首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes a laboratory project to assess the accuracy of emission and indoor air quality models to be used in predicting formaldehyde (HCHO) concentrations in residences due to pressed-wood products made with urea-formaldehyde bonding resins. The products tested were partlcleboard underlayment, hardwood- plywood paneling and medium-density fiberboard (mdf). The products were initially characterized in chambers by measuring their formaldehyde surface emission rates over a range of formaldehyde concentrations, air exchange rates and two combinations of temperature and relative humidity (23° C and 5 0% RH; 26°C and 60% RH). They were then installed in a two-room prototype house in three different combinations (underlayment flooring only; underlayment flooring and paneling; and underlayment flooring, paneling, and mdf). The equilibrium formaldehyde concentrations were monitored as a function of air exchange rate. Particleboard underlayment and mdf, but not paneling, behaved as the emission model predicted over a large concentration range, under both sets of temperature and relative humidity. Good agreement was also obtained between measured formaldehyde concentrations and those predicted by a mass-balance indoor air quality model.  相似文献   

2.
Environmental test chambers are an important tool in the characterization of organic emissions from solid consumer and construction products and in the evaluation of their potential impact on indoor air quality. The results of extensive research concerning formaldehyde (CH2O) emissions from such products strongly support this application of environmental chambers to measure product emissions and provide useful input for the design of environmental chamber studies. The physical design and test methodology for environmental chambers are strongly influenced by several elements in a comprehensive project plan for source characterization, including the selection process for test samples and the mathematical models used to interpret the organic emissions data. The protocol for environmental chamber testing extends broadly from the acquisition, preparation and conditioning of test specimens, to the selection and control of environmental test conditions, and to the calibration and measurement of system parameters and organic emissions. The requirements for environmental control inside the test chamber can be estimated from the sensitivity of the organic emission rates of the test products (e.g. CH2O emissions from pressed-wood products) to variation in environmental parameters. The cost of the numerous, multiple-organic analyses required for environmental chamber testing of solid emitters is seen as a strong limitation to product selection strategies and modeling efforts. The modeling of organic emissions from solid emitters can be both a planning tool for development of chamber test methodology and a means to interpret test chamber results.  相似文献   

3.
A detailed study of the air quality permitting process for 65 different forest products industry projects requiring preconstruction permit approvals from EPA, state, and local air pollution control agencies was conducted. The projects included a wide array of sources including kraft recovery furnaces, lime kilns, fossil fuel and wood residue fired boilers, solid wood products manufacturing facilities, paper coaters, and printing presses. Information concerning the time involved in the permitting process, costs associated with obtaining the permits, use of air quality models and ambient monitoring data, emission control technology determinations, problem areas encountered during the permitting process, perceived benefits and drawbacks of the permitting process, and the effect of permitting requirements on project planning was obtained.

The results indicate that certain permitting requirements such as Best Available Control Technology (BACT) determinations, dispersion modeling results, and use of ambient air quality monitoring data seldom influence the emission limitations ultimately imposed in the final approved permit, with 87% of the final emission limits equivalent to the applicable New Source Performance Standard (NSPS). The 65 permitting case histories also show that obtaining permits for projects subject to Prevention of Significant Deterioration (PSD) requirements takes approximately twice as long and costs twice as much as obtaining permits for projects not subject to PSD requirements.  相似文献   

4.
Shin SH  Jo WK 《Chemosphere》2012,89(5):569-578
The present study investigated the indoor concentrations of selected volatile organic compounds (VOCs) and formaldehyde and their indoor emission characteristics in newly-built apartments at the pre-occupancy stage. In total, 107 apartments were surveyed for indoor and outdoor VOC concentrations in two metropolitan cities and one rural area in Korea. A mass balanced model was used to estimate surface area-specific emission rates of individual VOCs and formaldehyde. Seven (benzene, ethyl benzene, toluene, m,p-xylene, o-xylene, n-hexane, and n-heptane) of 40 target compounds were detectable in all indoor air samples, whereas the first five were detected in all outdoor air samples. Formaldehyde was also predominant in the indoor air samples, with a high detection frequency of 96%. The indoor concentrations were significantly higher than the outdoor concentrations for aromatics, alcohols, terpenes, and ketones. However, six halogenated VOCs exhibited similar concentrations for indoor and outdoor air samples, suggesting that they are not major components emitted from building materials. It was also suggested that a certain portion of the apartments surveyed were constructed by not following the Korean Ministry of Environment guidelines for formaldehyde emissions. Toluene exhibited the highest emission rate with a median value of 138 μg m−2 h−1. The target compounds with median emission rates greater than 20 μg m−2 h−1 were toluene, 1-propanol, formaldehyde, and 2-butanone. The wood panels/vinyl floor coverings were the largest indoor pollutant source, followed by floorings, wall coverings, adhesives, and paints. The wood panels/vinyl floor coverings contributed nearly three times more to indoor VOC concentrations than paints.  相似文献   

