首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical surveys of snow were carried out in the upper reaches of the Kunnes River, a tributary of the Yili River in East Tienshan Mountains, China. Some surprisingly high values of sodium and potassium (K++Na+) ranging from 4.44 to 8.99 mg/l compared with other data from neighboring areas are detected. Moreover, some relative high values of SO42− with mean concentration 15.8 mg/l for new snow and 14.40 mg/l for deposited snow, ranging from 10.43 to 23.71 mg/l are also found. Therefore, it is inferred that the sodium and potassium (K++Na+) are in the forms of sulfate and that the sources of the sulfate are deserts and some dried lakes in Central Asia. It is also found that there is obviously spatial variation of ions such as K++Na+, Ca2+, SO42− and HCO3. The concentrations of K++Na+ and SO42−, and that of Ca2+ and HCO3 have similar spatial pattern. The temporal pattern of ion concentration of new snow is considered to be mainly controlled by the depth and area of snow cover in the study area and in the areas to the west.  相似文献   

2.
Major aspects of the circulation through the atmospheric environment of sulfur pollutants have been estimated, including source magnitudes, residual atmospheric concentrations, and scavenging processes. The compounds considered include SO2 and H2S, as well as sulfates. One-third of the sulfur reaching the atmosphere comes from pollutant sources, mainly as SO2. Within the atmosphere there is a net transfer of sulfur from land to ocean areas. Pollutant sources annually amount to 73 × 106 tons as sulfur while natural sources amount to 142 × 106 tons, mainly as H2S and sulfate sea spray. More than two thirds of the natural and pollutant sulfur emissions occur in the northern hemisphere. When only pollutant emissions are considered, 93 per cent occur in the northern hemisphere.  相似文献   

3.
A steady state mesoscale model developed to predict primary SO2 concentrations from a single point source is presented. The model was validated with data from the Midwest Interstate Sulfur Transport and Transformation (MISTT) project, with root mean square errors of 9.69 μg m?3 and 0.42 μg m?3 for SO2 and SO4 respectively. Wet deposition (washout and rainout), eddy dispersivity, dry deposition of SO2 and mean wind speed were found to be the most important factors controlling sulfur dioxide and sulfate concentrations. Estimation of precipitation acidity was then carried out using scavenging theory. The greatest potential acidification occurred approximately 200 km from the source along plume centerllne, which indicates a rather local effect as opposed to a long distance effect. The cross-plume influence was up to 60 km in width at a distance of 400 km from the source.  相似文献   

4.
Major inorganic ions, pH, total N and P were analyzed in eight arctic snow samples collected in March, April and May 1984 during an expedition in the North Pole region (N83018′ W73006′ - N89.9600). The concentrations of the ions in different samples were close to each other and the values obtained seem to be representative for mean concentrations in the snow. In the sample taken from the North Pole the pH value was 5.00 while the H+-, SO2?4- and NO?3-concentrations were 0.24, 6.2 and 4.3 μmol/l, respectively. The concentrations are exceedingly low and agree very well with earlier results from arctic snow samples.  相似文献   

5.
Scavenging ratios for sulfate on the south-central Greenland Ice Sheet at Dye 3 have been computed for 1982–1984. The ratios are based on measured concentrations in snow and estimated concentrations in air. The snow data have been obtained from snowpit samples which were dated by comparing δ18O values with meteorological records. The airborne concentrations have been estimated from data collected at coastal Greenland sites. Scavenging ratios resulting from this process are found to be in the range ~ 100–200 in winter and ~ 200–400 in summer. The greater summer values are attributed to increased riming, resulting in scavenging of sulfate as condensation nuclei and possible oxidation of SO2 in cloudwater droplets. Using the airborne and snowpit concentrations with assumed dry deposition velocities of 0.02–0.05 cms, it is estimated that dry deposition is responsible for roughly 10–30% of the total sulfate deposition on a year-round basis at Dye 3. During portions of the Arctic winter, however, when the snow is unrimed and when there is less precipitation, dry deposition may be dominant.  相似文献   

