首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Guttalgor method has been used to determine the chemical species concentrations in size-selected raindrops in nine rain events at Hong Kong from 1999 to 2001. The curve (concentration against raindrop radius) patterns for all the species are similar but depend on the starting time of sampling within a rain event. In these plots, the maximum concentration occurs at the same range of droplet radius, irrespective of the species, and this indicates the importance of coalescence and breakup processes. The maximum is located at a smaller droplet radius than was found in previous studies in Germany. All results show almost constant concentrations with size for large raindrops, and these indicate the in-cloud contributions. The pH of raindrops of similar size is linearly correlated with a function of the sulfate, nitrate, acetate, formate, calcium and ammonium ion species concentrations. Within a single raindrop, chloride depletion is not significant, and sulfate, ammonium and hydrogen ions are found in ratios compatible with the precursor solid-phase mixture of ammonium sulfate and ammonium bisulphate. When simulated by a below-cloud model, good agreement between the modeled and measured sodium and sulfate concentrations has been found. Below-cloud sulfur dioxide scavenging contributes at most 60% of the sulfate concentration in a single raindrop.  相似文献   

2.
The indoor-outdoor concentration relationship of particulate matter PM9.0 (aerodynamic diameter 9 μm or smaller) and its chemical composition (sulfate, nitrate, chloride and ammonium) has been studied. Samples were collected using four identical Anderson impactors, each one collecting nine size ranges by eight impactor stages (9, 5.8, 4.7, 3.3, 2.1, 1.1, 0.65 and 0.43 μm) plus a back-up filter representing particles finer than 0.45 μm. Concentrations of sulfate, nitrate and chloride were determined by ion chromatography, and an ammonium-selective ion electrode plus a Corning pH ion meter were used to determine ammonium ion. The results revealed that sulfate was the predominant component and chloride the least abundant. The size distribution of sulfate, nitrate and ammonium very strongly peaked near 0.65 μm and with very little at the larger sizes. The chloride concentration was depleted in the fine particles and enhanced in the relatively coarser particles, with the peak at 3.3 μm. All these concentrations had a significant linear relationship with mass concentrations in outdoor samples. In indoor samples, the same relation was observed only for sulfate and ammonium, which were also significantly correlated with each other. Furthermore, indoor sulfate, chloride and ammonium concentrations were higher towards the finest particle sizes, indicating a higher potential inhalation health hazard. The study also confirmed that indoor air quality depends on outdoor atmospheric pollution level, indoor activities and virtually on the particle size. Finally, the study would assist in selecting the type of collector required to reduce the level of particulates to an acceptable level for indoor ambient air.  相似文献   

3.
The concentration of elements Na through Pb, select ions, and organic carbon from fine (<2.5 µm) particles has been monitored at Shenandoah and Great Smoky Mountains National Parks from 1988 through 1995. The data obtained from 1988 through 1994 show that significant changes in the concentrations of many aerosol constituents occur on a seasonal basis. Particulate sulfate and organic carbon are shown to exhibit substantially higher concentrations during the summer, while sulfur dioxide and nitrate concentrations are highest during the winter.

A method for estimating the degree of neutralization of particulate sulfate is given. This method uses routinely measured aerosol elemental compositions because ammonium ion, the primary neutralizing species for sulfate, is not measured on a routine basis. Application of this method to the selected data set shows that sulfate aerosol is most acidic during summer with an average molar Hs (moles of hydrogen associated with sulfur) to S (moles of sulfur) ratio of approximately 4. This suggests the average sulfate particle during the summer has a molar coon slightly more acidic than ammonium bisulfate (NH4HSO4) which has a molar hydrogen to sulfur ratio of 5. Winter Hs to S ratios, however, are approximately 8, suggesting the aerosol is on average fully neutralized ammonium sulfate [(NH4)2SO4].  相似文献   