5.
An important potential source of formaldehyde in the home is ureaformaldehyde foam insulation (UFFI). This study measures the long-term release of formaldehyde through the interior wall of test panels foamed with commercial urea-formaldehyde insulation. The measurements, made approximately 16 mo after initial foaming, were conducted under both static and dynamic air conditions with air flow selected to simulate a typical air exchange found in houses. Estimated room concentrations based on a simple model of uniform mixing within a room and measured emission rates are presented. Measurements of formaldehyde in the air from within the UFFI cavities are also reported.  相似文献   

6.
Consumer products can emit chlorinated volatile organic compounds (CVOCs) that complicate vapor intrusion (VI) assessments. Assessment protocols acknowledge the need to remove these products during VI investigations, but they can be problematic to identify and locate. Predicting if the products cause detectable air concentrations is also difficult since emission rate information is limited and can vary with product use and age. In this study, the emission rates of 1,2-dichloroethane, trichloroethene, tetrachloroethene, and carbon tetrachloride from four consumer products identified as indoor sources during VI field investigations were measured under laboratory conditions using a flow through system. Emissions of PCE from an adhesive container tube ranged from 1.33 ± 1.13 μg/min (unopened) to 23.9 ± 2.93 μg/min (previously opened). The laboratory-measured emission rates were used to estimate indoor air concentrations, which were then compared to concentrations measured after the products placed were into an actual residence. The estimated and measured indoor air concentrations were generally comparable, showing that emission rate information can be used to determine the relative impact of internal CVOC sources.  相似文献   

7.
Heat-treated wood is an increasingly popular decoration material. Heat-treatment improves dimensional stability of the wood and also prevents rot fungus growth. Although production of heat-treated wood has been rapidly increasing, there is only little information about the VOC emissions of heat-treated wood and its possible influences on indoor air quality. In the present study, VOC emissions from three untreated (air-dried) and heat-treated wood species were compared during a four weeks test period. It appeared that different wood species had clearly different VOC emission profiles. Heat-treatment was found to decrease VOC emissions significantly and change their composition. Especially, emissions of terpenes decreased from softwood samples and aldehydes from European aspen samples. Emissions of total aldehydes and organic acids were at the same level or slightly higher from heat treated than air-dried softwood samples. In agreement with another recent study, the emissions of furfural were found to increase and those of hexanal to decrease from all the wood species investigated. In contrast to air-dried wood samples, emissions of VOCs were almost in steady state from heat treated wood samples even in the beginning of the test.  相似文献   

8.
The emissions from five commonly used building products were studied in small-scale test chambers over a period of 50 days. The odor intensity was assessed by a sensory panel and the concentrations of selected volatile organic compounds (VOCs) of concern for the indoor air quality were measured. The building products were three floor coverings: PVC, floor varnish on beechwood parquet and nylon carpet on a latex foam backing; an acrylic sealant, and a waterborne wall paint on gypsum board. The impacts of the VOC concentration in the air and the air velocity over the building products on the odor intensity and on the emission rate of VOCs were studied. The emission from each building product was studied under two or three different area-specific ventilation rates, i.e. different ratios of ventilation rate of the test chamber and building product area in the test chamber. The air velocity over the building product samples was adjusted to different levels between 0.1 and 0.3 m s-1. The origin of the emitted VOCs was assessed in order to distinguish between primary and secondary emissions. The results show that it is reasonable after an initial period of up to 14 days to consider the emission rate of VOCs of primary origin from most building products as being independent of the concentration and of the air velocity. However, if the building product surface is sensitive to oxidative degradation, increased air velocity may result in increased secondary emissions. The odor intensity of the emissions from the building products only decayed modestly over time. Consequently, it is recommended to use building products which have a low impact on the perceived air quality from the moment they are applied. The odor indices (i.e. concentration divided by odor threshold) of primary VOCs decayed markedly faster than the corresponding odor intensities. This indicates that the secondary emissions rather than the primary emissions, are likely to affect the perceived air quality in the long run. Some of the building products continued to affect the perceived air quality despite the concentrations of the selected VOCs resulted in odor indices less than 0.1. Therefore, odor indices less than 0.1 as an accept criterion cannot guarantee that a building product has no impact on the perceived air quality.  相似文献   

