首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eye irritation measurements are available from smog chamber solar Irradiations of selected hydrocarbon-nitrogen oxide mixtures. These results have been used to compute eye irritation intensity parameters for formaldehyde, acrolein, peroxyacetyl nitrate, and peroxypropionyl nitrate. Peroxypropionyl nitrate is the most irritating of these four substances. The relative contribution of various pairs of eye Irritants in ambient air mixtures to eye irritation has been calculated from the ambient air concentrations and the eye irritation intensity parameters. The relative contribution of the four eye irritants to a "typical" ambient air mixture has been computed. Formaldehyde appears to be the single most significant eye irritant. Other potential ambient air eye irritants are discussed. The relationships between the hydrocarbon control strategies and eye irritation are considered.  相似文献   

2.
This paper is an endeavor to show how several experimenters have quite closely equaled the results of the other, and how the results from these various laboratories can, by a change of coordinate system, be related to each other in a systematic manner. Only after demonstrating where the Los Angeles Civic Center atmosphere is in relation to these coordinates and the contours, or gradients, of these various effects, eye irritation and oxidant, is it possible to predict the photochemical effect of a reduction of olefins (hydrocarbons) or the reduction of nitric oxide. In addition, a study of the variation in eye irritation with irradiation time, demonstrates that the time at which eye irritation measurements are taken is important in understanding the entire photochemical mechanism underlying the “smog” problem in the summertime in Los Angeles  相似文献   

3.
During the summer of 1966, a selected group of automobiles from the Cincinnati phase of the GSA study were used in an irradiation chamber study. The study was conducted to evaluate the photochemical air pollution potential of representative models of the equipped and unequipped automobiles. Only one set of automobiles, the unequipped Chevelles, produced exhaust capable upon irradiation of forming significant levels of oxidant and PAN. Neither the equipped Chevelles nor any of the Fords or Plymouths, whether equipped or unequipped, produced exhaust having the characteristics necessary to form oxidant or PAN upon irradiation. The eye irritation level reported by the panel upon irradiation of exhaust from unequipped Chevelles was much higher than that produced by the irradiated exhausts from any of the other types of automobiles. Overall, there does appear to be some small improvement with respect to eye irritation in comparing equipped with unequipped automobiles. To a large extent, the improvement in the air pollution potential of exhaust from equipped Chevelles compared to the unequipped Chevelles can be attributed to the reduction in the hydrocarbon to nitrogen oxide ratio. The irradiated exhaust from equipped Chevelles, except for aldehyde levels, is about the same in photochemical air pollution potential as are the exhausts from both equipped and unequipped Fords and Plymouths which are maintained under lean operating conditions. Such irradiation chamber measurements are related to exhaust not hydrocarbon reactivities. Hydrocarbon reactivities can be obtained by direct measurement of reactive and nonreactive hydrocarbons in the automotive emissions.  相似文献   

4.
The concept that control of organic substances in emissions should be based on the relative ability to cause the effects associated with photochemical air pollution (reactivity) rather than on gross emission levels has gained wide acceptance. Two general types of reactivity response scales have been proposed. One of these is based on rates of hydrocarbon reaction or nitrogen dioxide formation. This scale covers a wide range because of the very high rates associated with olefins having internal double-bonds. The other scale is based on product yields combined with biological effect measurements. This type of scale is considered superior to one based on rates. This latter scale covers a narrow response range because olefins with internal double bonds have only slightly higher product yields and biological effects than do other reactive olefins and alkylbenzenes. Use of a response scale based on product yields and biological effects also permits use of less detailed instrumental procedures. A simple subtractive column technique combined with a flame ionization analyzer should be sufficient to estimate hydrocarbon emissions. Gas chromatographic analyses of hydrocarbon emissions are of value when used with either type of reactivity response scale. However, detailed gas chromatographic analyses are essential for a response scale based on rates. The response scale based on product yields and biological effects indicates much less improvement in reactivity from fuel composition changes than would be predicted from a response scale based on rates. The most desirable approach is to use a variety of control and engine modification techniques to reduce all reactive organics to the lowest level possible.  相似文献   