4.
A continuous, 19-year record (1963–1982) of weekly, bulk precipitation chemistry at the Hubbard Brook Experimental Forest in West Thornton, New Hampshire shows no statistically significant trend in annual volume-weighted concentrations of hydrogen ion and nitrate, but a 34% decrease in sulfate, a 34% decrease in ammonium, a 63% decrease in chloride, a 79% decrease in magnesium and an 86% decrease in calcium during the period. Nitrate concentrations increased from 1964 to 1971 and H-ion concentrations decreased after 1970. Frequency distributions of the concentrations of the chemical components of precipitation are skewed. The range of H-ion concentrations in weekly samples has narrowed, and the frequency distribution has shifted toward higher concentrations (lower pH) during the last 19 years. Highest concentrations generally occur with lowest amounts of precipitation for most ions, but low concentrations can occur with either low or high amounts of precipitation. Time trends in deposition generally parallel trends in concentration over the 19-year period. Chemical deposition generally increases with increasing amount of precipitation in weekly samples.  相似文献   

5.
A Seasonal Kendall Trend (SKT) test was applied to precipitation-weighted concentration data from 164 National Atmospheric Deposition Program National Trends Network (NADP/NTN) sites operational from 1985 to 2002. Analyses were performed on concentrations of ammonium, sulfate, nitrate, dissolved inorganic nitrogen (DIN, sum of nitrogen from nitrate and ammonium), and earth crustal cations (ECC, sum of calcium, magnesium, and potassium). Over the 18-year period, statistically significant (p< or =0.10) increases in ammonium concentrations occurred at 93 sites (58%), while just three sites had statistically significant ammonium decreases. Central and northern Midwestern states had the largest ammonium increases. The generally higher ammonium concentrations were accompanied by significant sulfate decreases (139 sites, 85%), and only one significant increase which occurred in Texas. In the west central United States there were significant nitrate increases (45 sites, 27%), while in the northeastern United States there were significant decreases (25 sites, 15%). Significant DIN decreases were observed in the northeastern United States (11 sites, 7%); elsewhere there were significant increases at 75 sites (46%). ECC decreased significantly at 65 sites (40%), predominantly in the central and southern United States, and increased at 11 sites (7%). The concentrations of sulfate, nitrate, and ammonium in precipitation have changed markedly over the time period studied. Such trends indicate changes in the mix of gases and particles scavenged by precipitation, possibly reflecting changes in emissions, atmospheric chemical transformations, and weather patterns.  相似文献   

6.
An intensive field study was conducted in Research Triangle Park, North Carolina in the fall of 1986. Ambient concentrations of the following constituents were obtained: nitric acid, nitrous acid, nitrogen dioxide, sulfur dioxide, ammonia, hydrogen ion, and particulate nitrate, sulfate, and ammonium. Results collected using the annular denuder system (ADS) and the transition flow reactor (TFR) are presented and compared.

Both types of samplers had operational detection limits on daily (22-hour) samples that were generally below 1 μg m-3 suggesting that both samplers can provide sensitive measurements for most of the constituents of interest. Both the ADS and TFR show reasonable (>25 percent) within-sampler precision for most of the measured species concentrations, except TFR fine particulate nitrate measurements where results were frequently negative (The TFR fine particulate nitrate measurement is calculated using subtraction of positive numbers).

Comparison of ADS and TFR daily results showed good agreement for total particulate sulfate, the sum of total (coarse plus fine) particulate and gaseous nitrate, and ammonia. As a result of different inlet particle collection efficiencies, the ADS fine particulate sulfate exceeded the TFR (5 percent). In the absence of a filter to collect volatilized particulate ammonium in the ADS, the sum of total particulate and gaseous ammonium in the TFR exceeded that in the ADS. Of potentially more importance, ADS measurements of SO2 and H+ exceeded those of the TFR, while TFR measurements of HNO3 exceeded those of the ADS. Results of this study suggest that the TFR may provide biased measurements of SO2, H+, HNO3, and Fine NO3 - that cannot be corrected without modifications to the fundamental design of the sampling system.  相似文献   

7.
PM2.5 sampling was conducted at a curbside location in Delhi city for summer and winter seasons, to evaluate the effect of PM2.5 and its chemical components on the visibility impairment. The PM2.5 concentrations were observed to be higher than the National Ambient Air Quality Standards (NAAQS), indicating poor air quality. The chemical constituents of PM2.5 (the water-soluble ionic species SO42-, NO3?, Cl?, and NH4+, and carbonaceous species: organic carbon, elemental carbon) were analyzed to study their impact on visibility impairment by reconstructing the light extinction coefficient, bext. The visibility was found to be negatively correlated with PM2.5 and its components. The reconstructed bext showed that organic matter was the largest contributor to bext in both the seasons which may be attributed to combustion sources. In summer season, it was followed by elemental carbon and ammonium sulfate; however, in winter, major contributions were from ammonium nitrate and elemental carbon. Higher elemental carbon in both seasons may be attributed to traffic sources, while lower concentrations of nitrate during summer, may be attributed to volatility because of higher atmospheric temperatures.