6.
A study was carried out to investigate the emissions of SO2 and primary sulfate materials (H2SO4 and inorganic particulate matter) from a boiler burning fossil fuel and using a wet-limestone scrubber for SO2 removal. Experiments were designed to assess the scrubbing efficiency for SO2 and sulfate, as well as the potential for scrubber liquor reentrainment. The boiler studied was an 820 MW cyclone-fired unit equipped with a wet, limestone scrubber, consisting of eight two-stage venturi-absorber modules designed to treat a flue gas flow rate of 2,760,000 acfm. The boiler fuel was a low-grade sub-bituminous coal with ash and sulfur contents of 25 and 5%, respectively. Multiple-sampling methods were employed concurrently on the inlet and outlet of a candidate absorber module to measure SO2, total water-soluble sulfate, and free H2SO4. Samples were collected during three field experiments from September 1977 through April 1978. The average SO2 scrubbing efficiency was 76% and was observed to decrease over the 5 day operation/maintenance cycle of the module. The total water-soluble sulfate input to the scrubber amounted to approximately 1% of the total sulfur oxides and was composed of a 5:1 ratio of H2SO4 to particulate sulfate. The total sulfate scrubbing efficiency, averaging about 29%, was invariant with respect to SO2 removal. The sulfate emissions measured in the scrubber exit gas consisted of about 85 % H2SO4 as a fine aerosol. Mass emissions of acid and particulate sulfate were calculated as 1730 Ib/hr and 305 Ib/hr, respectively.  相似文献   

7.
Experiments have been conducted to measure vehicle sulfate emissions, by vehicle type, at two tunnels on the Pennsylvania Turnpike. A satisfactory balance between estimated fuel sulfur consumption and observed emissions of sulfur compounds corrected for ambient-air contributions was obtained. This work started in 1974 before the introduction of catalyst-equipped automobiles and continued into 1976. The sulfate contributed by vehicles even in the tunnels was found to be generally modest relative to rural ambient sulfate levels. Average sulfate emission rates were found to be ~30 mg/km (50 mg/mi) from heavy-duty Diesel trucks, <15 mg/km from catalyst-equipped cars (probably in the range 4 to 7 mg/km), and probably <1 mg/km from non-catalyst cars. The overall SO2 —* SO4 -2 conversion of the vehicle emissions was 2 %.  相似文献   

8.
Atmospheric aerosol particles in urban and mountain areas around Lhasa city (29.65°N, 91.13°E) in the Tibetan Plateau were collected in the summers of 1998 and 1999. The particles were analyzed with electron microscopes and an energy dispersive X-ray spectrometer. Individual particle morphology, elemental composition and mixture of sulfate and nitrate were investigated. In the urban area, soot particles emitted from vegetation burning were dominant. These particles were characterized by chain or aggregate morphologies, and an elemental composition of potassium and sulfur. Such particles were frequently detected in mountain areas out of the city, where they formed droplets acting as condensation nuclei. Quantitative estimation indicated that sulfur was accumulated onto the soot particles during their dispersion from the urban area to mountain areas. Sulfate and nitrate detections indicated that soot particles collected in the urban area did not contain nitrate and BaCl2-reactive sulfate, which revealed that the combination of sulfur and potassium in the particles was not K2SO4. In contrast, the particles dispersed to mountain areas contained BaCl2-reactive sulfate and some contained nitrate, suggesting that soot particles emitted from the urban area could increase the buffering capacity of aerosol particles and enhance the formation of particulate sulfate through heterogeneous conversion in the Tibetan atmosphere.  相似文献   

9.
This paper is intended to be used by specialists engaged in air and precipitation quality management on regional and continental scales. Major goals are to establish definition, methodology and specific values of background air and precipitation quality for sulfur (S) and nitrogen (N) species to be used in practical applications of air resources management. Major findings are the following:
  • 1.(a) 69% of SO2 and 63 % of NO2 concentration over Europe originate from continental scale anthropogenic sources,
  • 2.(b) 15% of precipitation sulfate and 11% of precipitation nitrate over Europe are contributed by hemispheric background,
  • 3.(c) hemispheric background pollution values for Europe were found as 1.25 μg (SO2-S)m−3, 0.80 μg (SO42−-S)m−3, 0.157 mg (SO42−-S)l−1 and 0.04 mg (NO3-N)ℓ−1.
  相似文献   

