during the summer. The second type of event was observed on more than 73 days and occurred throughout the year. The third type was observed on 36 days, from spring through summer. The fourth type was found on 109 days, all of them during the winter. Although sulfur dioxide (SO2) emissions in Central California are low, the small residual amounts in gasoline and diesel fuel are apparently sufficient to initiate nucleation events. These were measured in the morning, soon after the shallow surface inversion coupled with layers aloft where nucleation probably was initiated. PM2.5 concentrations were poorly correlated with nanoparticle number.  相似文献   

7.
This study measured PAHs contained in the feedstock oil, carbon black products, and stack flue gas, then the fate of PAHs was assessed from the mass balance point of view for a carbon black manufacturing process. Results show the carbon black manufacturing process would result in the depletion of total-PAHs and the summation of top three carcinogenic PAH species (i.e., BbF+BaP+DBA) up to 98.15% and 99.83%, respectively. The above results suggest that the carbon black manufacturing process would result in not only the decrease of the amount of total-PAHs, but also the carcinogenic potencies of PAHs originally contained in the feedstock oil. Regarding PAHs contained in the carbon black products and stack flue gas, this study suggest they might be resulted mostly from high-temperature pyrolytic process, rather than the PAHs originally contained in the feedstock oil. For the carbon black manufacturing industry, since the soot (i.e., the carbon black) was completely collected as its final product, therefore most of carbon black-bearing PAHs did not directly release to atmosphere. On the other hand, PAHs contained in the stack flue gas were directly exhausted to the atmosphere and thus were assessed in this study. The results show the emission rates for total-PAHs and BbF+BaP+DBA for the stack flue gas were 2.18 kg/day and 1.50 g/day, respectively, which were approximately 25% and 40% of those exhausted from a municipal incinerator with a treatment capacity of 300 metric tons/day. It is concluded that the carbon black manufacturing process might not be a significant PAHs emission source, as compared to the municipal incinerator.  相似文献   

8.
Microbial decontamination of hydrocarbon-polluted soil was paralleled with soil respiration measurements. About 1,500 tons of a loamy top soil were found to be contaminated with approximately 2000 mg/kg of aliphatic hydrocarbons, mainly oleic (C18:1) and linoleic acid (C18:2) found in the vicinity of a linoleum manufacturing and then a car dewaxing plant. The contaminated soil was analysed for dry matter, pH, dehydrogenase activity, electrical conductivity and nutrient content viz. nitrate, phosphorus and potassium, as well as a number of indigenous microbes. The soil was low in salt and nutrients. This paper describes the procedure and measures to decontaminate this bulk soil on site from approx. 2,000 to 500 mg of aliphatic hydrocarbons/kg dry matter by use of a nutrient emulsion, indigenous micro-organisms and aeration over 13 months. This 75% reduction in aliphatic hydrocarbons resulted in a concomitant carbon efflux, measured as soil respiration, and was used to calculate carbon fluxes.  相似文献   

9.
The Public Health Service and the Bureau of Mines are conducting a joint study to evaluate a number of flue-gas-stream components from coal-burning power plants. Emissions of fly ash, sulfur oxides, nitrogen oxides, polynuclear hydrocarbons, total gaseous hydrocarbons, formaldehyde, certain metals, and carbon dioxide are determined. A previous paper covered air pollutant emissions from vertical-fired and front-wall-fired power plant boilers. This paper includes a comparative evaluation of emissions from a tangential-fired and a turbo-fired power plant boiler.  相似文献   

10.
Lead concentrations in air were measured at 12 sites in Detroit, New York and Los Angeles as part of a program to relate automobile emissions and polynuclear aromatic hydrocarbons in air. The information on lead is reported separately because of the current interest in lead as an air pollutant. Sampling was conducted by means of a large “absolute” filter and equipment contained in a step-van truck. A portion of the filter was macerated in nitric acid and the lead determined spectrographically. The combined annual average lead concentration for four sites in metropolitan Los Angeles was approximately 40% higher than the combined averages of either the five sites in metropolitan New York or the three sites in metropolitan Detroit. Concentrations ranged from 0.4 ug/M3 at Santa Monica, to 18.4 ug/M3 at a Los Angeles Freeway Interchange. Concentrations were generally highest in freeway areas, intermediate in commercial areas, and lowest in residential areas. They were about 40% higher in daytime than at night. Average lead concentrations were highest during autumn in New York and winter in Los Angeles reflecting an inverse relationship with wind speed. Correlation coefficients between lead and carbon monoxide, at all sites, were statistically non-zero with 99% confidence and varied from 0.75 to 0.96. Lead concentrations in this study were higher than concentrations reported by others for Detroit, New York, and Los Angeles, presumably because sampling in this study was closer to traffic. However, concentrations in this study were lower than in-traffic concentrations given in the literature.  相似文献   