Implications: The chemical constituents of PM2.5 that majorly effect the visibility impairment are organic matter and elemental carbon, both of which are products of combustion processes. Secondary formations that lead to ammonium sulfate and ammonium nitrate production also impair the visibility.  相似文献   

8.
Size fractionated chemical speciation of acidic aerosols were performed for ammonium sulfate, other sulfates, ammonium nitrate and other nitrates in a sub-tropical industrial area, Bina, India during December 2003 to November 2004. Analysis of variance (ANOVA) revealed highly significant temporal variations (p > .001) in the concentrations of nitrate and sulfate aerosols in all the three size fractions (fine, mid-size and coarse). Winter demonstrated utmost concentrations of ammonium sulfate, which ranged from 3.2 to 26.4 microg m(-3) in fine particles and 0.20-0.34 microg m(-3) in coarse particles. Ammonium sulfate was chiefly in fine mode (43.77% of total particulate sulfate) as compared to coarse particles (28.60% of total particulate sulfate). The major fraction Ammonium sulfate existed in different forms in atmospheric aerosols, for example NH4Fe(SO4)2, (NH4)2SO4, (NH4)3H(SO4)2 in fine particles, and (NH4)4(NO3)SO4+ in coarse particles. Other sulfate concentrations were also higher during winter ranging from 1.89 to 14.3 microg m(-3) in fine particles and 0.12-0.65microg m(-3) in coarse particles. Ammonium nitrate constituted the major fraction of total particulate nitrate all through the year and was principally in fine particles (the highest concentration in January i.e. 14.2 microg m(-3)). Other nitrates were mainly distributed in the fine particles (highest concentration in January i.e. 11.2 microg m(-3)) All the sulfate and nitrate species were mainly distributed in fine mode and have significant impact on human health.  相似文献   

9.
Aerosol light-scattering in The Netherlands   总被引:2,自引:0,他引:2  
The relation between the (midday) aerosol light-scattering and the concentrations of nitrate and sulfate has been assessed at a site near the coast of the North Sea in The Netherlands. Midday was selected for the measurements because this is the time at which the aerosol is most effective in the scattering of solar radiation. Automated thermodenuders were used for the hourly measurement of the concentration of nitrate and sulfate with a lower detection limit of 0.1 μ m−3. The site is operational since October 1993. The first-year average dry aerosol light-scattering (measured with an integrating nephelometer at a wavelength of 525 nm) was 0.71 × 10−4 m1&#x0304;. In arctic marine air the aerosol light-scattering was a factor of 10 lower than the average value, in polluted continental air it was up to a factor of 10 higher. The ratio of the total aerosol light-scattering to the concentration of sulfate was 20 m2 g−1. The contribution of nitrate to the aerosol light-scattering was higher than that of sulfate in the winter and of about equal magnitude in the summer period. In November and December of 1993, the humidity dependence of the aerosol light-scattering was investigated. Two types of (continental) aerosol were found with respect to the humidity behavior. One type showed a significant increase in light-scattering at the deliquescence points of ammonium nitrate and ammonium sulfate, with that of ammonium nitrate the most pronounced. The second type of continental aerosol did not show deliquescence, but followed the typical humidity dependence of aerosol in a supersaturated droplet state. In this latter aerosol type, nitrate dominated over sulfate. It was concluded from the study that the aerosol light-scattering in The Netherlands, in particular its humidity dependence, is governed by (ammonium) nitrate.  相似文献   

