首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

Recently, a comprehensive air quality modeling system was developed as part of the Southern Appalachians Mountains Initiative (SAMI) with the ability to simulate meteorology, emissions, ozone, size- and composition-resolved particulate matter, and pollutant deposition fluxes. As part of SAMI, the RAMS/EMS-95/URM-1ATM modeling system was used to evaluate potential emission control strategies to reduce atmospheric pollutant levels at Class I areas located in the Southern Appalachians Mountains. This article discusses the details of the ozone model performance and the methodology that was used to scale discrete episodic pollutant levels to seasonal and annual averages. The daily mean normalized bias and error for 1-hr and 8-hr ozone were within U.S. Environment Protection Agency guidance criteria for urban-scale modeling. The model typically showed a systematic overestimation for low ozone levels and an underestimation for high levels. Because SAMI was primarily interested in simulating the growing season ozone levels in Class I areas, daily and seasonal cumulative ozone exposure, as characterized by the W126 index, were also evaluated. The daily ozone W126 performance was not as good as the hourly ozone performance; however, the seasonal ozone W126 scaled up from daily values was within 17% of the observations at two typical Class I areas of the SAMI region. The overall ozone performance of the model was deemed acceptable for the purposes of SAMI’s assessment.  相似文献   

3.
Abstract

It is important to understand the effects of emission controls on concentrations of ozone, fine particulate matter (PM2.5), and hazardous air pollutants (HAPs) simultaneously, to evaluate the full range of health, ecosystem, and economic effects. Until recently, the capability to simultaneously evaluate interrelated atmospheric pollutants (“one atmosphere” analysis) was unavailable to air quality managers. In this work, we use an air quality model to examine the potential effect of three emission reductions on concentrations of ozone, PM2.5, and four important HAPs (formaldehyde, acetaldehyde, acrolein, and benzene) over a domain centered on Philadelphia for 12-day episodes in July and January 2001. Although NOx controls are predicted to benefit PM2.5 concentrations and sometimes benefit ozone, they have only a small effect on formaldehyde, slightly increase acetaldehyde and acrolein, and have no effect on benzene in the July episode. Concentrations of all pollutants except benzene increase slightly with NOx controls in the January simulation. Volatile organic compound controls alone are found to have a small effect on ozone and PM2.5, a less than linear effect on decreasing aldehydes, and an approximately linear effect on acrolein and benzene in summer, but a slightly larger than linear effect on aldehydes and acrolein in winter. These simulations indicate the difficulty in assessing how toxic air pollutants might respond to emission reductions aimed at decreasing criteria pollutants such as ozone and PM2.5.  相似文献   

4.
ABSTRACT

The purpose of this paper is to quantify the production of medical waste from a general hospital and to evaluate the atmospheric pollutant concentrations in gaseous emissions associated with its incineration. A 3.8 kg (bed.day)-1 production of medical waste was estimated for 1998; its incineration is related with an ash production of 0.3-0.4 kg (bed.day)-1. The concentrations of atmospheric pollutants were estimated using emission factors, comparing the effluents with and without control of atmospheric pollutants. The calculated concentrations were compared with the emission limits established by Portuguese legislation. The results indicate that, if there is no control of atmospheric pollutants, their concentrations exceed the established limits. This is observed even if correct operation and maintenance procedures are used. The emission concentrations of dioxins are higher than the Portuguese emission limit, which is particularly worrying due to the high toxicity of some of these compounds. Generally, it is possible to reduce pollutant concentrations if appropriate control equipment is used. The conclusions obtained clearly justify the great concern regarding air pollution associated with medical waste incinerators currently operating in Portugal.  相似文献   