11.
Ambient samples of fine organic aerosol collected from a rural area (Moitinhos) in the vicinity of the small coastal Portuguese city of Aveiro over a period of more than one year have been solvent-extracted and quantitatively characterised by gas chromatography–mass spectrometry. Particles were also analysed with a thermal-optical technique in order to determine their elemental and organic carbon content. In addition, meteorological sensors and real-time black carbon, ozone and carbon monoxide monitors were used. Particulate matter values were higher than background levels in continental Europe. A patent seasonal variation for organic and elemental carbon concentrations was observed, presumably related to stronger local primary emissions and to limited vertical dispersion. The higher levels were most likely a result of residential wood burning, since black carbon and carbon monoxide maximised during late evening hours in wintertime. Of the bulk of elutable organics, more than a half, on average, was present as acidic fraction. Alcohols, aliphatic and polyaromatic hydrocarbons represented together, more than 30% of the elutable mass, also showing a marked seasonal pattern with a minimum in summer and a maximum in winter. The winter increase was more evident for resinic acids, phytosterols, n-alkanoic acids and polycyclic aromatic hydrocarbons.  相似文献   

12.
From 1995 to 2004, in Genoa, Italy, daily concentrations of twelve polycyclic aromatic hydrocarbons (PAHs) were measured in particulate phase (PM10), around a coke oven plant in operation from the 1950s and closed in 2002. The study permitted to identify the coke oven as the main PAH source in Genoa, causing constant exceeding of benzo(a)pyrene (BaP) air quality target (1.0 ng/m3) in the urban area till 1,900 meters distance downwind the plant. For this reason the plant was closed. Distance and daily hours downwind the coke plant were the main sources of variability of toxic BaP equivalent (BaPeq) concentrations and equations that best fitted these variables were experimentally obtained. During full plant activity, annual average BaPeq concentrations, measured in the three sampling sites aligned downwind to the summer prevalent winds, were: 85 ng/m3 at 40 m (site 2, industrial area), 13.2 ng/m3 at 300 m (site 3, residential area) and 5.6 ng/m3 at 575 m (site 4, residential area).

Soon after the coke oven's closure (February 2002) BaPeq concentrations (annual average) measured in residential area, decreased drastically: 0.2 ng/m3 at site 3, 0.4 ng/m3 at site 4. Comparing 1998 and 2003 data, BaPeq concentrations decreased 97.6% in site 3 and 92.8% in site 4.

Samples collected at site 3, during the longest downwind conditions, provided a reliable PAH profile of fugitive coke oven emissions. This profile was significantly different from the PAH profile, contemporary found at site 5, near the traffic flow.

This study demonstrates that risk assessment based only on distance of residences from a coke plant can be heavily inaccurate and confirmed that seasonal variability of BaPeq concentrations and high variability of fugitive emissions of PAHs during coke oven activities require at least one year of frequent and constant monitoring (10-15 samples each month).

Implications: Around a coking plant, polycyclic aromatic hydrocarbons (PAHs), concentrations depend mainly on downwind hours and distance. Equations that best fit these variables were experimentally calculated. Fugitive emissions of an old coke oven did not comply with the threshold BAP air concentration proposed by the World Health Organization (WHO), up to 1,900 m distance. The study identified the PAH profile of fugitive emissions of a coke oven, statistically different from the profile of traffic emissions. During its activity, in the Genoa residential area, 575 m away from the plant, 92.8% of found PAHs was due to coke oven emission only.  相似文献   

13.
n-Alkanes, polynuclear aromatic hydrocarbons and n-alkanoic acids present in the inhalable fraction of airborne particles have been determined at the Italian scientific base sited in the area of Ny Alesund, Spitzbergen Island, Norway. Both the profiles of n-alkane and polynuclear aromatic congeners among the respective classes showed that anthropogenic sources were responsible for the presence of particulate organics in the atmosphere there, since the monomodal distribution of aliphatics and the fresh-emission shape of PAH fraction were observed. The total contents of n-alkanes and PAH ranged from 19 to 97 ng m−3 and from 0.6 to 2.0 ng m−3, respectively; n-alkanoic acids reached 6 ng m−3. The occurrence of nitrated-PAH of photochemical origin at trace extent (i.e. nitrated-fluoranthenes and nitropyrenes) has been also observed. Since the occurrence of OH radicals is required together with NOx for the processes leading to the generation of 2-nitrofluoranthene and 2-nitropyrene would start, the detection of these nitrated species revealed the occurrence of photochemical processes in that region.  相似文献   