10.
The concentrations and characteristics of the major components in ambient fine particles in the urban city of Kaohsiung, Taiwan were measured and evaluated. PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and analyzed for water-soluble ion species using ion chromatography and for carbonaceous species using an elemental analyzer. It was found that SO42−, NO3, and NH4+ dominated the identifiable components, and occupied 42.2% and 90.0% of PM2.5 mass and total dissolved ionic concentrations. Carbonaceous species (organic and elemental carbon) accounted for 20.8% of PM2.5. The secondary aerosol formed through the NO2/SO2 gas-to-particle conversion was estimated based on the sulfur/nitrogen oxidation ratio (SOR/NOR), i.e., sulfate sulfur/nitrate nitrogen to total sulfur/total nitrogen. The average SOR and NOR values were 0.25 and 0.07 for PM2.5. The high SOR and NOR values obtained in this study suggested that there existed a secondary formation of SO42− from SO2 along with NO3 from NO2 in the atmosphere. The secondary organic carbon formed through the volatile organic compound gas-to-particle conversion was estimated from the minimum ratio between organic and elemental carbon obtained in this study, and was found to constitute 40.0% of the total organic carbon for PM2.5 (6.6% of the particle mass). The results obtained in this study suggest that the formation of secondary aerosols due to conversion from gaseous precursors is significant and important in urban locations.  相似文献   

11.
The precision and accuracy of the determination of particu-late sulfate and fluoride, and gas phase SO2 and HF are estimated from the results obtained from collocated replicate samples and from collocated comparison samples for high-and low-volume filter pack and annular diffusion denuder samplers. The results of replicate analysis of collocated samples and replicate analyses of a given sample for the determination of spherical aluminosilicate fly ash particles have also been compared. Each of these species is being used in the chemical mass balance source apportionment of sulfur oxides in the Grand Canyon region as part of Project MOHAVE, and the precision and accuracy analyses given in this paper provide input to that analysis. The precision of the various measurements reported here is ±1.8 nmol/m3 and ±2.5 nmol/m3 for the determination of SO2 and sulfate, respectively, with an annular denuder. The precision is ±0.5 nmol/m3 and ±2.0 nmol/m3 for the determination of the same species with a high-volume or low-volume filter pack. The precision for the determination of the sum of HF(g) and fine particulate fluoride is ±0.3 nmol/m3. The precision for the determination of aluminosilicate fly ash particles is ±100 particles/m3. At high concentrations of the various species, reproducibility of the various measurements is ±10% to ±14% of the measured concentration. The concentrations of sulfate determined using filter pack samplers are frequently higher than those determined using diffusion denuder sampling systems. The magnitude of the difference (e.g., 2-10 nmol sulfate/m3) is small, but important relative to the precision of the data and the concentrations of particulate sul-fate present (typically 5-20 nmol sulfate/m3). The concentrations of SO2(g) determined using a high-volume cascade impactor filter pack sampler are correspondingly lower than those obtained with diffusion denuder samplers. The concentrations of SOx (SO2(g) plus particulate sulfate) determined using the two samplers during Project MOHAVE at the Spirit Mountain, NV, and Hopi Point, AZ, sampling sites were in agreement. However, for samples collected at Painted Desert, AZ, and Meadview, AZ, the concentrations of SOx and SO2(g) determined with a high-volume cascade impactor filter pack sampler were frequently lower than those determined using a diffusion denuder sampling system. These two sites had very low ambient relative humidity, an average of 25%. Possible causes of observed differences in the SO2(g) and sulfate results obtained from different types of samplers are given.  相似文献   

12.
通过间歇曝气形成微氧环境让SRB和CSB实现共生,使含硫酸盐有机废水中硫酸根最终转化成单质硫达到脱硫目的.研究考察了曝气量对SRB还原和CSB氧化的影响,确定了合适的曝气强度和水力停留时间,使得单质硫占系统内总硫比值最大.实验结果显示,在进水COD/SO42-=2000/1500 mg/L、曝气开关时间为2 s/2 min、生化时间为10 h时,单质硫产率最大,为89.53%,SO42-浓度降至最低值72.7 mg/L,还原率达95.1%,此时脱硫效果较好.  相似文献   

13.
Factor analysis comparisons between the MAP3S network and Minnesota precipitation chemistry data show marked differences. An assessment of ambient aerosol and precipitation chemistry data obtained at several Colorado and Minnesota sites suggests that natural source inputs may contribute to the sulfate observed in ambient aerosol and at least partly, explain the marked differences of Minnesota and Colorado precipitation chemistry data from that of MAP3S (eastern U.S.). However, a recently proposed mechanism, SO2 to SO4 conversion on the surface of dust particles, may be more important than natural sources in explaining western and midwestern precipitation chemistry data. It is concluded that these predominantly non-acidic SO4 sources may explain the poor association between the H+ and SO4 in many western and some midwestern precipitation chemistry data sets.  相似文献   