9.
Mobile homes utilize a class of prefabricate construction techniques which rely greatly upon the use of particle board and hardwood plywood paneling for structural components. This has resulted In household sources which may emit formaldehyde into the home, since urea-formaldehyde resins are used as the bonding agent in most pressed wood stocks. A series of 137 mobile home households was investigated to determine indoor formaldehyde exposure concentrations. Homes were selected based on the estimated age of the construction components. Homes were studied serially for a nine-month period, with formaldehyde samples obtained on a monthly basis using a modified NIOSH chromotropic acid procedure. Formaldehyde concentrations were found to range from less than 0.10 ppm to 2.84 ppm. The median exposure concentration was 0.39 ppm. Analysis of variance was performed on each home to discern visit and room measurement effects. Eighty-nine percent of the homes exhibited no measurement placement effects, while only 10 percent failed to demonstrate between-visit variance effects. Regression models were constructed to predict household formaldehyde concentrations. Concentrations exhibited an inverse relationship with the age of the construction materials. A weighted least squares regression model of log of home age predicting temperature-corrected log formaldehyde explained 82 percent of the formaldehyde variation.  相似文献   

10.
Abstract

The ambient air quality standards (AAQS) of twenty-one nations for eight commonly regulated substances are presented. Many countries are adding a receptor-based component to their air quality management, which traditionally have been emission oriented. Automation of air quality monitoring stations has meant that local air quality evaluation can now be more easily achieved. However, a majority of countries have no active air quality standards (emission or receptor-based) or ambient air quality monitoring. One possible monitoring procedure is outlined and the variation in international standards is discussed.  相似文献   

11.
The use of regulatory and compliance-based modeling for air quality impact assessment is invariably relied upon to predict future air quality under various management scenarios particularly where air quality monitoring data are limited. This paper examines the dispersion from a multi-stack cement manufacturing complex with associated quarries and transport activities for regulatory compliance under uncertain emission and meteorological conditions. The concentrations of CO, NOx, SO2 and PM at sensitive receptor locations were used as indicators in comparison to World Health Organization (WHO) interim guidelines. Exceedance exposure areas were delineated under bounded uncertainties in input emission factors and meteorological parameters. Planning and management initiatives were tested to control/minimize potential exposure. Compared to the case of low emissions and actual meteorological conditions, the consideration of worst emissions coupled to worst meteorological conditions enlarged the boundaries of the exceedance exposure areas considerably. The implementation of best available technologies and enforcement of emission standards improved air quality in the region significantly and lowered the exposure at many population centers to below health standards. Uncertainty in the output of atmospheric dispersion models continues to play a significant role to be considered at the point where science is translated into political decision making.  相似文献   

