首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Gasoline use is known at the state level from sales tax data, and may be disaggregated to individual air basins. A fuel-based motor vehicle CO inventory was calculated for the South Coast Air Basin in California for summer 1991. Emission factors were calculated from remote sensing measurements of more than 70,000 in-use vehicles. Stabilized exhaust emissions of CO were estimated to be 4400 tons/day for cars and 1500 tons/day for light-duty and medium- duty trucks, with an estimated uncertainty of ±20% for cars and ±30% for trucks. Total motor vehicle CO emissions, including incremental start emissions and emissions from heavy-duty vehicles were estimated to be 7900 tons/day. Fuelbased inventory estimates were greater than those of California's MVEI 7F model by factors of 2.2 for cars and 2.6 for trucks. A draft version of California's MVEI 7G model, which includes increased contributions from high-emitting vehicles and off-cycle emissions, predicted CO emissions which closely matched the fuel-based inventory. An analysis of CO mass emissions as a function of vehicle age revealed that cars and trucks which were ten or more years old were responsible for 58% of stabilized exhaust CO emissions from all cars and trucks.  相似文献   

2.
Outdoor fires, such as wildfires and prescribed burns, can emit substantial amounts of particulate matter and other pollutants into the atmosphere. In Texas, an inventory of forest, grassland and agricultural burning activities revealed that fires consumed vegetation on 1.6 and 1.7 million acres of land, in 1996 and 1997, respectively. Emissions from the fires were estimated based on survey and field data on acres burned and land cover and literature data on fuel consumption and emission factors. Fire data were allocated spatially by county and temporally by month. While fire events can cause high transient air pollutant concentrations, for most criteria pollutants, the fire emissions were a relatively small fraction of the annual emission inventory for the State. For fine particulate matter, however, the annual emission estimates were 40,000 tons/yr, which is likely to represent a significant fraction of the State's emission inventory, especially in the counties where the emissions are concentrated.  相似文献   

3.
Exposure to traffic emission is harmful to human health. Emission inventories are essential to public health policies aiming at protecting human health, especially in areas with incomplete or nonexistent air pollution monitoring networks. In Brazil, for example, only 1.7% of municipal districts have a monitoring network, and only a few studies have reported data on vehicle emission inventories. No studies have presented emission inventories by municipality. In this study, we predicted vehicular emissions for 5570 municipal districts in Brazil during the period 2001–2012. We used a top-down method to estimate emissions. Carbon dioxide (CO2) is the pollutant with the highest emissions, with approximately 190 million tons per year during the period 2001–2012). For the other traffic-related pollutants, we predicted annual emissions of 1.5 million tons for carbon monoxide (CO), 1.2 million tons of nitrogen oxides (NOx), 209,000 tons of nonmethane hydrocarbons (NMHC), 58,000 tons of particulate matter (PM), and 42,000 tons for methane (CH4). From 2001 to 2012, CO, NMHC, and PM emissions decreased by 41, 33, and 47%, respectively, whereas those CH4, NOx, and CO2 increased by 2, 4, and 84%, respectively. We estimated uncertainties in our study and found that NOx was the pollutant with the lowest percentage difference, 8%, and NMHC with the highest one, 30%. For CO, CH4, CO2, and PM, the values were 22, 14, 21, and 20%, respectively. Finally, we found that during 2001 and 2012 emissions increased in the Northwest and Northeast. In contrast, pollutant emissions, except for CO2, decreased in the Southeast, South, and part of Midwest. Our predictions can be critical to efforts developing cost-effective public policies tailored to individual municipal districts in Brazil.

Implications: Emission inventories may be an alternative approach to provide data for air quality forecasting in areas where air quality data are not available. This approach can be an effective tool in developing spatially resolved emission inventories.  相似文献   


4.
Air pollution caused by ship exhaust emission is receiving more and more attention. The physical and chemical properties of fuels, such as sulfur content and PAHs content, potentially had a significant influence on air pollutant emissions from inland vessels. In order to investigate the effects of fuel qualities on atmospheric pollutant emissions systematically, a series of experiments was conducted based on the method of actual ship testing. As a result, SO2, PM and NOx emission rates all increased with the increase of main engine rotating speed under cruise mode, while PM and NOx emission factors were inversely proportional to the main engine rotating speed. Moreover, SO2 emission factor changed little with the increase of the main engine rotating speed. In summary, the fuel-dependent specific emission of SO2 was a direct reflection of the sulfur content in fuel. The PM emission increased with the increase of sulfur content and PAHs content in fuel. However, fuel qualities impacted little on NOx emissions from inland vessels because of NOx formation mechanisms and conditions.