10.
We report the chemical composition of PM10-associated water-soluble species in Mexico City during the second semester of 2000. PM10 samples were collected at four ambient air quality monitoring sites in Mexico City. We determined soluble ions (chloride, nitrate, sulfate, ammonium, sodium, potassium), ionizable transition metals (Zn, Fe, Ti, Pb, Mn, V, Ni, Cr, Cu) and soluble protein. The higher PM(10) levels were observed in Xalostoc (45-174 microg m(-3)) and the lowest in Pedregal (19-54 microg m(-3)). The highest SO2 average concentrations were observed in Tlalnepantla, NO2 in Merced and O3 and NO(x) in Pedregal. The concentration range of soluble sulfate was 6.7-7.9 and 19-25.5 microg m(-3) for ammonium, and 14.8-29.19 for soluble V and 3.2-7.7 ng m(-3) for Ni, suggesting a higher contribution of combustion sources. PM-associated soluble protein levels varied between 0.038 and 0.169 mg m(-3), representing a readily inhalable constituent that could contribute to adverse outcomes. The higher levels for most parameters studied were observed during the cold dry season, particularly in December. A richer content of soluble metals was observed when they were expressed by mass/mass units rather than by air volume units. Significant correlations between Ni-V, Ni-SO4(-2), V-SO4(-2), V-SO2, Ni-SO2 suggest the same type of emission source. The variable soluble metal and ion concentrations were strongly influenced by the seasonal meteoclimatic conditions and the differential contribution of emission sources. Our data support the idea that PM10 mass concentration by itself does not provide a clear understanding of a local PM air pollution problem.  相似文献   

11.
Inhalable particulate matter (PM10) concentrations were measured over 24-h intervals at six different urban sites in the city of Chillán from September 2001 to April 2003. Sampling locations were selected to represent central city, commercial, residential, and industrial portions of the city. Chemical composition of PM10 was performed to samples of 47 mm diameter Teflon membranes within the city of Chillán. The spatial and temporal variability of the chemical composition of PM10 was evaluated taking into account additional data from meteorology and further air pollutants. The majority of PM mass was comprised of carbon, nitrate, sulfate, ammonium, and crustal components but in different proportion on different days and at different sites. The chemical analyses showed that carbonaceous substances and crustal material were the most abundant component of PM10 during the winter and summer, respectively. The concentrations of PM10 were higher during the cold season than during the warm season. The PM10 concentrations were higher in the downtown area of the city of Chillán, where also the chemical composition was more variable due to urban traffic and other anthropogenic sources.  相似文献   

12.
Five intensive field measurements were carried out at two background sites in Korea; Kosan and Kangwha during spring, fall, and winters of 1996 and 1997 to investigate the characteristics of long-range transport of air pollutants in northeastern Asia. Fine particles (PM2.5) were collected by low-volume samplers and the concentrations of major ions, organic and elemental carbons, and nitric acid were quantified. The concentrations of anthropogenic species in PM2.5 measured at both sites were generally higher than those at other background areas, Nagano, Japan and San Nicolas Is., USA due to continental outflow of air pollutants, but lower than those at an urban background site, Qingdao, China. The major components of PM2.5 were sulfate, organic carbon (OC), and ammonium for Kosan and sulfate, OC, ammonium, and nitrate for Kangwha. The major fractions of sulfate at both sites are non-sea-salts (nss) sulfate. Based on the relationship among major anthropogenic species, analysis of the nss sulfate to total nitrate molar ratios, and backward air parcel trajectories, it was found that fine particles measured at both sites during the measurement periods are mainly coming from China. At Kosan, the concentrations of anthropogenic species were higher when air parcels were coming from southern China than when air parcels were from northern China. At Kangwha, however, the differences of the concentrations were not statistically significant since most air parcels were from northern China and local effects are prominent.  相似文献   

13.
Regional simulations of sulfate, nitrate and ammonium aerosols were performed by a nested application of the online-coupled three-dimensional Eulerian model system COSMO-MUSCAT. This was done in a domain covering the northern part of Germany and surrounding regions for the full month of May and a 6-week period in August/September 2006 with the primary focus on secondary inorganic aerosol levels caused by ammonia emissions from domesticated animals and agricultural operations.The results show that in situations with westerly winds ammonium nitrate dominates with concentrations of about 5–10 μg m?3 whereas the ammonium sulfate concentrations are about 5 μg m?3. In situations with winds mainly from the East characterized by warmer and dryer air the ammonium sulfate concentrations have their maximum at about 10 μg m?3 whereas at the same time no ammonium nitrate is present.A reduction of agricultural NH3 emissions by 50% in a regional scale reduces the ammonium nitrate concentrations to a maximum of 30%, while the ammonium sulfate concentrations are unchanged. The reduction of NH3 emissions in a more limited area (here in the Federal state of Germany Niedersachsen) does have no noticeable effect neither on ammonium sulfate nor on ammonium nitrate.  相似文献   