5.
Little is known about the concentrations, deposition rates, and effects of nitrogenous and sulfurous compounds in photochemical smog in the San Bernardino National Forest (SBNF) in southern California. Dry deposition of NO(3)(-) and NH(4)(+) to foliage of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) was correlated (R = 0.83-0.88) with historical average hourly O(3) concentations at 10 sites across an O(3) gradient in the SBNF. Mean deposition fluxes of NO(3)(-) to ponderosa and Jeffrey pine branches were 0.82 nmol M(-2)s(-1) at Camp Paivika (CP), a high-pollution site, and 0.19 nmol m(-2) s(-1) at Camp Osceola (CAO), a low-pollution site. Deposition fluxes of NH(4)(+) were 0.32 nmol m(-2) s(-1) at CP and 0.17 nmol m(-2) s(-1) at CAO, while mean values for SO(4)(2-) were 0.03 at CP and 0.02 nmol m(-2) s(-1) at CAO. Deposition fluxes to paper and nylon filters were higher in most cases than fluxes to pine branches at the same site. The results of this study suggest that an atmospheric concentration and deposition gradient of N and S compounds occurs along with the west-east O(3) gradient in the SBNF. Annual stand-level dry deposition rates for S and N at CP and CAO were estimated. Further studies are needed to determine if high N deposition loads in the SBNF significantly affect plant/soil nutrient relations, tree health, and the response of ponderosa pine to ozone.  相似文献   

6.
The Southern California Children's Health Study (CHS) investigated the relationship between air pollution and children's chronic respiratory health outcomes. Ambient air pollutant measurements from a single CHS monitoring station in each community were used as surrogates for personal exposures of all children in that community. To improve exposure estimates for the CHS children, we developed an Individual Exposure Model (IEM) to retrospectively estimate the long-term average exposure of the individual CHS children to CO, NO2, PM10, PM2.5, and elemental carbon (EC) of ambient origin. In the IEM, pollutant concentrations due to both local mobile source emissions (LMSE) and meteorologically transported pollutants were taken into account by combining a line source model (CALINE4) with a regional air quality model (SMOG). To avoid double counting, local mobile sources were removed from SMOG and added back by CALINE4. Limited information from the CHS survey was used to group each child into a specific time-activity category, for which corresponding Consolidated Human Activity Database (CHAD) time-activity profiles were sampled. We found local traffic significantly increased within-community variability of exposure to vehicle-related pollutants. PM-associated exposures were influenced more by meteorologically transported pollutants and local non-mobile source emissions than by LMSE. The overall within-community variability of personal exposures was highest for NO2 (±20–40%), followed by EC (±17–27%), PM10 (±15–25%), PM2.5 (±15–20%), and CO (±9–14%). Between-community exposure differences were affected by community location, traffic density, and locations of residences and schools in each community. Proper siting of air monitoring stations relative to emission sources is important to capture community mean exposures.  相似文献   

7.
Abstract

Combinations of total reactive organic gas (ROG) and nitrogen oxide (NOx) emissions that do not exceed the National Ambient Air Quality Standard (NAAQS) for ozone for the meteorological conditions of the August 26-28, 1987 SCAQS episode, have been determined using the California Institute of Technology (CIT) photochemical air quality model. The sensitivity of these combinations to pollutant boundary conditions is examined.  相似文献   

8.