Implications: Ship activity is considered to be the third largest source of air pollution in China. In particular, air pollutants emitted from ships in river ports and waterways have a direct impact on regional air quality and pose threat on the health of local residents owing to high pollutants concentration and poor air diffusion. The study on the relationship between air pollutant emissions and fuel quality of inland vessels can provide foundational data for local authority to formulate reasonable and appropriate policies for reducing atmospheric pollution due to inland vessels.  相似文献   


5.
以68台燃油锅炉(≤10.5 MW)NO_x排放实测数据为基础,通过统计分析方法,研究了NO_x的排放特征;通过对比分析,探讨了我国燃油锅炉NO_x排放控制与管理现状,讨论了进一步加强我国燃油锅炉NO_x排放管理控制的可能性与可行性,并提出了相应的管理控制建议。结果表明,NO_x平均排放浓度为318.2 mg/m~3,基于燃料消耗量的平均排放因子为4.4 kg/t,基于燃料发热量的平均排放因子为102.8 ng/J,基于燃料氮含量的平均排放因子为2.1 mg/mg;建议采取分阶段控制的方式,逐步提高NO_x排放限制,从而实现控源减排目标。  相似文献   

6.
以68台燃油锅炉(≤10~MW)NOx排放实测数据为基础,通过统计分析方法,研究了NOx的排放特征;通过对比分析,探讨了我国燃油锅炉NOx排放控制与管理现状,讨论了进一步加强我国燃油锅炉NOx排放管理控制的可能性与可行性,并提出了相应的管理控制建议。结果表明,NOx平均排放浓度为318.2mg/m^3,基于燃料消耗量的平均排放因子为4.4kg/t,基于燃料发热量的平均排放因子为102.8ng/J,基于燃料氮含量的平均排放因子为2.1mg/mg;建议采取分阶段控制的方式,逐步提高NOx排放限制,从而实现控源减排目标。  相似文献   

7.
A fuel-based assessment of off-road diesel engine emissions   总被引:1,自引:0,他引:1  
The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed. Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 x 10(9) kg NOx and 1.2 x 10(8) kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including agriculture, construction, logging, and mining equipment, but not locomotives or marine vessels) was responsible for 10% of mobile source NOx emissions nationally, whereas on-road diesel vehicles contributed 33%.  相似文献   

8.
The Traffic Air Quality (TAQ) model is a simple tool to estimate traffic fine particulate emissions on roadways (g/km) and can be used for both real-time analysis and for localized conformity analysis ("hot-spot" analysis for nonattainment areas) as defined by 40 CFR 93.123. This paper is a follow-up to a study published earlier regarding the development of the TAQ model. This paper shows how local air quality levels can be a factor in traffic management in nonattainment areas. Similar to the industrial source quotas measured in tons per year, it is proposed that road segments are to be assigned emission quotas (or TAQ indices) measured in pollutant mass emitted per road length (g/km) above which traffic-measures have to be taken to reduce the fine-particulates emissions on such road links. The TAQ model as well as traffic-rerouting measures along with the Intelligent Transportation System (ITS) protocols can be used to have a real-time control of the traffic conditions along expressways to maintain the fine-particulates emissions below the quota assigned per road link and consequently improving the over all local air quality in nonattainment areas.  相似文献   