14.
Stable sulfur isotope ratios and major ions in bulk snowpack samples were monitored at a network of 52 high-elevation sites along and near the Continental Divide from 1993 to 1999. This information was collected to better define atmospheric deposition to remote areas of the Rocky Mountains and to help identify the major source regions of sulfate in winter deposition. Average annual δ34S values at individual sites ranged from +4.0 to +8.2‰ and standard deviations ranged from 0.4 to 1.6‰. The chemical composition of all samples was extremely dilute and slightly acidic; average sulfate concentrations ranged from 2.4 to 12.2 μeq l−1 and pH ranged from 4.82 to 5.70. The range of δ34S values measured in this study indicated that snowpack sulfur in the Rocky Mountains is primarily derived from anthropogenic sources. A nearly linear relation between δ34S and latitude was observed for sites in New Mexico, Colorado, and southern Wyoming, which indicates that snowpack sulfate in the southern part of the network was derived from two isotopically distinct source regions. Because the major point sources of SO2 in the region are coal-fired powerplants, this pattern may reflect variations in the isotopic composition of coals burned by the plants. The geographic pattern in δ34S for sites farther to the north in Wyoming and Montana was much less distinct, perhaps reflecting the paucity of major point sources of SO2 in the northern part of the network.  相似文献   

15.
The pollution of the atmosphere by sulfur dioxide is one of the gravest of all in public nuisance problems, especially in the industrial regions. A practically applicable method in industry for the removal of sulfur dioxide has been studied. The Kiyoura-T .I .T. process utilizes the oxidation method to convert S02 of the flue gas to S03 in the presence of vanadium oxide. A limited amount of water vapor present in the flue gas reacts with S03 to form H2SO4. Ammonia is then introduced to the gaseous mixture, which is now at the suitable temperature, to form ammonium sulfate. Conditions are controlled to produce ammonium sulfate of the right size to produce aggregate that may be removed by a dry cyclone separator.  相似文献   

16.
Winter rains have lower NO3 levels but higher SO2−4 levels than snows in the NE United States. In this study, four years of winter precipitation data from SE Michigan were examined to help understand these differences. Although NO3 levels were indeed higher in snow than winter rain, the higher concentrations could be attributed to the generally lower precipitation depths associated with snow events than with rain events. The NO3 concentrations are inversely correlated with precipitation depth. There was no evidence that snow scavenged HNO3 in the air more efficiently than rain.Conversely, SO2−4 was far higher in winter rain than in snow. This could not be explained in terms of ground-level ambient S concentrations or the wind direction from which the storm originated. However, the cloud temperatures were high enough in the case of rain to suggest that the cloud hydrometeors could have been present as liquid droplets rather than ice crystals. The SO2−4 concentrations of the precipitation were highly correlated with the temperatures of the cloud layers. The data suggest that SO2 is incorporated and oxidized to SO2−4 in clouds most efficiently when the hydrometeors are present as liquid droplets. The fact that NO3does not show the same relationship suggests that incorporation of N species into cloud water followed by oxidation is not as important a process for N as for S.  相似文献   

17.
ABSTRACT

The Clean Air Status and Trends Network (CASTNet) was implemented by the U.S. Environmental Protection Agency (EPA) in 1991 in response to Title IX of the Clean Air Amendments of 1990, which mandated the deployment of a national ambient air monitoring network to track progress of the implementation of emission reduction programs in terms of deposition, air quality, and changes to affected ecosystems. CASTNet evolved from the National Dry Deposition Network (NDDN). CASTNet currently consists of 45 sites in the eastern United States and 28 sites in the West. Each site measures sulfur dioxide (SO2), nitric acid (HNO3), particle sulfate (SO4 =), particle nitrate (NO3 - ), and ozone. Nineteen sites collect precipitation samples. NDDN/CASTNet uses a uniform set of site-selection criteria which provides the data user with consistent measures to compare each site. These criteria also ensure that, to the extent possible, CASTNet sites are located away from local emission sources.