5.
Photooxidation of lower-reactivity paraffinic hydrocarbons with nitrogen oxide was investigated. Maximum oxidant yield occurred at much lower ratios of hydrocarbon to nitrogen oxide than in more reactive systems such as propylene-nitrogen oxide mixtures. Appreciable oxidant yields were obtained even from irradiation of propane-nitrogen oxide mixtures at low ratios of nitrogen oxide to propane. These results, and nitrogen dioxide and oxidant dosages computed from these measurements, substantiate the importance of reactivity characteristics in formulation of decisions on control of hydrocarbons and nitrogen oxides.  相似文献   

6.
The body of information presented in this paper is directed to those individuals concerned with the effect of urban pollution on downwind areas. In the absence of any evidence, it has been widely assumed that increasing NO x emissions have caused oxidant levels to increase downwind of Los Angeles, i.e., Riverside and San Bernardino. This smog chamber study simulated pollutant transport from Los Angeles to the downwind areas by irradiating a typical Los Angeles hydrocarbon/NO x mixture for extended periods of time. The smog chamber experiments were extended to 22 hours to obtain an integrated light intensity equal to that which occurs in the Los Angeles area. The effects of variations of nitrogen oxide emissions on an aged air mass were examined. The results show that downwind oxidant levels are only slightly affected by large changes in NO x emissions. However, it is clear that reduced nitrogen oxide emissions will lead to an increase in oxidant in downtown Los Angeles.  相似文献   

7.
The purpose of this paper is to describe ozone production in forest slash burn plumes. Plumes from controlled fires in the state of Washington were monitored using an instrumented aircraft. Ozone, oxides of nitrogen, condensation nuclei, and visual range (nephelometer) were measured continuously on board the plane. Airborne grab samples were collected for detailed hydrocarbon analysis.

The slash burn plumes were found to contain significant quantities of ozone. A buildup of 40–50 ppb above the ambient background ozone concentrations was not unusual. Hydrocarbon analyses revealed the presence of many photochemically reactive olefins in the plume. Hydrocarbon/NO x ratios were favorable for photochemical oxidant production.  相似文献   

8.
Comparisons were made of the levels of six air pollutants—total oxidant, per-oxyacetyl nitrate (PAN), nitric oxide, nitrogen dioxide, carbon monoxide, and particulate matter—outside and inside 11 buildings in the South Coast Basin of California during summer and fall.

Total oxidant levels inside depend upon how much outside air is being brought in and the residence time in the structure. With rapid intake and circulation, levels inside may be two-thirds those outside. With little intake and slow circulation, amounts inside decay to near zero. PAN is more persistent in buildings because it is more stable than ozone but also decays to low levels over an extended period. Oxides of nitrogen and CO are much more stable than oxidant or PAN and when carried into buildings remain until diluted or exhausted.

Particulate matter levels indoors depend largely upon velocity of air movement. Indoor areas where foot traffic was light or which had low ventilation rates had reduced amounts of particulate. Electrostatic precipitators were much more effective than coarse primary filters used in many buildings for removing particulate matter.  相似文献   

9.
The nitrogen-containing products of smog chamber reactions have been the subject of much controversy. Concern has arisen over nitrogen products because of the almost universally poor nitrogen balance reported for irradiated mixtures of hydrocarbons and nitrogen oxides. Some possible nitrogen-containing products, such as molecular nitrogen, nitrous oxide, and nitroolefins have been investigated and shown to be unimportant. The nitrogen products most often measured are peroxyacetyl nitrate and residual nitrogen dioxide. These two products rarely comprise more than 70% of the initial nitrogen at the end of an experiment, and often account for less than 50%. Previous experiments in which total nitrate was determined in the gas phase and on the vessel walls at the end of irradiation have shown very good nitrogen balances. The assumption has been made that the nitrate arises from nitric acid formed on the walls by adsorbed N2O5.

