首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Natural radionuclides have been proposed as a means of assessing the transport of ozone (O3) and aerosols in the troposphere. Beryllium-7 (7Be) is produced in the upper troposphere and lower stratosphere by the interaction of cosmogenic particles with atmospheric nitrogen and oxygen. 7Be has a 53.29-day half-life (478 keV γ) and is known to attach to fine particles in the atmosphere once it is formed. It has been suggested that O3 from aloft can be transported into rural and urban regions during stratospheric–tropospheric folding events leading to increased background levels of O3 at the surface. 7Be can be used as a tracer of upper atmospheric air parcels and the O3 associated with them. Aerosol samples with a 2.5-µm cutoff were collected during 12-hr cycles (day/night) for a 30-day period at Deer Park, TX, near Houston, in August– September of 2000, and at Waddell, AZ, near Phoenix, in June–July of 2001. A comparison of 7Be levels with 12-hr O3 averages and maxima shows little correlation. Comparison of nighttime and daytime O3 levels indicate that during the day, when mixing is anticipated to be higher, the correlation of 7Be with O3 in Houston is approximately twice that observed at night. This is consistent with mixing and with the anticipated loss of O3 by reaction with nitric oxide (NO) and dry deposition. At best, 30% of the O3 variance can be explained by the correlation with 7Be for Houston, less than that for Phoenix where no significant correlation was seen. This result is consistent with the intercept values obtained for 7Be correlations with either O3 24-hr averages or O3 12-hr maxima and is also in the range of the low O3 levels (25 ppb) observed at Deer Park during a tropical storm event where the O3 is attributable primarily to background air masses. That is, maximum background O3 level contributions from stratospheric sources aloft are estimated to be in the range of 15–30 ppb in the Houston, TX, and Phoenix, AZ, area, and levels above these are because of local tropospheric photochemical production.  相似文献   

2.
Source contributions to the surface O3 concentrations in southern Ontario were assessed for the 1979–1985 period. Ozone episode analyses indicate a frequency of about nine episodes per year (15 episode-days). These occur primarily in the summer months and are generally manifestations of the northern extent of the O3 problem in eastern North America. Widespread elevated O3 levels tend to occur under weather classes indicative of back or centre of the high pressure situations and associated flow/trajectory from areas south/southwest of the lower Great Lakes. These episodes vary considerably from year-to-year. Local impacts on O3 levels are generally small.A study of O3 levels during cloud-free summer days for the period 1981–1985 gave local ‘background’ O3 levels of about 20–30 ppb daily and 30–50 ppb hourly maxima. The O3 contributions from the U.S. to southern Canada (assuming local ‘background’ O3 levels to be independent of wind direction) were estimated to be 30–35 ppb daily and 30–50 ppb hourly maxima. These results indicate an overall O3 contribution of about 50–60% from the U.S. to southern Ontario. For episode-days, the U.S. contribution is even more significant.  相似文献   

3.
Analysis of the recent surface ozone data at four remote islands (Rishiri, Oki, Okinawa, and Ogasawara) in Japan indicates that East Asian anthropogenic emissions significantly influence the boundary layer ozone in Japan. Due to these regional-scale emissions, an increase of ozone concentration is observed during fall, winter, and spring when anthropogenically enhanced continental air masses from Siberia/Eurasia arrive at the sites. The O3 concentrations in the “regionally polluted” continental outflow among sites are as high as 41–46 ppb in winter and 54–61 ppb in spring. Meanwhile, marine air masses from the Pacific Ocean show as low as 13–14 ppb of O3 at Okinawa and Ogasawara in summer but higher O3 concentrations, 24–27 ppb, are observed at Oki and Rishiri due to the additional pollution mainly from Japan mainland. The preliminary analysis of the exceedances of ozone critical level using AOT40 and SUM06 exposure indices indicates that the O3 threshold were exceeded variously among sites and years. The highest AOT40 and SUM06 were observed at Oki in central Japan where the critical levels are distinctly exceeded. In the other years, the O3 exposures at Oki, Okinawa, and Rishiri are about or slightly higher than the critical levels. The potential risk of crop yields reduction from high level of O3 exposure in Japan might not be a serious issue during 1990s and at present because the traditional growing season in Japan are during the low O3 period in summer. However, increases of anthropogenic emission in East Asia could aggravate the situation in the very near future.  相似文献   