12.
环境测试舱自吸附甲醛重释放规律与影响因素研究   总被引:2,自引:1,他引:1  
广泛用于板材污染物释放量测试、空气净化产品净化效果测试等实验中的环境测试舱,往往由于其内壁黏附性杂质而对目标测试物产生不可忽视的自吸附作用,自吸附污染物将作为二次释放源出现重释放,研究目标测试物的自吸附消耗量及重释放规律,探索有效控制措施,有利于对环境测试舱实验应用及室内污染控制提出指导性实际意义。分别选取0.2%甲醛溶液、大芯板作为同一自制玻璃环境测试舱2期实验(I期、Ⅱ期)的不同甲醛释放源,通过近90 d追踪测试,经不同释放源、不同控制条件下舱内壁自吸附甲醛的多次重释放实验,结合非线性拟合分析方法,总结出舱内壁自吸附甲醛重释放甲醛浓度变化符合一阶递增指数函数:y=A1×exp(-x/t1)+y0,(A1<0、t1>0)。曲线参数y0值可用于评价实验条件下测试舱内自吸附甲醛残余量;y0值与环境舱舱体材质、环境温湿度、舱外甲醛浓度及空气交换手段有关,而与释放源及其释放平衡浓度高低无明显关系。大开舱门短时间抽气式空气交换对舱内自吸附甲醛残余有适度清除效果,使y0值降低,同时有利于再次平衡状态的快速建立;而长时间的无动力空气交换,或者自来水洗及去离子水洗等处理手段对舱内壁自吸附甲醛残余无明显清除作用。  相似文献   

13.
针对二甲醚平面预混火焰,实验研究了燃料当量比和燃料流量对燃烧过程中甲醛产生和排放特性的影响.实验结果表明,甲醛是二甲醚燃烧过程一个重要的中间产物,在火焰面中大量生成,但其中大部分甲醛迅速被氧化消耗;二甲醚燃烧过程中甲醛的生成受燃料当量比和火焰温度影响明显,欠氧(燃料当量比φ<1)预混合燃烧的甲醛生成显著高于富氧(φ<1)燃烧;燃料当量比一定时,随着燃料流量增加,火焰中的甲醛浓度升高.  相似文献   

14.
Particulate emission factors for two wood stove models have been determined for two types of fuel and a range of operating conditions. The emission factors range from 1 g/kg (fuel) to 24 g/kg. A model is presented which represents the emission factor as a simple function of the ratio of fuel load to combustion rate, or the length of time between refueling. This model is felt to be appropriate for evaluating the impact of wood-based residential space heating on ambient air concentrations of particulate matter If certain assumptions can be made about stove operating conditions. An application of the emission factor model to a typical community suggests that the contribution of wood stoves to ambient particulate levels might reach 100 μg/m3 if the entire heating load were carried by wood.

Preliminary analyses of the particulate matter Indicate that benzene extractables range from 42% of the total particulate mass at short refuel times to 67% at longer refuel times. About 45% of the mass of benzene extractables appeared in the neutral fraction of acid base extractions. Polycyclic aromatic hydrocarbons are expected to be included in this neutral fraction.  相似文献   

15.
One important source of chronic exposure to low levels of organic compounds in the indoor environment is emissions from building materials. Because removal of offending products may be costly or otherwise impractical, it is important that the emissions of organic pollutants be understood prior to incorporation of these materials into buildings. Once the organic pollutants of concern are identified, based on potential health effects and emission potential from the building material, it is necessary that an emission model be developed to predict the behavior of emission rates under various indoor conditions. Examples of the type of requirements that must be addressed in developing models for estimating organic emissions from building materials into the indoor environment are presented. Important factors include the products' characteristic source strengths at standard test conditions, impact of variations in environmental conditions (such as temperature and humidity), concentrations of the modeled organic pollutants in indoor environments and product ages. Ideally, emission models should have physical/chemical bases so that the important physical factors can be identified and their relative importance quantified. Although a universal model describing organic emissions from all building materials may not be feasible due to the tremendous variety of organic products and building materials in use, the most studied of the volatile organic compounds from building materials, formaldehyde, is used to illustrate an approach to the development of a specific model for organic emissions.  相似文献   

16.
Air emission inventories in North America: a critical assessment   总被引:1,自引:0,他引:1  
Although emission inventories are the foundation of air quality management and have supported substantial improvements in North American air quality, they have a number of shortcomings that can potentially lead to ineffective air quality management strategies. Major reductions in the largest emissions sources have made accurate inventories of previously minor sources much more important to the understanding and improvement of local air quality. Changes in manufacturing processes, industry types, vehicle technologies, and metropolitan infrastructure are occurring at an increasingly rapid pace, emphasizing the importance of inventories that reflect current conditions. New technologies for measuring source emissions and ambient pollutant concentrations, both at the point of emissions and from remote platforms, are providing novel approaches to collecting data for inventory developers. Advances in information technologies are allowing data to be shared more quickly, more easily, and processed and compared in novel ways that can speed the development of emission inventories. Approaches to improving quantitative measures of inventory uncertainty allow air quality management decisions to take into account the uncertainties associated with emissions estimates, providing more accurate projections of how well alternative strategies may work. This paper discusses applications of these technologies and techniques to improve the accuracy, timeliness, and completeness of emission inventories across North America and outlines a series of eight recommendations aimed at inventory developers and air quality management decision-makers to improve emission inventories and enable them to support effective air quality management decisions for the foreseeable future.  相似文献   