14.
Abstract

Concentrations of 38 gas-phase organic air toxics were measured over a 2-yr period at four different sites in and around Pittsburgh, PA, to investigate spatial variations in health risks from chronic exposure. The sites were chosen to represent different exposure regimes: a downtown site with substantial mobile source emissions; two residential sites adjacent to one of the most heavily industrialized zones in Pittsburgh; and a regional background site. Lifetime cancer risks and non-cancer hazard quotients were estimated using a traditional and interactive risk models. Although study average concentrations of specific air toxics varied by as a much as a factor of 26 between the sites, the additive cancer risks of the gas-phase organic air toxics varied by less than a factor of 2, ranging from 6.1 × 10-5 to 9.5 × 10-5. The modest variation in risks reflects the fact that two regionally distributed toxics, formalde-hyde and carbon tetrachloride (CCl4), contributed more than half of the cancer risk at all four sites. Benzene contributed substantial cancer risks at all sites, whereas trichloroethene and 1,4-dichlorobenzene only contributed substantial cancer risks at the downtown site. Only acrolein posed a non-cancer risk. Diesel particulate matter is estimated to pose a much greater cancer risk in Pittsburgh than other classes of air toxics including gas-phase organic, metals, polycyclic aromatic hydrocarbons, and coke oven emissions. Health risks of air toxics in Pittsburgh are comparable with those in other urban areas in the United States.  相似文献   

15.
The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air conducted indoor and outdoor residential sampling of nitrogen dioxide (NO2), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). This participant-based methodology was subsequently adapted for use in the Vanguard phase of the U.S. National Children’s Study. The current paper examines residential indoor and outdoor concentrations of these pollutant species among health study participants in Detroit, Michigan.Pollutants measured under MICA-Air agreed well with other studies and continuous monitoring data collected in Detroit. For example, NO2 and BTEX concentrations reported for other Detroit area monitoring were generally within 10–15% of indoor and outdoor concentrations measured in MICA-Air households. Outdoor NO2 concentrations were typically higher than indoor NO2 concentration among MICA-Air homes, with a median indoor/outdoor (I/O) ratio of 0.6 in homes that were not impacted by environmental tobacco smoke (ETS) during air sampling. Indoor concentrations generally exceeded outdoor concentrations for VOC and PAH species measured among non-ETS homes in the study. I/O ratios for BTEX species (benzene, toluene, ethylbenzene, and m/p- and o-xylene) ranged from 1.2 for benzene to 3.1 for toluene. Outdoor NO2 concentrations were approximately 4.5 ppb higher on weekdays versus weekends. As expected, I/O ratios pollutants were generally higher for homes impacted by ETS.These findings suggest that participant-based air sampling can provide a cost-effective alternative to technician-based approaches for assessing indoor and outdoor residential air pollution in community health studies. We also introduced a technique for estimating daily concentrations at each home by weighting 2- and 7-day integrated concentrations using continuous measurements from regulatory monitoring sites. This approach may be applied to estimate short-term daily or hourly pollutant concentrations in future health studies.  相似文献   

16.
Thirteen sediment samples from different locations in the Niger Delta region of Nigeria were analyzed for the presence of 16 polynuclear aromatic hydrocarbons (PAHs) via gas chromatography/mass spectrometry. The specific target compounds for this study included naphthalene, acenaphthylene, acenaphthene, flourene, phenanthrene, anthracene, flouranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]flouranthene, benzo[a]pyrene, benzo[ghi]perylene, dibenz[a,h]anthracene, and indeno[1,2,3-cd]pyrene. Four isotopically labeled polynuclear aromatic hydrocarbons (acanaphthene-d10, phenanthrene-d10, chrysene-d12 and perylene-d12) were used for internal standardization. All 16 PAHs were found in most of the thirteen samples with concentration ranging from 0.1 microg/kg to 28 microg/kg. It was also found that the 5 and 6-ring PAHs were present in higher concentrations than all the other compounds, indicating their high resistance to microbial degradation.  相似文献   

17.
Fingerprinting of hydrocarbon products requires high resolution differentiation of individual hydrocarbon compounds in any mixture. This requires the applications of various measuring techniques. In this paper, we have chosen the heavy hydrocarbons in fuels, lubricants and paving material as examples to discuss the methods for chemical characterization and differentiation. In the category most frequently termed "semi-volatile hydrocarbons" with boiling points from about 500°F to 1200°F or higher, there are several families of hydrocarbons, both natural and refined that are not easily distinguished by conventional EPA tests. Among the groups which we will use as examples are asphalts, hydraulic fluid, transmission oil, motor lubricating oils, heating oils, crude oil and coal. These hydrocarbon families are best studied using combined gas chromatography-mass spectrometry in full scan mode and characterizing various homologous series of hydrocarbons at known fragment ions. The hydrocarbon series providing the best information are: (1) N -alkanes; (2) iso-alkanes; (3) steranes; (4) terpanes; (5) polynuclear aromatic hydrocarbons; (6) aromatic steranes; and (7) specific polycyclic compounds.  相似文献   