In the work reported here, all major nitrogen-containing compounds have been monitored continuously for the first time. Nitric oxide and nitrogen dioxide have been monitored by chemilumines-cence and automated Saltzman techniques. Methyl, ethyl, and peroxyacetyl nitrate have been determined by gas chromatogra-phy. Two methods, one continuous and one integrated, have been specially developed to measure nitric acid both in the smog chambers and in the atmosphere. Continuous determination of these compounds yields good nitrogen balances throughout the irradiations.

Profiles of the nitrogen-containing species from irradiated HC/ NOx mixtures are discussed in terms of nitrogen products and nitrogen balance. Differences in product distribution for different hydrocarbon systems are also considered. Using rate information from the nitrogen compound profiles, important reactions leading to nitrogen-containing products are identified. Interference with the chemiluminescent technique by HON02, PAN, and C2H5ONO2 is discussed.  相似文献   

10.
A study of the effect of water vapor on the photochemical system NO2 + alphapinene + hv was conducted. A Hotpack Environmental Room was used as a constant temperature chamber, a bank of ultraviolet and fluorescent lamps as a source of simulated solar radiation, and a 150-liter FEP Teflon bag as a reaction vessel. Representative concentrations of 10 pphm NO2 and 50 pphm alphapinene were used in a 3 × 2 × 2 factorial design where absolute humidities of 0.0000, 0.0090, 0.01 80 g H2O/g dry air were varied.

Matheson zero air was passed through a clean air train and used as the diluent. Nitrogen dioxide was added to the reaction mixture by a permeation tube, and water and alpha-pinene by evaporation techniques.

Variables measured as a function of time over a 2-hour irradiation period were total oxidants (Mast Ozone Meter), condensation nuclei (General Electric Small Particle Detector), ozone (Regener Chemiluminescent Ozone Meter), nitrogen dioxide and nitric oxide (Technicon Autoanalyzer), and alpha-pinene (Perkin- Elmer Model 800 gas chromatograph).

Upon irradiation, systems containing nitrogen dioxide and alpha-pinene formed oxidants, ozone, condensation nuclei, and nitric oxide. Based on the differences between simultaneous oxidant and ozone measurements, the formation of peroxide- like compounds may be inferred. During the course of the irradiation, nitrogen dioxide and alpha-pinene were consumed. The concentration-time profiles of all variables were characteristic of those exhibited by typical photochemical smog systems.

An effect of water vapor on the systems studied was demonstrated. Increasing humidity decreased net mean/time oxidant and ozone production and net maximum condensation nuclei production. These effects were significant at a 0.05 confidence level. Effects of water on average mean/time NO2, NO, and alphapinene concentrations were insignificant at this level. The oxidant to ozone ratio was found to decrease with increasing humidity.

The significant decreases in net oxidant and ozone production and NO2 consumption with increasing water vapor concentration in systems of nitrogen dioxide alone, suggests that water manifests an effect on pertinent inorganic reactions, and the data also suggest additional water participation in the organic reactions.  相似文献   

11.
Abstract

A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions [PMCAMx]) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9–11%), nitrate (45–58%), and ammonium (7–11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8–17%), nitrate decreases (18– 42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5–10% reduction of PM2.5 because of reductions in nitrate (4–19%), ammonium (4–10%), organic PM (12–14%), and small reductions in sulfate. Although sulfur dioxide (SO2) reduction is the single most effective approach for sulfate control, the coupled decrease of SO2 and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO2 reduction alone.  相似文献   