17.
Particle emissions from residential wood combustion in small communities in Northern Sweden can sometimes increase the ambient particle concentrations to levels comparable to densely trafficked streets in the center of large cities. The reason for this is the combination of increased need for domestic heating during periods of low temperatures, leading to higher emission rates, and stable meteorological conditions. In this work, the authors compare two different approaches to quantify the wood combustion contribution to fine particles in Northern Sweden: a multivariate source-receptor analysis on inorganic compounds followed by multiple linear regression (MLR) of fine particle concentrations and levoglucosan used as a tracer. From the receptor model, it can be seen that residential wood combustion corresponds with 70% of modeled particle mass. Smaller contributions are also seen from local nonexhaust traffic particles, road dust, and brake wear (each contributing 14%). Of the mass, 1.5% is explained by long-distance transported particles, and 2% derives from a regional source deriving from either oil combustion or smelter activities. In samples collected in ambient air, a significant linear correlation was found between wood burning particles and levoglucosan. The levoglucosan fraction in the ambient fine particulate matter attributed to wood burning according to the multivariate analysis ranged from < 2% to 50%. This is much higher than the fraction found in the emission from the boilers expected to be responsible for most emissions at this site (between 3% and 6%). A laboratory emission study of wood and pellet boilers gave 0.3% wt to 22% wt levoglucosan to particle mass, indicating that the levoglucosan fraction may be highly dependent on combustion conditions, making it uncertain to use it as a quantitative tracer under real-world burning conditions. Thus, quantitative estimates of wood burning contributions will be very uncertain using solely levoglucosan as a tracer.  相似文献   

18.
Large petrochemical flares, common in the Houston Ship Channel (the Ship Channel) and other industrialized areas in the Gulf of Mexico region, emit hundreds to thousands of pounds per hour of highly reactive volatile organic compounds (HRVOCs). We employed fine horizontal resolution (200 m?×?200 m) in a three-dimensional (3D) Eulerian chemical transport model to simulate two historical Ship Channel flares. The model reasonably reproduced the observed ozone rise at the nearest monitoring stations downwind of the flares. The larger of the two flares had an olefin emission rate exceeding 1400 lb/hr. In this case, the model simulated a rate of increase in peak ozone greater than 40 ppb/hr over a 12 km?×?12 km horizontal domain without any unusual meteorological conditions. In this larger flare, formaldehyde emissions typically neglected in official inventories enhanced peak ozone by as much as 16 ppb and contributed over 10 ppb to ambient formaldehyde up to ~8 km downwind of the flare. The intense horizontal gradients in large flare plumes cannot be simulated by coarse models typically used to demonstrate ozone attainment. Moreover, even the relatively dense monitoring network in the Ship Channel may not be able to detect many transient high ozone events (THOEs) caused by industrial flare emissions in the absence of stagnant air recirculation or stalled sea breeze fronts, even though such conditions are unnecessary for the occurrence of THOEs.

Implications: Flare minimization may be an important strategy to attain the U.S. federal ozone standard in industrialized areas, and to avoid inordinate exposure to formaldehyde in neighborhoods surrounding petrochemical facilities. Moreover, air quality monitoring networks, emission inventories, and chemical transport models with higher spatial and temporal resolution and more refined speciation of HRVOCs are needed to better account for the near-source air quality impacts of large olefin flares.  相似文献   