A chamber study was conducted to evaluate the growth response and leaf nitrogen (N) status of four plant species exposed to continuous ammonia (NH3) for 12 weeks (wk). This was intended to evaluate appropriate plant species that could be used to trap discharged NH3 from the exhaust fans in poultry feeding operations before moving off-site. Two hundred and forty bare-root plants of four species (Juniperus virginiana (red cedar), Gleditsia triacanthos var. inermis (thornless honey locust), Populus sp. (hybrid poplar), and Phalaris arundinacea (reed canary grass) were transplanted into 4- or 8-L polyethylene pots and grown in four environmentally controlled chambers. Plants placed in two of the four chambers received continuous exposure to anhydrous NH3 at 4 to 5 ppm while plants in another two chambers received no NH3. In each of the four chambers, 2 to 4 plants per species received no fertilizer while the rest of the plants were fertilized with a 100 ppm solution containing 21% N, 7% phosphorus, and 7% potassium. The results showed that honey locust was the fastest-growing species. The superior growth of honey locust among all species was also supported by its total biomass, root, and root dry matter (DM) weights. For all species there was a trend for plants exposed to NH3 to have greater leaf DM than their non-exposed counterparts at 6 (43.0 vs. 30.8%; P = 0.09) and 12 wk (47.9 vs. 36.6%; P = 0.07), and significantly greater (P ≤ 0.05) leaf N content at 6 (6.44 vs. 3.67%) and 12 wk (7.05 vs. 3.51%) when exposed to NH3. Numerically greater leaf DM due to NH3 exposure was also consistently measured in poplar at both sampling periods. Hybrid poplar, as well as honey locust and reed canary grass, deposited 1.5 to 2-fold greater N in their leaves than red cedar tissues as a result of NH3 exposure compared to non-exposed plants. Regardless of the effect of NH3 on foliar color and damage score of the plants, the increase of foliar N content (g 100 g?1 of fresh foliage weight) after NH3 exposure at 6 and 12 wk was 0.45 and 0.87 for grass,1.25 and 1.34 for locust, and 2.67 and 6.09 for poplar. However, only honey locust likely benefited from ambient NH3 as indicated by its consistent leaf color quality and lower damage score, compared with other species that were adversely affected by atmospheric NH3.  相似文献   

9.
Abstract

Three 2-wk seasonal field campaigns were performed in 2003 and 2004 at a sampling site on the southern Tyrrhenian coast of Italy with the aim to investigate the dynamics and characteristics of particle-bound pollutants in the Mediterranean area. Fine (PM2.5) and coarse particulate matter (PM10–2.5) size fractions were collected by a manual dichotomous sampler on 37-mm Teflon filters over a 24-hr sampling period. On average, 70% of the total PM10 (PM2.5 + PM10–2.5) mass was associated with the coarse fraction and 30% with the fine fraction during the three campaigns. The ambient concentrations of Pb, Ni, Cr, Zn, Mn, V, Cd, Fe, Cu, Ca, and Mg associated with both size fractions were determined by atomic absorption spec-trometry. Ambient concentrations showed differences in their absolute value, ranging from few ng · m-3 to µg ?m-3, as well as in their variability within the PM2.5 and PM10–2.5 size fractions. PM10 levels were well below the European Union (EU) limit value during the study period with the exception of three events during the first campaign (fall) and five events during the third campaign (spring). Two main sources were identified as the major contributors including mineral dust, transported from North Africa, and sea spray from the Tyrrhenian Sea. Comparing the results with backward trajectories, calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) and Total Ozone Mapping Spectrometer-National Aeronautics and Space Administration (TOMS-NASA) maps, it was observed that in central and eastern Europe, the Tyrrhenian Sea and North Africa were the major emission source regions that affected the temporal variations and daily averages of PM2.5 and PM10–2.5 concentrations.  相似文献   

10.
A joint conference, for the fourth straight year cosponsored by the Air & Waste Management Association’s TP-6, TP-7, and ITF-2 technical committees, and the Atmospheric Research and Exposure Assessment Laboratory of the U. S. Environmental Protection Agency, was held at Raleigh, North Carolina, May 2-5, 1989. The technical program consisted of 145 presentations, held in 14 separate technical sessions, on recent advances in the measurement and monitoring of toxic and related pollutants found in ambient and source atmospheres. Covering a wide range of measurement topics and superbly supported by 57 exhibitors of instrumentation and consulting services, the symposium was enthusiastically received by more than 700 attendees from the United States and other countries. This overview contains a selection of the highlights from the technical presentations. A synopsis of the keynote address to the symposium is also included.  相似文献   

11.
A joint conference cosponsored for the sixth year by the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the U.S. Environmental Protection Agency and the Air & Waste Management Association was held in Durham, North Carolina, May 6–10, 1991. The technical program consisted of 220 presentations, held in 25 technical sessions, on recent advances in ambient and source atmospheres. Covering a wide range of measurement topics and supported by 78 exhibitors of instrumentation and consulting services, the symposium was attended by almost a thousand professionals from the United States and other countries. This overview highlights a selection of the technical presentations, and includes a synopsis of the keynote address.  相似文献   