9.
The intake fraction (iF) has been defined as the integrated incremental intake of a pollutant released from a source category or region summed over all exposed individuals. In this study we evaluated the iFs in the population of Europe for emissions of anthropogenic primary fine particulate matter (PM2.5) from sources in Europe, with a more detailed analysis of the iF from Finnish sources. Parameters for calculating the iFs include the emission strengths, the predicted atmospheric concentrations, European population data, and the average breathing rate per person. Emissions for the whole of Europe and Finland were based on the inventories of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario (FRES) model, respectively. The atmospheric dispersion of primary PM2.5 was computed using the regional-scale dispersion model SILAM. The iFs from Finnish sources were also computed separately for six emission source categories. The iFs corresponding to the primary PM2.5 emissions from the European countries for the whole population of Europe were generally highest for the densely populated Western European countries, second highest for the Eastern and Southern European countries, and lowest for the Northern European and Baltic countries. For the entire European population, the iF values varied from the lowest value of 0.31 per million for emissions from Cyprus, to the highest value of 4.42 per million for emissions from Belgium. These results depend on the regional distribution of the population and the prevailing long-term meteorological conditions. Regarding Finnish primary PM2.5 emissions, the iF was highest for traffic emissions (0.68 per million) and lowest for major power plant emissions (0.50 per million). The results provide new information that can be used to find the most cost-efficient emission abatement strategies and policies.  相似文献   

10.
Abstract

The Traffic Air Quality (TAQ) model is a simple tool to estimate traffic fine particulate emissions on roadways (g/km) and can be used for both real-time analysis and for localized conformity analysis (“hot-spot” analysis for nonattainment areas) as defined by 40 CFR 93.123. This paper is a follow-up to a study published earlier regarding the development of the TAQ model. This paper shows how local air quality levels can be a factor in traffic management in nonattainment areas. Similar to the industrial source quotas measured in tons per year, it is proposed that road segments are to be assigned emission quotas (or TAQ indices) measured in pollutant mass emitted per road length (g/km) above which traffic-measures have to be taken to reduce the fine-particulates emissions on such road links. The TAQ model as well as traffic-rerouting measures along with the Intelligent Transportation System (ITS) protocols can be used to have a real-time control of the traffic conditions along expressways to maintain the fine-particulates emissions below the quota assigned per road link and consequently improving the over all local air quality in nonattainment areas.  相似文献   

11.
For the past several years, EPA has been measuring particulate emissions from a variety of heavy-duty diesel engines through contracts with Southwest Research Institute. Particulate emissions samples have been collected using an exhaust splitter to divert a fraction of the engine exhaust into a standard dilution tunnel. A small fraction of the diluted exhaust from the tunnel is pulled through a filter from which particulate mass and, in some cases, organic content of the particulate is determined. This paper discusses the sampling system and gives particulate emission factors that have been computed from truck and bus fuel consumption data as well as average truck and bus speed data from New York and Los Angeles (freeway and nonfreeway usage). Average particulate emission test results (steady state tests) for 2-stroke engines were 4.74 g/kg fuel and for 4-stroke engines were 2.64 g/kg fuel. Using average particulate emissions results, a particulate emission factor range of 0.8 to 1.3 g/km was computed. Nationwide diesel particulate emissions were calculated to be 88,000 metric tons per year.  相似文献   

12.
ABSTRACT

The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed.

Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 × 109 kg NOx and 1.2 x 108 kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including  相似文献   

13.
To improve the accuracy and applicability of vehicular emission models, this study proposes a speed and vehicle-specific power (VSP) modeling method to estimate vehicular emissions and fuel consumption using data gathered by a portable emissions monitoring system (PEMS). The PEMS data were categorized into discrete speed-VSP bins on the basis of the characteristics of vehicle driving conditions and emissions in Chinese cities. Speed-VSP modal average rates of emissions (or fuel consumption) and the time spent in the corresponding speed-VSP bins were then used to calculate the total trip emissions (or fuel consumption) and emission factors (or fuel economy) under specific average link speeds. The model approach was validated by comparing it against measured data with prediction errors within 20% for trip emissions and link-speed-based emission factors. This analysis is based on the data of light-duty gasoline vehicles in China; however, this research approach could be generalized to other vehicle fleets in other countries. This modeling method could also be coupled with traffic demand models to establish high-resolution emissions inventories and evaluate the impacts of traffic-related emission control measures.  相似文献   