This paper presents an analysis of SO2 and SO4 = concentration data collected from 1987 through 1996 at rural NDDN/CASTNet sites. Annual and seasonal variability is examined. Gradients of SO2 and SO4 = are discussed. The variability of the atmospheric mix of SO2 and SO4 = is explored spatially and seasonally. Data from CASTNet are also compared to SO2 and SO4 = data from concurrent monitoring studies in rural areas.  相似文献   

18.
ABSTRACT

Receptor-based chemical mass balance (CMB) analysis techniques are designed to apportion species that are conserved during pollutant transport using conserved source profiles. The techniques will fail if non-conservative species (or profiles) are not properly accounted for in the CMB model. The straightforward application of the CMB model developed for Project MOHAVE using regional profiles resulted in a significant under-prediction of total sulfate oxides (SOx, SO2 plus fine particulate sulfate) for many samples at Meadview, AZ. In addition, for these samples the concentration of the inert tracer emitted from the MOHAVE Power Project (MPP), ocPDCH, was also under-predicted. A second-generation model has been developed which assumes that separation of particles and SO2 can occur in the MPP plume during nighttime stable plume conditions. This second-generation CMB model accounts for all SOx present at the various receptor sites. In addition, the concentrations of ocPDCH and the presence of other inert tracers of emission from regional sources are accurately predicted. The major source of SOx at Meadview was the MPP, but the major source of sulfate at this site was the Las Vegas urban area. At Hopi Point in the Grand Canyon, the Baja California region (Imperial Valley and northwestern Mexico) was the major source of both SOx and sulfate.  相似文献   

19.
The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85–98CK auxiliary power unit (APU) were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuel Experiment (AAFEX) using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements were conducted by multiple research organizations for sulfur dioxide (SO2), total hydrocarbons (THC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), speciated gas-phase emissions, particulate matter (PM) mass and number, black carbon, and speciated PM. In addition, particle size distribution (PSD), number-based geometric mean particle diameter (GMD), and smoke number were also determined from the data collected. The results of the research showed PM mass emission indices (EIs) in the range of 20 to 700 mg/kg fuel and PM number EIs ranging from 0.5?×?1015 to 5?×?1015 particles/kg fuel depending on engine load and fuel type. In addition, significant reductions in both the SO2 and PM EIs were observed for the use of the FT fuel. These reductions were on the order of ~90% for SO2 and particle mass EIs and ~60% for the particle number EI, with similar decreases observed for black carbon. Also, the size of the particles generated by JP-8 combustion are noticeably larger than those emitted by the APU burning the FT fuel with the geometric mean diameters ranging from 20 to 50 nm depending on engine load and fuel type. Finally, both particle-bound sulfate and organics were reduced during FT-2 combustion. The PM sulfate was reduced by nearly 100% due to lack of sulfur in the fuel, with the PM organics reduced by a factor of ~5 as compared with JP-8.

Implications: The results of this research show that APUs can be, depending on the level of fuel usage, an important source of air pollutant emissions at major airports in urban areas. Substantial decreases in emissions can also be achieved through the use of Fischer Tropsch (FT) fuel. Based on these results, the use of FT fuel could be a viable future control strategy for both gas- and particle-phase air pollutants.  相似文献   

20.
From 1990 to 1994 at Alert, Nunavut, Canada, weekly snow samples were collected under low wind conditions to avoid contamination by blowing snow. They were analysed for major ions, Br, and the organic ions methylsulphonate, formate, acetate and propionate. In the Arctic, where annual precipitation is low and blowing snow is common, these observations are unique. On an equivalent weight basis, acids and sea salt in snowfall are mixed approximately equally from December to January but from March to May acids dominate. The acidity of snowfall increases progressively throughout the winter to a May peak of ∼16 μeq l−1. SO42−, Br, and the organic acids acetate, and propionate peak in snowfall after polar sunrise indicate the influence of enhanced photochemical reactions. The greater enrichment of halides relative to sea salt Na+ in snow compared to aerosols indicates that gaseous uptake by snowflakes is important in the removal of these substances from the atmosphere and their deposition on to the Earth's surface. There is a marked difference between the seasonal variation of enrichment of Cl and Br in snow. The latter show a marked increase after polar sunrise while the former does not. These results provide valuable baseline information on the ionic content of fresh snowfall to be used in understanding the results of snowpack chemistry and post-depositional process studies conducted in the high Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号