4.
In order to evaluate the possible effects of heatwave phenomena on background O3 concentrations, the average summer O3 concentrations at the high mountain station of Mt. Cimone (MTC—2165 m a.s.l.) have been analyzed. In particular, at this baseline station unusually high O3 concentrations were recorded during August 2003, when an intense heatwave (the “August heatwave”) affected Europe. During this heatwave, the highest O3 concentrations were recorded at MTC in connection with air masses coming from continental Europe and the Po basin boundary layer as shown by three-dimensional air mass back-trajectory and mixing height analyzes. However, high O3 concentrations were also recorded in air masses coming from the middle troposphere (above 3000 m a.s.l.), thus suggesting the presence of O3-rich atmospheric layers over Europe. This could be due to the large extension of the mixing layer which favoured the transport of high concentrations of O3 and its precursors to altitudes that would usually be in the free troposphere. Other than from traffic and industrial activities, a contribution to the high O3 concentrations recorded at MTC during the August heatwave could derive from fires in the North of Italy, as suggested by a well-documented episode and supported by in situ CO2 measurements used as non-conventional tracer for fire emissions.  相似文献   

5.
Ozone measurements are reported for five rural sites in the Tennessee Valley region of the southeastern U.S. for periods ranging from 18 to 83 months during the years 1977 through 1984. Rural ozone (O3) levels were found to equal or exceed urban values for the same region. The daily maximum 1-h average concentration was found to peak during the summer months, while the 24-h average concentrations were greatest in the spring. The annual cycle of daily maximum concentrations is related to the seasonal photochemical cycle. The annual cycle in 24-h average concentrations is best explained by the combined effects of the annual cycles in solar intensity and noctural O3 depletion. There was no indication that stratospheric intrusions exhibited a significant influence on the annual O3 cycles. Evidence was found for elevated O3 levels during touchdown of plumes from large power plants. No long-term trend in rural O3 concentrations, either daily maxima or means, was discernible.  相似文献   

6.
Within 2 years of trace gas measurements performed at Arosa (Switzerland, 2030 m above sea level), enhanced ozone mixing ratios were observed during south foehn events during summer and spring (5–10 ppb above the median value). The enhancements can be traced back to ozone produced in the strongly industrialized Po basin as confirmed by various analyses. Backward trajectories clearly show advection from this region during foehn. NOy versus O3 correlation and comparison of O3 mixing ratios between Arosa and Mt. Cimone (Italy, 2165 m asl) suggest that ozone is the result of recent photochemical production (+5.6 ppb on average), either directly formed during the transport or via mixing of air processed in the Po basin boundary layer. The absence of a correlation between air parcel residence times over Europe and ozone mixing ratios at Arosa during foehn events is in contrast to a previous analysis, which suggested such correlation without reference to the origin of the air. In the case of south foehn, the continental scale influence of pollutants emission on ozone at Arosa appears to be far less important than the direct influence of the Po basin emissions. In contrast, winter time displays a different situation, with mean ozone reductions of about 4 ppb for air parcels passing the Po basin, probably caused by mixing with ozone-poor air from the Po basin boundary layer.  相似文献   