14.
Abstract

This paper reports on the estimated potential air emissions, as found in air permits and supporting documentation, for seven of the first group of precommercial or “demonstration” cellulosic ethanol refineries (7CEDF) currently operating or planning to operate in the United States in the near future. These seven refineries are designed to produce from 330,000 to 100 million gal of ethanol per year. The overall average estimated air emission rates for criteria, hazardous, and greenhouse gas pollutants at the 7CEDF are shown here in terms of tons per year and pounds per gallon of ethanol produced. Water use rates estimated for the cellulosic ethanol refineries are also noted. The air emissions are then compared with similar estimates from a U.S. cellulosic ethanol pilot plant, a commercial Canadian cellulosic ethanol refinery, four commercial U.S. corn ethanol refineries, and U.S. petroleum refineries producing gasoline. The U.S. Environmental Protection Agency (EPA) air pollution rules that may apply to cellulosic ethanol refineries are also discussed. Using the lowest estimated emission rates from these cellulosic ethanol demonstration facilities to project air emissions, EPA’s major source thresholds for criteria and hazardous air pollutants might not be exceeded by cellulosic ethanol refineries that produce as high as 25 million gal per year of ethanol (95 ML). Emissions are expected to decrease at cellulosic ethanol refineries as the process matures and becomes more commercially viable.  相似文献   

15.
Abstract

Long-haul freight trucks typically idle for 2000 or more hours per year, motivating interest in reducing idle fuel use and emissions using auxiliary power units (APUs) and shore-power (SP). Fuel-use rates are estimated based on electronic control unit (ECU) data for truck engines and measurements for APU engines. Engine emission factors were measured using a portable emission measurement system. Indirect emissions from SP were based on average utility grid emission factors. Base engine fuel use and APU and SP electrical load were analyzed for 20 trucks monitored for more than 1 yr during 2.76 million mi of activity within 42 U.S. states. The average base engine fuel use varied from 0.46 to 0.65 gal/hr. The average APU fuel use varied from 0.24 to 0.41 gal/hr. Fuel-use rates are typically lowest in mild weather, highest in hot or cold weather, and depend on engine speed (revolutions per minute [RPM]). Compared with the base engine, APU fuel use and emissions of carbon dioxide (CO2) and sulfur dioxide (SO2) are lower by 36–47%. Oxides of nitrogen (NOx) emissions are lower by 80–90%. Reductions in particulate matter (PM), carbon monoxide (CO), and hydrocarbon emissions vary from approximately 10 to over 50%. SP leads to more substantial reductions, except for SO2. The actual achievable reductions will be lower because only a fraction of base engine usage will be replaced by APUs, SP, or both. Recommendations are made for reducing base engine fuel use and emissions, accounting for variability in fuel use and emissions reductions, and further work to quantify real-world avoided fuel use and emissions.  相似文献   

16.
The existing and emerging international and European policy framework for the reduction of ship exhaust emissions dictates the need to produce reliable national, regional and global inventories in order to monitor emission trends and consequently provide the necessary support for future policy making. Furthermore, the inventories of ship exhaust emissions constitute the basis upon which their external costs are estimated in an attempt to highlight the economic burden they impose upon the society and facilitate the cost–benefit analysis of the proposed emission abatement technologies, operational measures and market-based instruments prior to their implementation.The case of Greece is of particular interest mainly because the dense ship traffic within the Greek seas directly imposes the impact of its exhaust emission pollutants (NOx, SO2 and PM) upon the highly populated, physically sensitive and culturally precious Greek coastline, as well as upon the land and seas of Greece in general, whereas the contribution of Greece in the global CO2 inventory at a time of climatic change awareness cannot be ignored. In this context, this paper presents the contribution of Greece in ship exhaust emissions of CO2, NOx, SO2 and PM from domestic and international shipping over the last 25 years (1984–2008), utilizing the fuel-based (fuel sales) emission methodology. Furthermore, the ship exhaust emissions generated within the Greek seas and their externalities are estimated for the year 2008, through utilizing the fuel-based (fuel sales) approach for domestic shipping and the activity-based (ship traffic) approach for international shipping.On this basis, it was found that during the 1984 to 2008 period the fuel-based (fuel sales) ship emission inventory for Greece increased at an average annual rate of 2.85%. In 2008, the CO2, NOx, SO2 and PM emissions reached 12.9 million tons (of which 12.4 million tons of CO2) and their externalities were found to be around 3.1 billion euro. With regard to shipping within the Greek seas, the utilization of the fuel-based (fuel sales) analysis for domestic shipping and the activity-based (ship traffic) analysis for international shipping shows that the ship-generated emissions reached 7.4 million tons (of which 7 million tons of CO2) and their externalities were estimated at 2.95 billion euro. Finally, the internalization of external costs for domestic shipping was found to produce an increase of 12.96 and 2.71 euro per passenger and transported ton, respectively.  相似文献   