19.
BACKGROUND, AIM AND SCOPE: All across Europe, people live and work in indoor environments. On average, people spend around 90% of their time indoors (homes, workplaces, cars and public transport means, etc.) and are exposed to a complex mixture of pollutants at concentration levels that are often several times higher than outdoors. These pollutants are emitted by different sources indoors and outdoors and include volatile organic compounds (VOCs), carbonyls (aldehydes and ketones) and other chemical substances often adsorbed on particles. Moreover, legal obligations opposed by legislations, such as the European Union's General Product Safety Directive (GPSD) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), increasingly require detailed understanding of where and how chemical substances are used throughout their life-cycle and require better characterisation of their emissions and exposure. This information is essential to be able to control emissions from sources aiming at a reduction of adverse health effects. Scientifically sound human risk assessment procedures based on qualitative and quantitative human exposure information allows a better characterisation of population exposures to chemical substances. In this context, the current paper compares inhalation exposures to three health-based EU priority substances, i.e. benzene, formaldehyde and acetaldehyde. MATERIALS AND METHODS: Distributions of urban population inhalation exposures, indoor and outdoor concentrations were created on the basis of measured AIRMEX data in 12 European cities and compared to results from existing European population exposure studies published within the scientific literature. By pooling all EU city personal exposure, indoor and outdoor concentration means, representative EU city cumulative frequency distributions were created. Population exposures were modelled with a microenvironment model using the time spent and concentrations in four microenvironments, i.e. indoors at home and at work, outdoors at work and in transit, as input parameters. Pooled EU city inhalation exposures were compared to modelled population exposures. The contributions of these microenvironments to the total daily inhalation exposure of formaldehyde, benzene and acetaldehyde were estimated. Inhalation exposures were compared to the EU annual ambient benzene air quality guideline (5 microg/m3-to be met by 2010) and the recommended (based on the INDEX project) 30-min average formaldehyde limit value (30 microg/m3). RESULTS: Indoor inhalation exposure contributions are much higher compared to the outdoor or in-transit microenvironment contributions, accounting for almost 99% in the case of formaldehyde. The highest in-transit exposure contribution was found for benzene; 29.4% of the total inhalation exposure contribution. Comparing the pooled AIRMEX EU city inhalation exposures with the modelled exposures, benzene, formaldehyde and acetaldehyde exposures are 5.1, 17.3 and 11.8 microg/m3 vs. 5.1, 20.1 and 10.2 microg/m3, respectively. Together with the fact that a dominating fraction of time is spent indoors (>90%), the total inhalation exposure is mostly driven by the time spent indoors. DISCUSSION: The approach used in this paper faced three challenges concerning exposure and time-activity data, comparability and scarce or missing in-transit data inducing careful interpretation of the results. The results obtained by AIRMEX underline that many European urban populations are still exposed to elevated levels of benzene and formaldehyde in the inhaled air. It is still likely that the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended formaldehyde 30-min average limit value of 30 microg/m3 are exceeded by a substantial part of populations living in urban areas. Considering multimedia and multi-pathway exposure to acetaldehyde, the biggest exposure contribution was found to be related to dietary behaviour rather than to inhalation. CONCLUSIONS: In the present study, inhalation exposures of urban populations were assessed on the basis of novel and existing exposure data. The indoor residential microenvironment contributed most to the total daily urban population inhalation exposure. The results presented in this paper suggest that a significant part of the populations living in European cities exceed the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended (INDEX project) formaldehyde 30-min average limit value of 30 microg/m3. RECOMMENDATIONS AND PERSPECTIVES: To reduce exposures and consequent health effects, adequate measures must be taken to diminish emissions from sources such as materials and products that especially emit benzene and formaldehyde in indoor air. In parallel, measures can be taken aiming at reducing the outdoor pollution contribution indoors. Besides emission reduction, mechanisms to effectively monitor and manage the indoor air quality should be established. These mechanisms could be developed by setting up appropriate EU indoor air guidelines.  相似文献   

20.
The Journal of the Air Pollution Control Association presents its fifth annual directory of air pollution products. This 14-page guide lists manufacturers of emission control equipment and air pollution instrumentation under product classifications which are shown below. These classifications are derived from McGraw-Hill’s Air Pollution Handbook, chapters 10, 11, and 13 . The final portion of this guide contains an alphabetical listing of manufacturers.

If any manufacturers or product categories have been inadvertently overlooked, the omission is regretted and should be brought to the attention of the editor. It will result in a more complete and accurate Product Guide/1973 to be published next December.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号