12.
Hydrocarbon components (propylene, simulated auto exhaust, or authentic auto exhaust) were irradiated in the presence of nitric oxide in large chambers instrumented for measurements of numerous variables. Eye irritation was measured using a selected panel of human subjects. The various dependent variables are presented as functions of the reactant concentrations by means of contour diagrams derived by computer treatment. The effect of “hydrocarbon” and nitric oxide levels on smog effects are discussed; the observed relationships between end effects and reaction rates are considered. The study simulated the effects of varying degrees of vehicular emissions control over one or both reactants and has a bearing on the establishment of vehicle emission standards in California.  相似文献   

13.
The photochemical reaction of various olefins and nitrogen dioxide was studied under conditions of controlled temperature, pressure, and humidity in a 200 liter stirred glass reactor. The hydrocarbon concentration in the reactor during four and five hour irradiation periods was monitored with a flame ionization chromatograph. Reaction rate constants, based on three consecutive first order reactions, were calculated for reactor temperatures of 20, 25, 30, and 35 degrees centigrade. Activation energies for the three consecutive reactions were calculated from the Arrhenius equation. Branched and straight chain olefins were studied at initial concentrations of 5.0 to 10.0 parts per million.s  相似文献   

14.
Chen YM  Li CW  Chen SS 《Chemosphere》2005,59(6):753-759
A fluidized zero valent iron (ZVI) reactor is examined for nitrate reduction. Using the system, the pH of solution can be maintained at optimal conditions for rapid nitrate reduction. For hydraulic retention times of 15 min, the nitrate reduction efficiency increases with increasing ZVI dosage. At ZVI loadings of 33 gl-1, results indicate that the nitrate removal efficiency increases from less than 13% for systems without pH control to more than 92% for systems operated at pH of 4.0. By maintaining pH at 4.0, we are able to decrease the hydraulic retention time to 3 min and still achieve more than 87% nitrate reduction. The recovery of total nitrogen added as nitrate, ammonium, and nitrite was less than 50% for the system operated at pH4.0, and was close to 100% for a system without pH control. The possibility of nitrate and ammonium adsorption onto iron corrosion products was ruled out by studying the behavior of their adsorption onto freshly hydrous ferric oxide at variable pH. Results indicate the probable formation of nitrogen gas species during reaction in pH4.0.  相似文献   

15.
The effect of selected organic and inorganic compounds, present in snow and cloudwater was studied. Photolysis of solutions of nitrate to nitrite was carried out in the laboratory using a UVB light source. The photolysis and other reactions were then modelled. It is shown that formate, formaldehyde, methanesulphonate, and chloride to a lesser extent, can increase the initial formation rate of nitrite. The effect, particularly significant for formate and formaldehyde, is unlikely to be caused by scavenging of hydroxyl radicals. The experimental data obtained in this work suggest that possible causes are the reduction of nitrogen dioxide and nitrate by radical species formed on photooxidation of the organic compounds. Hydroxyl scavenging by organic and inorganic compounds would not affect the initial formation rate of nitrite, but would protect it from oxidation, therefore, increasing the concentration values reached at long irradiation times. The described processes can be relevant to cloudwater and the quasi-liquid layer on the surface of ice and snow, considering that in the polar regions irradiated snow layers are important sources of nitrous acid to the atmosphere. Formate and (at a lesser extent) formaldehyde are the compounds that play the major role in the described processes of nitrite/nitrous acid photoformation by initial rate enhancement and hydroxyl scavenging.  相似文献   