14.
A model is presented that predicts the total quantities of ammonium, chloride, nitrate and water contained in atmospheric aerosols, their physical state and their distribution among aerosol particles of different sizes. The model is based on the thermodynamic equilibrium calculation of the ammonium/chloride/nitrate/sodium/sulfate/water system. The existence of water in the aerosol phase at low relative humidities is shown to be explained. Observed aerosol concentrations at Long Beach, California during 30–31 August 1982 are successfully predicted.  相似文献   

15.
The equilibrium between gaseous ammonia, nitric acid, and aerosol nitrate is discussed on the basis of a recent field experiment in southern California. Comparison is drawn between theoretical equilibrium calculations and simultaneous measurements of nitric acid, ammonia, ammonium ion, nitrate ion, sulfate ion, other ionic species, temperature and dewpoint. Particulate and gaseous pollutant concentrations at some inland sampling sites are readily explained if the aerosol is assumed to exist as an external mixture with all particulate nitrate and ammonium available to form pure NH4NO3. At other monitoring sites, especially near the coast, aerosol nitrate is found in the presence of NH3 and HNO3 concentrations that thermodynamic calculations show are too low to produce pure NH4NO3. This can be explained when the amount of aerosol nitrate that can be derived from reaction of nitric acid with sea salt and soil dust is taken into account. A calculation approach that accounts for the presence of mixed sulfate and nitrate salts improves the agreement between predicted and observed pollutant concentrations in the majority of cases studied. Uncertainties in these calculations arise from a number of sources including the thermodynamic quantities, and the effect of these uncertainties on the comparison between theory and experiment is discussed.  相似文献   

16.
During 1993–97, samples of the full depth of the Rocky Mountain snowpack were collected at 52 sites from northern New Mexico to Montana and analyzed for major-ion concentrations. Concentrations of acidity, sulfate, nitrate, and calcium increased from north to south along the mountain range. In the northern part of the study area, acidity was most correlated (negatively) with calcium. Acidity was strongly correlated (positively) with nitrate and sulfate in the southern part and for the entire network. Acidity in the south exceeded the maximum acidity measured in snowpack of the Sierra Nevada and Cascade Mountains. Principal component analysis indicates three solute associations we characterize as: (1) acid (acidity, sulfate, and nitrate), (2) soil (calcium, magnesium, and potassium), and (3) salt (sodium, chloride, and ammonium). Concentrations of acid solutes in the snowpack are similar to concentrations in nearby wetfall collectors, whereas, concentrations of soil solutes are much higher in the snowpack than in wetfall. Thus, dryfall of acid solutes during the snow season is negligible, as is gypsum from soils. Snowpack sampling offers a cost-effective complement to sampling of wetfall in areas where wetfall is difficult to sample and where the snowpack accumulates throughout the winter.  相似文献   

17.
A multiple regression model is introduced to describe temporal variations in precipitation chemistry data. The model considers the effects of the annual cycle, a linear trend and precipitation-quantity simultaneously. The paper discusses the application of the model to concentrations and depositions of hydronium, ammonium, nitrate and sulfate for monthly bulk samples in The Netherlands for the period 1978–1984.Statistical conclusions about the annual cycle and the trend are hardly influenced by the choice of the dependent variable (depositions, concentrations or logarithms of concentrations). With the exception of H+ concentrations, a large part of the temporal variations was due to precipitation-quantity effects. Significant annual cycles were found for nitrate, ammonium and sulfate. There was statistical evidence of a downward trend for sulfate and nitrate. A complex, non-linear trend was observed for H+ which resulted in a significant autocorrelation of the residuals from the regression equation.Much attention is paid to the detectability of trend. For ammonium, nitrate and sulfate it is possible to discriminate small systematic changes in quite short records (a mean annual change of 4–6% in a 5-year record). This is not the case for H +, because temporal variations of this component are insufficiently explained by the systematic annual cycle and precipitation-quantity.  相似文献   