7.
In the summer of 1998, the air quality (indicators: CO, NO, NO2, O3) above the water surface of the Lake Balderey (Essen, Ruhr area, North Rhine-Westphalia, Germany), an artificial lake used for recreation purposes, was measured using the Fourier transform infrared spectroscopy (FTIR) and differential optical absorption spectroscopy (DOAS) remote measurement methods. The lake, with an area of 3 km2 was created by damming the Ruhr and is surrounded by higher ground. In calm, bright weather conditions, this location results in a low-exchange situation (formation of temperature inversions, cold air dynamics) with a sustained impact on pollutant concentrations over the lake. The results of trace substance measurements (1/2 h mean values) were compared with values from comparison stations (suburban, high traffic and forest) located outside the area of the lake. In general, it was found that mean CO and NO concentrations over the lake were very low (0.3 ppm and 7.5 ppb, respectively). NO2 values (15 ppb) were some 3.5 times higher than those recorded at the forest station and O3 values, at 27 ppb, almost reached the same level as at the forest station (30 ppb). Mass flow densities as a function of wind direction, diurnal courses, differences between weekdays and weekends and comparisons with air quality standards are presented for the lake station.  相似文献   

8.
A unique dataset of airborne in situ observations of HCl, O3, HNO3, H2O, CO, CO2 and CH3Cl has been made in and near the tropical tropopause layer (TTL). A total of 16 profiles across the tropopause were obtained at latitudes between 10°N and 3°S from the NASA WB-57F high-altitude aircraft flying from Costa Rica. Few in situ measurements of these gases, particularly HCl and HNO3, have been reported for the TTL. The general features of the trace gas vertical profiles are consistent with the concept of the TTL as distinct from the lower troposphere and lower stratosphere. A combination of the tracer profiles and correlations with O3 is used to show that a measurable amount of stratospheric air is mixed into this region. The HCl measurements offer an important constraint on stratospheric mixing into the TTL because once the contribution from halocarbon decomposition is quantified, the remaining HCl (>60% in this study) must have a stratospheric source. Stratospheric HCl in the TTL brings with it a proportional amount of stratospheric O3. Quantifying the sources of O3 in the TTL is important because O3 is particularly effective as a greenhouse gas in the tropopause region.  相似文献   

9.
Combustion emissions and strong Santa Ana winds had pronounced effects on patterns and levels of ambient ozone (O3) in southern California during the extensive wildland fires of October 2007. These changes are described in detail for a rural receptor site, the Santa Margarita Ecological Reserve, located among large fires in San Diego and Orange counties. In addition, O3 changes are also described for several other air quality monitoring sites in the general area of the fires. During the first phase of the fires, strong, dry and hot northeasterly Santa Ana winds brought into the area clean continental air masses, which resulted in minimal diurnal O3 fluctuations and a 72-h average concentration of 36.8 ppb. During the second phase of the fires, without Santa Ana winds present and air filled with smoke, daytime O3 concentrations steadily increased and reached 95.2 ppb while the lowest nighttime levels returned to ~0 ppb. During that period the 8-h daytime average O3 concentration reached 78.3 ppb, which exceeded the federal standard of 75 ppb. After six days of fires, O3 diurnal concentrations returned to pre-fire patterns and levels.  相似文献   

10.
Data on dally maximum ozone concentrations measured at ambient air monitoring stations operated by state and local air pollution control agencies in the Eastern United States were analyzed using principal factor analysis. Four orthogonal factors representing O3 formation potentials were derived using the statistical package SPSS; these factors accounted for over two-thirds of the variations in 1978 summer O3 levels at 21 urban-oriented stations. The analysis confirmed that O3 variations are similar among stations within defined geographical areas; this confirmation supports the widely held theory that ambient O3 formations are reglonwlde. The analysis suggested that trends analysis for determining general progress in improving O3 air quality should be based on aggregate statistics from clusters of monitors rather than from a single monitoring station within areas associated with the derived factors.  相似文献   