12.
Volatile organic compound levels (VOCs) in breath, personal air, fixed outdoor air and drinking water samples were measured and compared for a probability sample of individuals in Los Angeles and Antioch/Pittsburg, California during 1984. In addition, comparisons were made between seasons (winter vs spring) in Los Angeles for individuals sampled in both seasons. The statistics presented to compare the sites and seasons were primarily percent measurable and concentration levels (e.g. sample medians). For most comparisons, 13 VOC levels were examined for breath, personal and outdoor air samples and four VOCs for water samples.In addition to the results for VOC levels, the paper also briefly describes
  • 1.(i) the sampling procedures used to obtain the study participants
  • 2.(ii) the collection of air, breath and water samples
  • 3.(iii) selected results from the quality assurance procedures used in this study.
For most chemicals, the percent measurable and concentration levels were
  • 1.(i) higher in personal air samples than in breath or outdoor air samples,
  • 2.(ii) higher in Los Angeles in the winter for air and breath than in the, spring,
  • 3.(iii) higher in Los Angeles for air and breath than in Antioch/Pittsburg,
  • 4.(iv) quite different for water as compared with air and breath.
Ubiquitous compounds in water were chloroform, bromodichloromethane, dibromochloromethane and bromoform while in air and breath they were 1,1,1-trichloroethane, benzene, tetrachloroethylene, ethylbenzene and the xylenes.Concentrations were higher in
  • 1.(i) outdoor air vs breath in the winter in Los Angeles (where outdoor air levels were much higher than in the spring),
  • 2.(ii) in personal air vs outdoor air in the upper tails of the concentration distribution (90th percentile) compared to the 50th percentile. For the water samples, relatively high concentrations were noted for chloroform, bromodichloromethane and dibromochloromethane.
In most cases, water concentrations were higher for Los Angeles in the spring. Five VOCs known to be in tobacco smoke (benzene, styrene, ethylbenzene and the xylenes) had significantly higher levels in the breath of smokers.  相似文献   

13.
The new National Ambient Air Quality Standard for ozone in the US uses 8 h averaging for the concentration. Based on the 1993 ambient data for Southern California, 8 h averaging has a moderate tendency to move the location of the peak ozone concentration east of the location of the peak 1 h ozone concentration. Reducing the area-wide peak 8 h ozone concentration to 80 ppb would require an effective reduction of the area-wide peak 1 h ozone concentration to around 90 ppb. The Urban Airshed Model with improved numerical solvers, meteorological input based on a mesoscale model and an adjusted emissions inventory was used to study the effect of reactive organic gases (ROG) and NOx controls on daily-maximum and peak 8 h ozone concentrations under the 26–28 August 1987 ozone episodic conditions in Southern California. The NOx disbenefit remains prominent for the case of 8 h ozone concentration but is somewhat less prominent, especially when areal ozone exposure is considered, than the case for 1 h ozone concentration. The role of two indicators – O3/NOy and H2O2/HNO3 – for NOx- and ROG-sensitivity for 1 and 8 h ozone concentrations were also studied. In general, the indicator trends are consistent with model predictions, but the discriminating power of the indicators is rather limited.  相似文献   