16.
It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.  相似文献   

17.
Peroxyacyl nitrates (PANs) were measured using gas chromatography with electron capture detection (GC/ECD) in north central Mexico City during February–March of 1997. Peroxyacetyl nitrate (PAN) was observed to exceed 30 ppb during five days of the study, with peroxypropionyl nitrate (PPN) and peroxybutryl nitrate (PBN) reaching 6 and 1 ppb maximum, respectively. Levels of total PANs typically exceeded 10 ppb during the period of measurement and showed a very strong diurnal variation with PANs maximum during the early afternoon and falling to less than 0.1 ppb during the evening hours. These levels of PANs are the highest reported values in North America (and the world) for an urban center, since levels of approximately 30 ppb were reported during the late 1970s in the Los Angeles area (South Coast Air Basin, Tuazon et al., 1978). Hydrocarbon measurements indicate that the levels of olefins, specifically butenes are significant in Mexico City. A time series taken of source indicator hydrocarbons taken before and during a Mexican National Holiday with reduced automobile traffic clearly show that mobile sources of butenes are as important as liquefied petroleum gas. Observations of 10–40 ppb C methyl-t-butyl ether (MTBE) are consistent with MTBE/gasoline fuel usage as a source of isobutene and formaldehyde. Both these reactive species can lead to increased oxidant and PAN formation. The strong diurnal profiles of PANs are consistent with regional clearing of the Mexico City air basin on a daily basis. Estimates are given using a simple box model calculation for a number of key primary and secondary pollutant emissions from this megacity on an annual basis. These calculations indicate that megacities can be important sources of both primary and secondary pollutants, and that PANs produced in megacity environments are likely to contribute strongly to regional scale ozone and aerosol productions during long range transport.  相似文献   

18.
Mixtures of ethylene and oxides of nitrogen were irradiated in the absence and presence of diethylhydroxylamine. As previously reported, the presence of diethylhydroxylamine inhibited the photo-oxidation of the hydrocarbon and nitric oxide and the onset of ozone formation. Once the diethylhydroxylamine completely reacted, the ozone rose more rapidly, but to a lower level than in the absence of diethylhydroxylamine. Peroxyacetyl nitrate was also produced with the addition of diethylhydroxylamine. The reaction mixtures were tested for total mutagenic activity by gas phase exposure to Salmonella typhimurium strain TA100. A significantly greater mutagenic activity was observed in the irradiated ethylene/diethylhydroxylamine/oxides of nitrogen mixture relative to the irradiated ethylene/oxides of nitrogen mixture. At most, 30% of the observed response could be accounted for by known reaction products.  相似文献   

19.
Air quality is shown as a function of averaging times of five minutes to one year for carbon monoxide, hydrocarbons, nitric oxide, nitrogen dioxide, nitrogen oxides, oxidant, and sulfur dioxide in Chicago, Cincinnati, Los Angeles, New Orleans, Philadelphia, San Francisco, and Washington, D. C. Concentrations are approximately lognormally distributed for all pollutants in all cities for all averaging times. Maximum concentration is inversely proportional to averaging time to an exponent. The exponent is a function of the standard geometric deviation. General air quality and control parameters are derived and shown for one example, nitrogen oxides in Washington, D. C. These values are compared to one air quality standard.  相似文献   

20.
Indoor and outdoor air quality investigation at schools in Hong Kong   总被引:7,自引:0,他引:7  
Lee SC  Chang M 《Chemosphere》2000,41(1-2):109-113
Five classrooms in Hong Kong (HK), air-conditioned or ceiling fans ventilated, were chosen for investigation of indoor and outdoor air quality. Parameters such as temperature, relative humidity (RH), carbon dioxide (CO2), sulphur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), respirable particulate matter (PM10), formaldehyde (HCHO), and total bacteria counts were monitored indoors and outdoors simultaneously. The average respirable particulate matter concentrations were higher than the HK Objective, and the maximum indoor PM10 level exceeded 1000 microg/m3. Indoor CO2 concentrations often exceeded 1000 microl/l in air-conditioning and ceiling fan classrooms, indicating inadequate ventilation. Maximum indoor CO2 level reached 5900 microl/l during class at the classroom with cooling tower ventilation. Increasing the rate of ventilation or implementation of breaks between classes is recommended to alleviate the high CO2 level. Other pollution parameters measured in this study complied with the standards. The two most important classroom air quality problems in Hong Kong were PM10 and CO2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号