11.
Mixing in the planetary boundary layer (PBL) affects vertical distributions of air tracers in the lower troposphere. An accurate representation of PBL mixing is critical for chemical-transport models (CTMs) for applications sensitive to simulations of the vertical profiles of tracers. The full mixing assumption in the widely used global CTM GEOS-Chem has recently been supplemented with a non-local PBL scheme. This study analyzes the impact of the non-local scheme on model representation of PBL mixing, consequences for simulations of vertical profiles of air tracers and surface air pollution, and implications for model applications to the interpretation of data retrieved from satellite remote sensing. The non-local scheme significantly improves simulations of the vertical distributions for NO2 and O3, as evaluated using aircraft measurements in summer 2004. It also reduces model biases over the U.S. by more than 10 ppb for surface ozone concentrations at night and by 2–5 ppb for peak ozone in the afternoon, as evaluated using ground observations. The application to inverse modeling of anthropogenic NOx emissions for East China using satellite retrievals of NO2 from OMI and GOME-2 suggests that the full mixing assumption results in 3–14% differences in top–down emission budgets as compared to the non-local scheme. The top–down estimate combining the non-local scheme and the Lin et al. inverse modeling approach suggests a magnitude of 6.6 TgN yr?1 for emissions of NOx over East China in July 2008 and 8.0 TgN yr?1 for January 2009, with the magnitude and seasonality in good agreement with bottom–up estimates.  相似文献   

12.
Abstract

The National Oceanic and Atmospheric Administration recently sponsored the New England Forecasting Pilot Program to serve as a “test bed” for chemical forecasting by providing all of the elements of a National Air Quality Forecasting System, including the development and implementation of an evaluation protocol. This Pilot Program enlisted three regional-scale air quality models, serving as prototypes, to forecast ozone (O3) concentrations across the northeastern United States during the summer of 2002. A suite of statistical metrics was identified as part of the protocol that facilitated evaluation of both discrete forecasts (observed versus modeled concentrations) and categorical forecasts (observed versus modeled exceedances/nonexceedances) for both the maximum 1-hr (125 ppb) and 8-hr (85 ppb) forecasts produced by each of the models. Implementation of the evaluation protocol took place during a 25-day period (August 5–29), utilizing hourly O3 concentration data obtained from over 450 monitors from the U.S. Environment Protection Agency’s Air Quality System network.  相似文献   

13.
Abnormally low ozone (O3) mixing ratios were observed by electrochemical concentration cell (ECC) ozonesondes in the upper troposphere over subtropical East Asia in spring 2004, a season when high tropospheric O3 is usually observed in the region. Low O3 with a lowest mixing ratio of 13 ppbv, less than a fourth of the respective seasonal average of 60–100 ppbv, was observed at 11–18 km above ground over Hong Kong (22.31°N, 114.17°E), Sanya (18.23°N, 109.52°E) and Taipei (24.98°N, 121.43°E). The origin of the low O3 was investigated using meteorological evidence, satellite imagery and three-dimensional backward air trajectory. We found for the first time that the low O3 resulted from deep convective pumping of low O3 maritime air masses near the center of typhoon Sudal from the boundary layer of the tropical region to the east of the Philippines to the upper troposphere. The low O3 air masses were then transported to the higher latitudes far ahead of the typhoon following the long-range transport driven by the circulations associated with the typhoon and the northern Hadley cell. The findings of this study highlight that more research efforts are needed to understand the effect of the circulation associated with tropical cyclones on the distribution and budget of O3 and other trace gases in the troposphere.  相似文献   