14.
Atmospheric particulate matter (PM) samples from 12 sites in southern California, collected as part of the Southern California Children's Health Study (SCCHS), were analyzed using gas chromatography/mass spectrometry (GC/MS) techniques. Ninety-four organic compounds were quantified in these samples, including n-alkanes, fatty acids, polycyclic aromatic hydrocarbons (PAH), hopanes, steranes, aromatic diacids, aliphatic diacids, resin acids, methoxyphenols, and levoglucosan. Annual average concentrations of all detected compounds, as well as average concentrations for three seasonal periods, were determined at all 12 sites for the calendar year of 1995. These measurements provide important information about the seasonal and spatial distribution of particle-phase organic compounds in southern California. Also, co-located samples from one site were analyzed to assess precision of measurement. Excellent agreement was observed between annual average concentrations for the broad range of organic compounds measured in this study. Measured concentrations from the 12 sampling sites were used in a previously developed molecular-marker source apportionment model to quantify the primary source contributions to the PM10 organic carbon and mass concentrations at these 12 sites. Source contributions to atmospheric PM from six important air pollution sources were quantified: gasoline-powered motor vehicle exhaust, diesel vehicle exhaust, wood smoke, vegetative detritus, tire wear, and natural gas combustion. Important trends in the seasonal and spatial patterns of the impact of these six sources were observed. In addition, contributions from meat smoke were detected in selected samples.  相似文献   

15.
The photolysis of nitrogen dioxide and formaldehyde are two of the most influential reactions in the formation of photochemical air pollution, and their rates are computed using actinic flux determined from a radiative transfer model. In this study, we compare predicted and measured nitrogen dioxide photolysis rate coefficients (jNO2). We used the Tropospheric Ultraviolet-Visible (TUV) radiation transfer model to predict jNO2 values corresponding to measurements performed in Riverside, California as part of the 1997 Southern California Ozone Study (SCOS’97). Spectrally resolved irradiance measured at the same site allowed us to determine atmospheric optical properties, such as aerosol optical depth and total ozone column, that are needed as inputs for the radiative transfer model. Matching measurements of aerosol optical depth, ozone column, and jNO2 were obtained for 14 days during SCOS’97. By using collocated measurements of the light extinction caused by aerosols and ozone over the full height of the atmosphere as model input, it was possible to predict sudden changes in jNO2 resulting from atmospheric variability. While the diurnal profile of the rate coefficient was readily reproduced, jNO2 model predicted values were found to be consistently higher than measured values. The bias between measured and predicted values was 17–36%, depending on the assumed single scattering albedo. By statistical analysis, we restricted the most likely values of the single scattering albedo to a range that produced bias on the order of 20–25%. It is likely that measurement error is responsible for a significant part of the bias. The aerosol single scattering albedo was found to be a major source of uncertainty in radiative transfer model predictions. Our best estimate indicates its average value at UV-wavelengths for the period of interest is between 0.77 and 0.85.  相似文献   

16.
中国城市空气污染呈区域化和恶化趋势,亟需突破当前空气质量管理模式的制约.从管理体制和管理内容两方面对美国空气质量政府管理模式的先进经验进行了分析,并与北京市空气质量管理模式进行了初步比较,得出中国空气质量政府管理模式缺乏外部性的考虑;政府部门内部机构按照行政管理过程划分,导致管理成本偏高;决策机制与执行机制未分离,影响行政效率;对污染源的管理不专业;缺乏信息公开和公众参与等问题.建议成立空气质量管理分局,对固定源实行排污许可证管理,对移动源实行统一综合管理,细化面源的管理,建立空气质量管理信息公开平台.  相似文献   

17.
Atmospheric deposition to the edge of a spruce forest in Denmark   总被引:6,自引:0,他引:6  
Atmospheric deposition was measured during 1 year at the forest edge of a Norway spruce stand in Denmark. Inside the forest the deposition of H(+), Ca(2+), Mg(2+), Na(+), K(+), Cl(-), NO(3)(-), NH(4)(2) and SO(4)(2-) with canopy throughfall varies with the distance from the forest edge. The deposition at the edge is found to be 10-20 times as high as deposition to an open field and 2-8 times as high as deposition inside the stand. An exponential decrease in deposition as a function of the distance from the forest edge is found. Increased deposition of K(+) and non-sea salt Mg(2+), which mainly originates as a result of leaching from the needles may be explained by a larger leaf area index (LAI) at the forest edge. Deposition of particulate substances, especially Na(+), Cl(-), Mg(2+) and to some extent SO(4)(2-), NH(4)(+) and NO(3)(-) is increased much more than the LAI, which we believe to be caused by changes in wind movements at the forest edge.  相似文献   