18.
Damm CJ  Lucas D  Sawyer RF  Koshland CP 《Chemosphere》2001,42(5-7):655-661
Excimer laser fragmentation-fluorescence spectroscopy (ELFFS) is shown to be an effective detection strategy for ammonium nitrate and ammonium sulfate particles at atmospheric pressure and room temperature. Following photofragmentation of the ammonium salt particle, fluorescence of the NH fragment is observed at 336 nm. The fluorescence signal is shown to depend linearly on particle surface area for laser intensities varying from 1.2 x 10(8) to 6 x 10(8) W/cm2. The 100 shot (1 s) detection limits for ammonium nitrate range from 20 ppb for 0.2 microm particles to 125 ppb for 0.8 microm particles, where these concentrations are expressed as moles of ammonium ion per mole of air. For ammonium sulfate, the 100 shot (1 s) detection limits vary from 60 ppb for 0.2 microm particles to 500 ppb for 1 microm particles. These detection limits are low enough to measure ammonium salt particles that form in the exhaust of combustion processes utilizing ammonia injection as a nitric oxide control strategy.  相似文献   

19.
A three-dimensional chemical transport model (PMCAMx) was used to investigate changes in fine particle (PM2.5) concentrations in response to changes in sulfur dioxide (SO2) and ammonia (NH3) emissions during July 2001 and January 2002 in the eastern United States. A uniform 50% reduction in SO2 emissions was predicted to produce an average decrease of PM2.5 concentrations by 26% during July but only 6% during January. A 50% reduction of NH3 emissions leads to an average 4 and 9% decrease in PM2.5 in July and January, respectively. During the summer, the highest concentration of sulfate is in South Indiana (12.8 microg x m(-3)), and the 50% reduction of SO2 emissions results in a 5.7 microg x m(-3) (44%) sulfate decrease over this area. During winter, the SO2 emissions reduction results in a 1.5 microg x m(-3) (29%) decrease of the peak sulfate levels (5.2 microg x m(-3)) over Southeast Georgia. The maximum nitrate and ammonium concentrations are predicted to be over the Midwest (1.9 (-3)g x m(-3) in Ohio and 5.3 microg x m(-3) in South Indiana, respectively) in the summer whereas in the winter these concentrations are higher over the Northeast (3 microg x m(-3) of nitrate in Connecticut and 2.7 microg x m(-3) of ammonium in New York). The 50% NH3 emissions reduction is more effective for controlling nitrate, compared with SO2 reductions, producing a 1.1 microg x m(-3) nitrate decrease over Ohio in July and a 1.2 microg x m(-3) decrease over Connecticut in January. Ammonium decreases significantly when either SO2 or NH3 emissions are decreased. However, the SO2 control strategy has better results in July when ammonium decreases, up to 2 microg x m(-3) (37%), are predicted in South Indiana. The NH3 control strategy has better results in January (ammonium decreases up to 0.4 microg x m(-3) in New York). The spatial and temporal characteristics of the effectiveness of these emission control strategies during the summer and winter seasons are discussed.  相似文献   

20.
Cations (pH, potassium, sodium, calcium, magnesium, and ammonium) and anions (sulfate, nitrate, nitrite, and chloride) concentrations were measured in Santiago city rain and dew waters collected during the 1995 to 1999. Concentrations measured in dews are considerably higher than those measured in rains. The high ionic concentration present in dew waters could contribute to their corrosion potential. Natural dust makes an important contribution to the ions present in dews, but the presence of rather high sulfate concentrations (up to 900 μeq/l) indicate a significant contribution of anthropogenic sources.A peculiar characteristic of dew waters is the relatively high nitrite concentrations (up to 180 μeq/l). This nitrite can be resuspended into the boundary layer after dew water evaporation, possibly due to the relatively high volatily of ammonium nitrite. This upward flux could constitute an important source of hydroxyl radicals in the early morning, contributing so to the initial steps of the observed photochemical smog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号