14.
ABSTRACT

In order to evaluate the spatial variation of aerosol (particulate matter with aerodynamic diameter ≤10 μm [PM10]) and ozone (O3) concentrations and characterize the atmospheric conditions that lead to O3 and PM10-rich episodes in southern Italy during summer 2007, an intensive sampling campaign was simultaneously performed, from middle of July to the end of August, at three ground-based sites (marine, urban, and high-altitude monitoring stations) in Calabria region. A cluster analysis, based on the prevailing air mass backward trajectories, was performed, allowing to discriminate the contribution of different air masses origin and paths. Results showed that both PM10 and O3 levels reached similar high values when air masses originated from the industrialized continental Europe as well as under the influence of wildfire emissions. Among natural sources, dust intrusion and wildfire events seem to involve a marked impact on the recorded data. Typical fair weather of Mediterranean summer and persisting anticyclone system at synoptic scale were indeed favorable conditions to the arrival of heavily dust-loaded air masses over three periods of consecutive days and more than half of the observed PM10 daily exceedances have been attributed to Saharan dust events. During the identified dust outbreaks, a consistent increase in PM10 levels with a concurrent decrease in O3 values was also observed and discussed.

IMPLICATIONS In the summertime, the central-southern Mediterranean Basin is heavily affected by Saharan dust outbreaks and wildfire events. A focus on their significant influence on either oxidizing capacity of the atmosphere and air quality over Calabria, southern Italy, was here presented. Similar studies for most regions surrounding the Mediterranean Basin are needed to implement effective emission reduction measures, to prevent apparent air quality parameter exceedances and to define an appropriate health alert system. Because the frequency of these events is expected to increase due to climate change, these studies could even be a valid effort to better understand and characterize such atmospheric variations.  相似文献   

15.
An evaluation of the diurnal variation of the hourly ozone concentrations measured at five sites in Greater Athens from June until early September 1984 indicates that photosmog episodes in Greater Athens are associated with the sea breeze circulation. Due to local air circulation in the Athens basin, precursors of O3 are transported to and accumulated in the Saronikos Bay during the morning hours while the land breeze is blowing. At noon, when the sea breeze sets in, the O3 formed over the sea is brought back to the coast and to central Athens where it increases the local O3 concentration by a factor of 3–5 within a few hours. The O3 levels often remain high throughout the night. During the photochemical smog episodes, all of them accompanied by well-developed sea breezes, the U.S. Air Quality Standard of 120 ppb O3 was exceeded for 4–7 h day−1. Peak O3 concentrations up to nearly 200 ppb were recorded in the smog episodes.Relatively high O3 concentrations were measured on the island of Aegina. They tend to remain high during the night and can be attributed only to primary pollutant transport from Greater Athens advected by the land breeze. The O3 values obtained at Mount Immitos (1000 m above MSL) suggest that, first, the sea breeze inhibits the influence of vertical thermal convection up to heights above 600 m, and second, no O3 is noticeable from above the tropopause to ground level or from long-range transport.  相似文献   

16.
The natural background in the ozone concentration at rural locations in the United States and western Europe has been estimated by use of several approaches. The approaches utilized include the following: (1) historical trends in ozone concentration measurements, (2) recent ozone measurements at remote sites, (3) use of tracers of air originating in the stratosphere or upper troposphere and (4) results from applications of tropospheric photochemical models. While each of these approaches has its own limitations it appears that the natural background of ozone during the warmer months of the year is in the range of 10 to 20 ppb. Most of the ozone originating in the lower stratosphere or upper troposphere is lost by chemical or physical removal processes as well as undergoing dilution by air in the lower troposphere before reaching ground level rural locations. Lower tropospheric photochemical processes, those below 5 km, are likely to account for most of the ozone measured at rural locations during the warmer months of the year.

A key aspect to improved quantitation of the contributions from lower tropospheric photochemical processes to ozone concentrations continues to be more extensive atmospheric measurements of the distribution of reactive species of nitrogen. The emission densities of anthropogenic sources of NOx are known to be highly variable over populated areas of continents as well as between continental areas and the oceans. The emission densities of biogenic sources of NOx are small, likely to be highly variable, but poorly quantitated. These wide variations indicate the need for use of three dimensional tropospheric photochemical models over large continental regions.