18.
A study was initiated to ascertain whether gaseous air pollutants can influence gastric secreto-motor activities. The investigation was conducted to determine the effect of various exposures to S02, N02, CO, and 03 on gastric motor activity of the conscious unrestrained rat by means of a chronic intragastric bajloon. Tfie effects produced upon gastric secretory volume and total titratable acid secretion produced by these gases were also studied in rats which were pylorus-ligated subsequent to exposure. Rats exposed to 1 ppm S02 for 5 days, 60 ppm CO for 2 hours, 0.5 ppm N02 for 2 hours, or 0.25 ppm 03 for 2 hours showed no change while there was gastric inhibition at 300 ppm S02 for 2 hours, 1400 ppm CO for 1 hour, 26 ppm N02 for 2 hours and 1.5 ppm 03 for 2 hours. In most instances following chamber flushing recovery was complete within minutes. To evaluate the site and nature of stimulation, rats were also exposed to oil of mustard, benzaldehyde, hydrogen peroxide, amyl acetate, and “Old Spice” after sh ave lotion. Saturated dental paper points were introduced without obstruction into tracheal and retro-nasal cannulae. Oil of mustard but not benzaldehyde or amyl acetate inhibited gastric motility only when applied to the trachea. In general, the drop in activity was immediate and proportional to the degree of exposure. Nasal irritation was ineffective in eliciting the response. The experimental results lead to the following conclusions: 1) Toxic levels of these gases are associated with an inhibition of gastric motility that is not produced by .exposure of the nasal passages alone to the gases. 2) Toxic levels of these gases produced no demonstrable effect upon either total gastric acid secretion or total secretory volume. These findings tend to confirm earlier observations of an association between exposure to toxic concentrations of S02 and loss of gastric tone in the rodent stomach.  相似文献   

19.
Recent results from EU-sponsored projects have shed new light on the workings of the atmosphere in the Mediterranean Basin, where a large airmass becomes trapped and nearly stagnant over the sea during the summer. This work reviews the developments which have led to our present understanding of air pollution dynamics and associated meteorological processes in this region. In summer, the sea breezes combine with upslope winds to create recirculations along the coasts and within the western Mediterranean basin, with residence times in the order of days. Under strong insolation these recirculations become "large natural photo-chemical reactors" where most of the NOx emissions and other precursors are transformed into oxidants, acidic compounds, aerosols and ozone, which can exceed European Union directives for several months of the year. The objective of this paper is to evaluate available experimental evidence and complementary modelling results to help in the interpretation of observed ozone cycles and to anticipate possible scenarios for anthropogenic nitrogen deposition in the region.  相似文献   

20.
Improvements in measurement technology are permitting development of a more detailed scientific understanding of the cycling of mercury in the global atmospheric environment. Critical to advancing the state of knowledge is the acquisition of accurate measurement of speciated mercury (gaseous and particulate) at ground research stations in a variety of settings located around the globe. This paper describes one such research effort conducted at TVA's Look Rock air quality monitoring site in Tennessee—a mountain top site (813 m elevation) just west of the Great Smoky Mountains National Park. The Great Smoky Mountains National Park is the largest National Park in the eastern US and it receives environmental protection under a variety of US statutes. Gaseous and particle mercury species along with some additional trace gases were measured at Look Rock during two field studies totaling 84 days in the spring and summer of 2004. Average results for the entire sampling period are: gaseous elemental mercury Hg(0): 1.65 ng m−3, reactive gaseous mercury RGM: 0.005 ng m−3, particulate mercury Hg(p): 0.007 ng m−3. Literature review indicates that these levels are within the range found for other rural/remote sites in North America and worldwide. Reactive and particulate mercury comprised together less than 1%, on average, of total airborne mercury at Look Rock. When compared to the global background mercury literature, the Look Rock measurements demonstrate that the atmospheric mercury levels in the vicinity of the Great Smoky Mountains National Park are clearly dominated by the global atmospheric pool, not by local or regional sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号