17.
Measurements of hydrocarbon (HC) emissions generated by the use of liquefied petroleum gas (LPG) in the metropolitan area of Guadalajara City (MAG) are presented in this work. Based on measurements in the course of distribution, handling, and consumption, an estimated 4407 tons/yr are released into the atmosphere. The three most important contributors to LPG emissions were refilling of LPG-fueled vehicles and commercial and domestic consumption. The MAG shows a different contribution pattern of LPG emission sources compared with that of the metropolitan area of Mexico City (MAMC). These results show that each megacity has different sources of emissions, which provides more accurate strategies in the handling procedures for LPG to decrease the impact in O3 levels. This work represents the first evaluation performed in Guadalajara City, based on current measurements, of the LPG contribution to polluting emissions.  相似文献   

18.
罗红成  廖琪  容誉 《环境污染与防治》2022,44(2):266-271,277
以2015年为基准年,基于拓展的STIRPAT模型预测2025年湖北省能源消费CO2和主要大气污染物排放量.通过设置基准(记为BAU)情景、低碳(记为LC)情景和强化低碳(记为ELC)情景3种控制情景,测算CO2和主要大气污染物的减排量,并运用污染物减排量交叉弹性法评价了CO2减排对主要大气污染物的协同效应.结果表明,...  相似文献   

19.
Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions Inventory (NEI). In the 2011 NEI, wildland fires, prescribed fires, and crop residue burning collectively were the largest source of PM2.5. This paper summarizes our 2014 NEI method to estimate crop residue burning emissions and grass/pasture burning emissions using remote sensing data and field information and literature-based, crop-specific emission factors. We focus on both the postharvest and pre-harvest burning that takes place with bluegrass, corn, cotton, rice, soybeans, sugarcane and wheat. Estimates for 2014 indicate that over the continental United States (CONUS), crop residue burning excluding all areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay occurred over approximately 1.5 million acres of land and produced 19,600 short tons of PM2.5. For areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay, biomass burning emissions occurred over approximately 1.6 million acres of land and produced 30,000 short tons of PM2.5. This estimate compares with the 2011 NEI and 2008 NEI as follows: 2008: 49,650 short tons and 2011: 141,180 short tons. Note that in the previous two NEIs rangeland burning was not well defined and so the comparison is not exact. The remote sensing data also provided verification of our existing diurnal profile for crop residue burning emissions used in chemical transport modeling. In addition, the entire database used to estimate this sector of emissions is available on EPA’s Clearinghouse for Inventories and Emission Factors (CHIEF, http://www3.epa.gov/ttn/chief/index.html).Implications: Estimates of crop residue burning and rangeland burning emissions can be improved by using satellite detections. Local information is helpful in distinguishing crop residue and rangeland burning from all other types of fires.  相似文献   

20.
A procedure is developed for determining costs to reduce air pollution emissions in a metropolitan area. Methods are. sufficiently general to be applicable in any region and sufficiently comprehensive to include analysis of all major sources, future trends, control limitations, and other factors of importance in a dynamic community. The analytical procedure examines relationships among emission inventories, regional growth, control trends, alternate control schemes, control costs, and optimum cost-effectiveness.

The cost analysis procedure is tested by application to the Delaware Valley. Costs are determined for reducing emissions to various levels between the years 1960 and 2000. Emissions from private automobiles are projected to decrease below the 1960 emission rate by 1980, at a cost of 150 million dollars per year. Stationary source emissions of sulfur dioxide and particulates can be reduced to 1960 levels by 1980 for 37 million dollars per year if "least cost" procedures are used (selective abatement). Uniform conversion to 0.5% sulfur fuel oil (equiproportional abatement) can effect a similar reduction in emissions for about 94 million dollars per year in 1980. Other cost analysis comparisons are made and projections to the year 2000 are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号