18.
ABSTRACT

During three measuring campaigns in June, July, and August 1996, volatile organic compound (VOC) concentrations were measured at a rural background site, a city residential site, and a street site in Berlin. In addition, samples were taken near relevant sources of VOCs. The meaurements covered the volatile hydrocarbons in the range C1-C14 and included aldehydes and ketones. Samples were taken at four characteristic periods of 2 hr/day: during the night, during the early morning rush hour, at midday, and during the evening rush hour. An assessment of the contribution of emission categories to the observed concentrations was made with the chemical mass balance (CMB) modelling technique.

The VOC concentrations at the residential area and at the street site in the inner city were, respectively, a factor of 3 and 7 above the background concentration. Traffic exhaust contributed approximately 80-90% of the non-methane hydrocarbon (NMHC) concentration in the inner city and approximately 60% at the background area. Evaporative losses of motor fuel are estimated to account for approximately 7% at all sites. Natural gas leakage also contributed significantly to the observed VOC concentrations: in the inner city approximately 510% and at the background area approximately 30%. The measurements also showed a contribution of smaller sources, such as dry cleaning, use of solvents, and bio-genic emissions. However, the contribution of these sources to the total observed concentrations at the sites is estimated to be very small.  相似文献   

19.
PM10 levels of the 16 US-EPA Priority Pollutant polycyclic aromatic hydrocarbons (PAHs) were measured from March 17 to 31, 2003, in 8-h time bins (morning, afternoon and nighttime) at Merced, a source site dominated by vehicular traffic emissions near the center of Mexico City, and at Pedregal, a receptor area located downwind in a residential area of low traffic. Along with PAH, elemental (EC) and organic carbon (OC), mass, and prevailing meteorological parameters were measured. At the source location, measured concentrations of benzo[a]pyrene (BAP), an agent suspected of being carcinogenic to humans and of causing oxidative DNA damage, reached concentrations as high as 2.04 and 2.11 ng m?3 during the morning of a weekday and the night period of a holiday. Compared with source dominated areas in Central Los Angeles, the BAP levels found in Central Mexico City are approximately 6 times higher. Benzo[ghi]perylene (BGP) levels were, in general, the highest among the target PAH, both at the source (7.2 ng m?3) and the receptor site (2.8 ng m?3), suggesting that, at both locations, exhaust emission by light-duty (LD) vehicles is an important contributor to the atmospheric PAH burden. Higher PAH concentrations were observed during the morning period (5:00–13:00 h) at the source and the receptor site. The concentrations of PAHs found predominantly in the particle-phase (MW > 202) correlated well (r = 0.57–0.71) with the occurrence of surface thermal inversions and with mixing heights (r = ?0.57 to ?0.72). Organic and elemental carbon ratios also indicated that Pedregal is impacted by secondary aerosols during the afternoon hours.  相似文献   

20.
The objective of this study was to investigate the organic composition of wood smoke emissions and ambient air samples in order to determine the wood smoke contribution to the ambient air pollution in the residential areas. From November 2005 to March 2006 particle-phase PM10 samples were collected in the residential town Dettenhausen surrounded by forests near Stuttgart in southern Germany. Samples collected on pre-baked glass fibre filters were extracted using toluene with ultrasonic bath and analysed by gas chromatography mass spectrometry (GC-MS). 21 polycyclic aromatic hydrocarbons (PAH) including 16 USEPA priority pollutants, different organic wood smoke tracers, primarily 21 species of syringol and guaiacol derivatives, levoglucosan and its isomers mannosan, galactosan and dehydroabietic acid were detected and quantified in this study. The concentrations of these compounds were compared with the fingerprints of emissions from hardwood and softwood combustion carried out in test facilities at Universitaet Stuttgart and field investigations at a wood stove during real operation in Dettenhausen. It was observed that the combustion derived PAH was detected in higher concentrations than other PAH in the ambient air PM10 samples. Syringol and its derivatives were found in large amounts in hardwood burning but were not detected in softwood burning emissions. On the other hand, guaiacol and its derivatives were found in both softwood and hardwood burning emissions, but the concentrations were higher in the softwood smoke compared to hardwood smoke. So, these compounds can be used as typical tracer compounds for the different types of wood burning emissions. In ambient air samples both syringol and guaiacol derivatives were found which indicates the wood combustion contribution to the PM load in such residential areas. Levoglucosan was detected in high concentrations in all ambient PM10 samples. A source apportionment modelling, Positive Matrix Factorization (PMF) was implemented to quantify the wood smoke contribution to the ambient PM10 bound organic compounds in the residential area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号