Available results do indicate higher efficiencies for ozone formation at lower NOx concentrations, especially below 1 ppb.  相似文献   

17.
The effects of elevated concentrations of atmospheric tropospheric ozone (O3) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO2) were examined. Growing season mean hourly O3 concentrations were 36.3 and 47.3 ppb for ambient and elevated O3 plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O3 concentrations were 79 and 89 ppb, respectively. Elevated CO2 averaged 524 ppm (+150 ppm) over the growing season. Exposure to O3 and CO2 in combination with O3 increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O3 compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O3 and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O3 tolerance or sensitivity.  相似文献   

18.
The mixing ratios of surface ozone at two rural/remote sites in Thailand, Inthanon and Srinakarin, have been measured continuously for the first time. Almost identical seasonal variations of O3 with dry season maximum and a wet season minimum with a large seasonal amplitude are observed at both sites during 1996–1998. At Inthanon, the monthly averaged O3 mixing ratios range 9–55 ppb, with the annual average of 27 ppb. The ozone mixing ratios at Srinakarin are in the similar range, 9–45 ppb with annual average of 28 ppb. Based on trajectory analysis of O3 data at Inthanon, the long-range transport of O3 under Asian monsoon regime could primarily explain the low O3 mixing ratios of 13 ppb in clean marine air mass from Indian Ocean during wet season but only partly explain the relatively low O3 mixing ratios, 26 ppb or less, in continental air mass from northeast Asia either in wet or dry season. The highest O3 mixing ratios are found in air masses transported within southeast Asia, averaged 46 ppb in dry season. The high O3 mixing ratios during the dry season are suggested to be significantly due to the local/sub-regional scale O3 production triggered by biomass burning in southeast Asia rather than long-range transport effect.  相似文献   

19.
Ozone concentrations in Alberta cities typically exhibit a maximum in May (up to 35 ppb) and a minimum in November (as low as 4 ppb). This behaviour is similar to that of rural Alberta O3 concentrations. Annual O3 concentrations at six urban monitoring stations vary from 11 ppb to 22 ppb and are about one-half the values at rural stations. In winter, urban O3 concentrations are always smaller than rural concentrations and the cities act as sinks for O3. Although urban stations do not exceed Canada's maximum acceptable levels of daily (25 ppb) and annual (15 ppb) O3 concentrations as often as rural stations, the frequency is still quite large. Canada's hourly maximum desirable level (50 ppb) is exceeded 11 times more often at the remote (rural) station than at the downtown (urban) stations.  相似文献   

20.
We analyze detailed atmospheric gas/aerosol composition data acquired during the 2008 NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) airborne campaign performed at high northern latitudes in spring (ARCTAS-A) and summer (ARCTAS-B) and in California in summer (ARCTAS-CARB). Biomass burning influences were widespread throughout the ARCTAS campaign. MODIS data from 2000 to 2009 indicated that 2008 had the second largest fire counts over Siberia and a more normal Canadian boreal forest fire season. Near surface arctic air in spring contained strong anthropogenic signatures indicated by high sulfate. In both spring and summer most of the pollution plumes transported to the Arctic region were from Europe and Asia and were present in the mid to upper troposphere and contained a mix of forest fire and urban influences. The gas/aerosol composition of the high latitude troposphere was strongly perturbed at all altitudes in both spring and summer. The reactive nitrogen budget was balanced with PAN as the dominant component. Mean ozone concentrations in the high latitude troposphere were only minimally perturbed (<5 ppb), although many individual pollution plumes sampled in the mid to upper troposphere, and mixed with urban influences, contained elevated ozone (ΔO3/ΔCO = 0.11 ± 0.09 v/v). Emission and optical characteristics of boreal and California wild fires were quantified and found to be broadly comparable. Greenhouse gas emission estimates derived from ARCTAS-CARB data for the South Coast Air Basin of California show good agreement with state inventories for CO2 and N2O but indicate substantially larger emissions of CH4. Simulations by multiple models of transport and chemistry were found to be broadly consistent with observations with a tendency towards under prediction at high latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号